CN107181267A - Wind power plant subsynchronous resonance suppressing method and system - Google Patents

Wind power plant subsynchronous resonance suppressing method and system Download PDF

Info

Publication number
CN107181267A
CN107181267A CN201710458370.3A CN201710458370A CN107181267A CN 107181267 A CN107181267 A CN 107181267A CN 201710458370 A CN201710458370 A CN 201710458370A CN 107181267 A CN107181267 A CN 107181267A
Authority
CN
China
Prior art keywords
msub
mrow
wind farm
inductance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710458370.3A
Other languages
Chinese (zh)
Other versions
CN107181267B (en
Inventor
谢小荣
张旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710458370.3A priority Critical patent/CN107181267B/en
Publication of CN107181267A publication Critical patent/CN107181267A/en
Application granted granted Critical
Publication of CN107181267B publication Critical patent/CN107181267B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种风电场次同步谐振抑制方法及系统,所述风电场至少包括:多台风机,多台变压器和风电场线路,其特征在于,包括:获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号;对所述风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据所述次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。本发明能够有效提高风电场的稳定性。

The invention discloses a method and system for suppressing subsynchronous resonance of a wind farm. The wind farm at least includes: multiple wind turbines, multiple transformers, and wind farm lines, and is characterized in that it includes: acquiring voltage signals and current signals of the wind farm lines , the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the sub-synchronous suppression system actually output the current signal to the grid; the voltage signal of the wind farm line and the current signal of the wind farm line filter processing, obtain the sub-synchronous frequency signal, and obtain the closed-loop transfer function of the wind farm according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the line resistance and inductance of the wind farm, and according to the The subsynchronous suppression system actually outputs current signals to the grid, and the attenuation rate at different zero points of the closed-loop transfer function is optimized by optimizing parameters. The invention can effectively improve the stability of the wind farm.

Description

风电场次同步谐振抑制方法及系统Wind power field subsynchronous resonance suppression method and system

技术领域technical field

本发明涉及电力系统技术领域,特别涉及一种风电场次同步谐振抑制方法及系统。The invention relates to the technical field of power systems, in particular to a subsynchronous resonance suppression method and system for a wind farm.

背景技术Background technique

风电场接入含有固定串联补偿电容的系统时,可能存在诱发次同步谐振(SSR)的风险。近些年,国内外已有多起关于风机次同步振荡的事故发生。2009年,美国德克萨斯州的一处风场,由于输电系统出现故障,切除部分线路,使得串补度从50%提高至75%,导致风电场出现次同步振荡,从而造成大量风机损坏。When wind farms are connected to systems with fixed series compensation capacitors, there may be a risk of inducing subsynchronous resonance (SSR). In recent years, there have been many accidents related to fan subsynchronous oscillation at home and abroad. In 2009, a wind farm in Texas, USA, due to a fault in the power transmission system, part of the line was cut off, which increased the series compensation from 50% to 75%, resulting in subsynchronous oscillations in the wind farm, resulting in damage to a large number of wind turbines .

相关技术中,抑制风电场次同步谐振的方法主要是改变风机内部控制系统,通过附加阻尼控制,增大风机电磁转矩对次同步振荡的阻尼;或者在系统发生次同步谐振期间退出串补电容,改变系统串补度,达到抑制次同步谐振的目的。但是,这些方法改造复杂,经济性较差。In related technologies, the method of suppressing the subsynchronous resonance of the wind farm is mainly to change the internal control system of the wind turbine, and increase the damping of the electromagnetic torque of the wind turbine to the subsynchronous oscillation through additional damping control; or withdraw the series compensation capacitor during the subsynchronous resonance of the system, Change the series compensation degree of the system to achieve the purpose of suppressing subsynchronous resonance. However, these methods are complex and economical.

发明内容Contents of the invention

本发明旨在至少在一定程度上解决上述相关技术中的技术问题之一。The present invention aims at solving one of the technical problems in the related art mentioned above at least to a certain extent.

为此,本发明的一个目的在于提出一种风电场次同步谐振抑制方法。该风电场次同步谐振抑制方法可以达到抑制次同步谐振的目的,并提高风电场的稳定性。Therefore, an object of the present invention is to propose a subsynchronous resonance suppression method for a wind farm. The subsynchronous resonance suppression method of the wind farm can achieve the purpose of suppressing the subsynchronous resonance and improve the stability of the wind farm.

本发明的另一个目的在于提出一种风电场次同步谐振抑制系统。Another object of the present invention is to propose a subsynchronous resonance suppression system for a wind farm.

为了实现上述目的,本发明的一方面公开了一种风电场次同步谐振抑制方法,所述风电场至少包括:多台风机,多台变压器和风电场线路,其特征在于,包括:获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号;对所述风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据所述次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。In order to achieve the above object, one aspect of the present invention discloses a method for suppressing subsynchronous resonance of a wind farm, the wind farm at least includes: multiple wind turbines, multiple transformers and wind farm lines, characterized in that it includes: obtaining wind farm lines The voltage signal and current signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the actual output current signal of the sub-synchronous suppression system to the grid; the voltage signal of the wind farm line and the wind power The current signal of the field line is filtered to obtain the sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, the closed-loop transmission of the wind farm is obtained function, and according to the actual output current signal of the subsynchronous suppression system to the power grid, the attenuation rate at different zero points of the closed-loop transfer function is optimized by optimizing the parameters.

根据本发明的风电场次同步谐振抑制方法,可以达到抑制次同步谐振的目的,并提高风电场的稳定性。According to the sub-synchronous resonance suppression method of the wind farm of the present invention, the purpose of suppressing the sub-synchronous resonance can be achieved, and the stability of the wind farm can be improved.

另外,根据本发明上述实施例的风电场次同步谐振抑制方法还可以具有如下附加的技术特征:In addition, the wind farm subsynchronous resonance suppression method according to the above-mentioned embodiments of the present invention may also have the following additional technical features:

进一步地,所述风电场闭环传递函数的公式为:Further, the formula of the closed-loop transfer function of the wind farm is:

其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans.

进一步地,通过优化参数,使得传递函数不同零点下的衰减率最优具体为:Further, by optimizing the parameters, the optimal attenuation rate under different zero points of the transfer function is specifically:

优化电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,并当zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部,模态ωh的衰减率ξhOptimizing the current signal gain K i , the current signal phase shift parameter Tai , the voltage signal gain K u , the voltage signal phase shift parameter T au , and when z hh +jω h , σ h is the real part of the zero point z h , ω h is the imaginary part of the zero point z h , the attenuation rate ξ h of the mode ω h :

衰减率ξh满足:The decay rate ξ h satisfies:

目标函数:max f=min(ξh)Objective function: max f=min(ξ h )

约束条件: Restrictions:

pu:标幺值单位,nTOT:风机台数最大值。pu: standard unit, n TOT : the maximum number of fans.

本发明的第二方面公开了一种风电场次同步谐振抑制系统,所述风电场至少包括:多台风机,多台变压器和风电场线路,包括:获取模块,用于获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号;处理模块,用于对所述风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据所述次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。The second aspect of the present invention discloses a subsynchronous resonance suppression system for a wind farm, where the wind farm at least includes: multiple wind turbines, multiple transformers, and wind farm lines, including: an acquisition module for acquiring voltage signals of the wind farm lines and current signal, resistance and inductance of multiple wind turbines, resistance and inductance of multiple transformers, resistance and inductance of wind farm line, and subsynchronous suppression system actually output current signal to the grid; processing module is used to process the voltage signal of the wind farm line Filtering and processing the current signal of the wind farm line to obtain the sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the line of the wind farm, the wind farm The closed-loop transfer function, and according to the actual output current signal of the sub-synchronous suppression system to the power grid, the attenuation rate at different zero points of the closed-loop transfer function is optimized by optimizing parameters.

根据本发明的风电场次同步谐振抑制系统,可以达到抑制次同步谐振的目的,并提高风电场的稳定性。According to the wind farm subsynchronous resonance suppression system of the present invention, the purpose of suppressing subsynchronous resonance can be achieved, and the stability of the wind farm can be improved.

另外,根据本发明上述实施例的风电场次同步谐振抑制系统还可以具有如下附加的技术特征:In addition, the wind farm subsynchronous resonance suppression system according to the above-mentioned embodiments of the present invention may also have the following additional technical features:

进一步地,所述风电场闭环传递函数的公式为:Further, the formula of the closed-loop transfer function of the wind farm is:

其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans.

进一步地,通过优化参数,使得传递函数不同零点下的衰减率最优具体为:优化电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,并当zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部,模态ωh的衰减率ξhFurther, by optimizing the parameters, the optimal attenuation rate under different zero points of the transfer function is specifically: optimizing the current signal gain K i , the current signal phase shift parameter Tai , the voltage signal gain K u , the voltage signal phase shift parameter T au , And when z h =σ h +jω h , σ h is the real part of the zero point z h , ω h is the imaginary part of the zero point z h , the attenuation rate ξ h of the mode ω h :

衰减率ξh满足:The decay rate ξ h satisfies:

目标函数:max f=min(ξh)Objective function: max f=min(ξ h )

约束条件: Restrictions:

pu:标幺值单位,nTOT:风机台数最大值。pu: standard unit, n TOT : the maximum number of fans.

进一步地,还包括:电力电子变流器和变压器。Further, it also includes: power electronic converter and transformer.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:

图1是根据本发明一个实施例的风电场次同步谐振抑制方法的流程图;Fig. 1 is the flow chart of the subsynchronous resonance suppressing method of wind farm according to one embodiment of the present invention;

图2是根据本发明一个实施例的风电场接入串补系统的结构图;Fig. 2 is a structural diagram of a wind farm access series compensation system according to an embodiment of the present invention;

图3是根据本发明一个实施例的风电场次同步谐振抑制方法的策略图;Fig. 3 is a strategy diagram of a wind farm subsynchronous resonance suppression method according to an embodiment of the present invention;

图4是根据本发明一个实施例的风电场次同步谐振抑制系统的结构框图。Fig. 4 is a structural block diagram of a subsynchronous resonance suppression system for a wind farm according to an embodiment of the present invention.

具体实施方式detailed description

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.

以下结合附图描述根据本发明实施例的风电场次同步谐振抑制方法及次同步谐振抑制系统。The subsynchronous resonance suppression method and subsynchronous resonance suppression system of a wind farm according to the embodiments of the present invention will be described below with reference to the accompanying drawings.

图1是根据本发明一个实施例的风电场次同步谐振抑制方法的流程图。Fig. 1 is a flowchart of a subsynchronous resonance suppression method for a wind farm according to an embodiment of the present invention.

在说明此方法前,结合图2所示,风电场至少包括:多台风机,多台变压器和风电场线路。风电场次同步谐振抑制方法在风电场系统中执行。Before describing this method, as shown in FIG. 2 , the wind farm at least includes: multiple wind turbines, multiple transformers and wind farm lines. The wind farm subsynchronous resonance suppression method is implemented in the wind farm system.

如图1所示,根据本发明一个实施例的风电场次同步谐振抑制方法,包括:As shown in Figure 1, the subsynchronous resonance suppression method for wind farms according to an embodiment of the present invention includes:

S110:获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号。S110: Obtain the voltage signal and current signal of the wind farm line, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the actual output current signal of the subsynchronous suppression system to the grid.

结合图2所示,获取风电场线路的电压信号uabc和风电场线路的电流信号iabc,次同步抑制系统向电网实际输出电流信号ioutAs shown in Fig. 2, the voltage signal u abc of the wind farm line and the current signal i abc of the wind farm line are obtained, and the subsynchronous suppression system actually outputs the current signal i out to the grid.

S120:对风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。S120: Filter the voltage signal of the wind farm line and the current signal of the wind farm line to obtain the sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, and the wind farm line The resistance and inductance are used to obtain the closed-loop transfer function of the wind farm, and according to the actual output current signal of the subsynchronous suppression system to the grid, the attenuation rate of the closed-loop transfer function at different zero points is optimal by optimizing the parameters.

具体来说,对风电场线路的电压信号uabc和风电场线路的电流信号iabc进行滤波处理,得到次同步频率信号。Specifically, the voltage signal u abc of the wind farm line and the current signal i abc of the wind farm line are filtered to obtain a sub-synchronous frequency signal.

根据次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感和风电场线路电阻和电感得到风电场闭环传递函数,其中,风电场闭环传递函数的公式为:According to the subsynchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, and the line resistance and inductance of the wind farm, the closed-loop transfer function of the wind farm is obtained. The formula of the closed-loop transfer function of the wind farm is:

其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans.

Hi(s)和Hu(s)分别为对风电场线路的电流信号iabc和风电场线路的电压信号uabc处理的传递函数:H i (s) and Hu (s) are transfer functions for processing the current signal i abc of the wind farm line and the voltage signal u abc of the wind farm line respectively:

iout(s)=iabc(s)Hi(s)+uabc(s)Hu(s)i out (s)=i abc (s)H i (s)+u abc (s)H u (s)

Hi(s)=HF(s)KiHcom,i(s)Hd(s)H i (s) = H F (s) K i H com,i (s) H d (s)

Hu(s)=HF(s)KuHcom,u(s)Hd(s)H u (s)=H F (s)K u H com,u (s)H d (s)

HF(s)=HP(s)HS(s)HSH(s)H F (s) = H P (s) H S (s) H SH (s)

带通滤波器传递函数HP(s),使得以ωP为中心角频率的次同步信号通过,其中ζ为阻尼系数:The transfer function H P (s) of the band-pass filter makes the subsynchronous signal with ω P as the central angular frequency pass through, where ζ is the damping coefficient:

角频率为ωS的带阻滤波器传递函数HS(s),过滤掉工频分量:The transfer function H S (s) of the band-stop filter with the corner frequency ω S filters out the power frequency component:

ωSH=2ωSP,角频率为ωSH的带阻滤波器传递函数HSH(s),过滤掉与次同步分量互补的频率信号:ω SH =2ω SP , the transfer function H SH (s) of the band-stop filter whose angular frequency is ω SH , filters out the frequency signal complementary to the subsynchronous component:

电流信号比例移相传递函数Hcom,i(s),其中,Ki表示电流信号增益,Tai表示电流信号移相参数:Current signal proportional phase-shifting transfer function H com,i (s), where K i represents the current signal gain, and Tai represents the current signal phase-shifting parameter:

电压信号比例移相传递函数Hcom,u(s),其中,Ku表示电压信号增益,Tau表示电压信号移相参数:The voltage signal proportional phase-shift transfer function H com,u (s), where K u represents the voltage signal gain, and T au represents the voltage signal phase-shift parameter:

延迟信号传递函数Hd(s),其中延迟信号传递函数的增益参数kd和相位偏移参数Td可由开环测试获得:The delay signal transfer function H d (s), where the gain parameter k d and the phase offset parameter T d of the delay signal transfer function can be obtained by the open-loop test:

第二步,风电场闭环传递函数参数的选择。首先,闭环传递函数Zeq(s)的g个零点为zh。Zeq(s)的p个极点为yqThe second step is the selection of wind farm closed-loop transfer function parameters. First, the g zeros of the closed-loop transfer function Z eq (s) are z h . The p poles of Z eq (s) are y q .

记: remember:

令zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部Let z h =σ h +jω h , σ h is the real part of zero point z h , ω h is the imaginary part of zero point z h

模态ωh的衰减率ξhDecay rate ξ h for mode ω h :

通过遗传算法或拟退火等优化算法,计算最优电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,即进行比例移相环节,增益环节,使得衰减率ξh满足:(1)ξh>0;(2)在所有工况中,ωr∈[0.7pu,1.3pu],n=1...nTOT,最小的衰减率min(ξh)最大化。pu:标幺值单位,nTOT:风机台数最大值。Through optimization algorithms such as genetic algorithm or quasi-annealing, calculate the optimal current signal gain K i , current signal phase shift parameter Tai , voltage signal gain K u , voltage signal phase shift parameter T au , that is, the proportional phase shift link, the gain link , so that the attenuation rate ξ h satisfies: (1) ξ h >0; (2) In all working conditions, ω r ∈ [0.7pu,1.3pu], n=1...n TOT , the minimum attenuation rate min (ξ h ) is maximized. pu: standard unit, n TOT : the maximum number of fans.

目标函数:max f=min(ξh)Objective function: max f=min(ξ h )

约束条件: Restrictions:

也就是说,结合图3所示,本发明通过风电场线路的电压信号和电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号通过比例移相环节,增益环节后相加得到电流参考信号iref。电力电子变流器根据控制器发出的电流参考信号iref输出电流并通过变压器得到次同步抑制系统向电网实际输出电流信号ioutThat is to say, as shown in Figure 3, the present invention filters the voltage signal and current signal of the wind farm line to obtain the sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, it passes through the proportional phase-shifting link, and the phase-shifting step after the gain link Add the current reference signal i ref . The power electronic converter outputs current according to the current reference signal i ref sent by the controller and obtains the actual output current signal i out of the sub-synchronous suppression system to the grid through the transformer.

图4是根据本发明一个实施例的风电场次同步谐振抑制系统的结构图。Fig. 4 is a structural diagram of a subsynchronous resonance suppression system for a wind farm according to an embodiment of the present invention.

如图4所示,根据本发明一个实施例的风电场次同步谐振抑制系统400,风电场至少包括:多台风机,多台变压器和风电场线路,包括:获取模块410、处理模块420。As shown in FIG. 4 , according to a wind farm subsynchronous resonance suppression system 400 according to an embodiment of the present invention, the wind farm at least includes: multiple wind turbines, multiple transformers and wind farm lines, including: an acquisition module 410 and a processing module 420 .

其中,获取模块410用于获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号。处理模块420用于对风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。Among them, the acquisition module 410 is used to acquire the voltage signal and current signal of the wind farm line, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the actual output current signal of the subsynchronous suppression system to the grid. The processing module 420 is used to filter the voltage signal of the wind farm line and the current signal of the wind farm line to obtain the sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, The closed-loop transfer function of the wind farm is obtained from the line resistance and inductance of the wind farm, and the current signal is actually output to the grid according to the subsynchronous suppression system. By optimizing the parameters, the attenuation rate of the closed-loop transfer function at different zero points is optimal.

根据本发明的风电场次同步谐振抑制系统,可以达到抑制次同步谐振的目的,并提高风电场的稳定性。According to the wind farm subsynchronous resonance suppression system of the present invention, the purpose of suppressing subsynchronous resonance can be achieved, and the stability of the wind farm can be improved.

进一步地,风电场闭环传递函数的公式为:Furthermore, the formula of the closed-loop transfer function of the wind farm is:

其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans.

进一步地,通过优化参数,使得传递函数不同零点下的衰减率最优具体为:优化电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,并当zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部,模态ωh的衰减率ξhFurther, by optimizing the parameters, the optimal attenuation rate under different zero points of the transfer function is specifically: optimizing the current signal gain K i , the current signal phase shift parameter Tai , the voltage signal gain K u , the voltage signal phase shift parameter T au , And when z h =σ h +jω h , σ h is the real part of the zero point z h , ω h is the imaginary part of the zero point z h , the attenuation rate ξ h of the mode ω h :

衰减率ξh满足:The decay rate ξ h satisfies:

目标函数:max f=min(ξh)Objective function: max f=min(ξ h )

约束条件: Restrictions:

pu:标幺值单位,nTOT:风机台数最大值。pu: standard unit, n TOT : the maximum number of fans.

需要说明的是,上述本发明实施例的风电场次同步谐振抑制系统的具体实现方式与本发明实施例的风电场次同步谐振抑制方法的具体实现方式类似,具体请参见风电场次同步谐振抑制方法部分的描述,为了减少冗余,此处不做赘述。It should be noted that the specific implementation of the wind farm subsynchronous resonance suppression system in the embodiment of the present invention is similar to that of the wind farm subsynchronous resonance suppression method in the embodiment of the present invention. For details, please refer to the subsynchronous resonance suppression method in the wind farm. Description, in order to reduce redundancy, details are not repeated here.

在一些示例中,如图3所示,还包括:电力电子变流器和变压器。In some examples, as shown in FIG. 3 , it further includes: a power electronic converter and a transformer.

具体来说,结合图3所示,风电场线路的电压信号uabc和电流信号iabc进行信号滤波处理,获取次同步频率信号,并根据所述次同步频率信号通过比例移相环节,增益环节后相加得到电流参考信号iref。电流参考信号iref通过电力电子变流器输出电流并通过变压器得到次同步抑制系统向电网实际输出电流信号iout,流入电网。Specifically, as shown in Figure 3, the voltage signal u abc and current signal i abc of the wind farm line are subjected to signal filtering processing to obtain a sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, pass through a proportional phase shifting link and a gain link After the addition, the current reference signal i ref is obtained. The current reference signal i ref outputs the current through the power electronic converter and obtains the sub-synchronous suppression system through the transformer to actually output the current signal i out to the grid, and flows into the grid.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components or the interaction relationship between two components, unless otherwise specified limit. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.

Claims (7)

1.一种风电场次同步谐振抑制方法,所述风电场至少包括:多台风机,多台变压器和风电场线路,其特征在于,包括:1. A wind farm subsynchronous resonance suppression method, the wind farm at least includes: a plurality of wind turbines, a plurality of transformers and a wind farm circuit, characterized in that, comprising: 获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号;Obtain the voltage signal and current signal of the wind farm line, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the actual output current signal of the subsynchronous suppression system to the grid; 对所述风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据所述次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。Filtering the voltage signal of the wind farm line and the current signal of the wind farm line to obtain a sub-synchronous frequency signal, and according to the sub-synchronous frequency signal, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, and the wind power Field line resistance and inductance to obtain the closed-loop transfer function of the wind farm, and according to the sub-synchronous suppression system to actually output current signals to the grid, the attenuation rate at different zero points of the closed-loop transfer function is optimized by optimizing parameters. 2.根据权利要求1所述的风电场次同步谐振抑制方法,其特征在于,所述风电场闭环传递函数的公式为:2. The wind farm subsynchronous resonance suppression method according to claim 1, wherein the formula of the wind farm closed-loop transfer function is: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>H</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>g</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>h</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>H</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>g</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>h</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> 其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans. 3.根据权利要求2所述的风电场次同步谐振抑制方法,其特征在于,通过优化参数,使得传递函数不同零点下的衰减率最优具体为:3. The wind farm subsynchronous resonance suppression method according to claim 2, characterized in that, by optimizing the parameters, the optimal attenuation rate under different zero points of the transfer function is specifically: 优化电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,并当zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部,模态ωh的衰减率ξhOptimizing the current signal gain K i , the current signal phase shift parameter Tai , the voltage signal gain K u , the voltage signal phase shift parameter T au , and when z hh +jω h , σ h is the real part of the zero point z h , ω h is the imaginary part of the zero point z h , the attenuation rate ξ h of the mode ω h : <mrow> <msub> <mi>&amp;xi;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> </mrow> <msqrt> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> <mrow> <msub> <mi>&amp;xi;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> </mrow> <msqrt> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> 衰减率ξh满足:The decay rate ξ h satisfies: 目标函数:max f=min(ξh)Objective function: max f=min(ξ h ) 约束条件: Restrictions: pu:标幺值单位,nTOT:风机台数最大值。pu: standard unit, n TOT : the maximum number of fans. 4.一种风电场次同步谐振抑制系统,其特征在于,所述风电场至少包括:多台风机,多台变压器和风电场线路,包括:4. A subsynchronous resonance suppression system for a wind farm, characterized in that the wind farm at least includes: multiple wind turbines, multiple transformers and wind farm lines, including: 获取模块,用于获取风电场线路的电压信号和电流信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感、次同步抑制系统向电网实际输出电流信号;The acquisition module is used to acquire the voltage signal and current signal of the wind farm line, the resistance and inductance of multiple wind turbines, the resistance and inductance of multiple transformers, the resistance and inductance of the wind farm line, and the actual output current signal of the sub-synchronous suppression system to the grid; 处理模块,用于对所述风电场线路的电压信号和风电场线路的电流信号进行滤波处理,获取次同步频率信号,并根据所述次同步频率信号、多台风机电阻和电感、多台变压器电阻和电感、风电场线路电阻和电感,得到风电场闭环传递函数,并根据所述次同步抑制系统向电网实际输出电流信号,通过优化参数使得闭环传递函数不同零点下的衰减率最优。A processing module, configured to filter the voltage signal of the wind farm line and the current signal of the wind farm line to obtain a sub-synchronous frequency signal, and perform The closed-loop transfer function of the wind farm is obtained from the resistance and inductance, the line resistance and inductance of the wind farm, and the current signal is actually output to the power grid according to the sub-synchronous suppression system, and the attenuation rate at different zero points of the closed-loop transfer function is optimized by optimizing parameters. 5.根据权利要求4所述的风电场次同步谐振抑制系统,其特征在于,所述风电场闭环传递函数的公式为:5. The wind farm subsynchronous resonance suppression system according to claim 4, wherein the formula of the wind farm closed-loop transfer function is: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>H</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>g</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>h</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>H</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>sL</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>sL</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>L</mi> <mn>11</mn> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>r</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>g</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>h</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> 其中,s表示复频率,zh为闭环传递函数Zeq(s)的g个零点,yq为闭环传递函数Zeq(s)的p个极点,Hi(s)和Hu(s)分别为对风电场线路的电流信号和风电场线路的电压信号处理的传递函数,rr0为转子电阻,Kpr为转子侧控制器内环比例系数,Klr为转子侧控制器内环积分系数,KDr为转子侧控制器内环交叉增益,ω0为工频角频率,ωr为转子角频率,Lr为转子电感,Lm为风机励磁电感,Ls为风机定子电感,LT1为变压器T1的电感,Ll1为风电场线路电感,rs为定子电阻,rT1为变压器T1电阻,rl1为风电场线路电阻,Ll2为串补线路电感,LT2为变压器T2电感,rl2为串补线路电阻,rT2为变压器T2电阻,C为串补电容,n为风机台数。Among them, s represents the complex frequency, z h is the g zero points of the closed-loop transfer function Z eq (s), y q is the p poles of the closed-loop transfer function Z eq (s), H i (s) and H u (s) are the transfer functions for processing the current signal of the wind farm line and the voltage signal of the wind farm line, respectively, r r0 is the rotor resistance, K pr is the proportional coefficient of the inner loop of the rotor side controller, K lr is the integral coefficient of the inner loop of the rotor side controller, K Dr is the cross gain of the inner loop of the rotor side controller, ω 0 is the power frequency angular frequency, ω r is the rotor angular frequency, L r is the rotor inductance, L m is the fan excitation inductance, L s is the fan stator inductance, L T1 is the inductance of the transformer T1, L l1 is the wind farm line inductance, r s is the stator resistance, r T1 is the transformer T1 resistance, r l1 is the wind farm line resistance, L l2 is the series compensation line inductance, L T2 is the transformer T2 inductance, r l2 is the series compensation line resistance, r T2 is the transformer T2 resistance, C is the series compensation capacitor, n is the number of fans. 6.根据权利要求5所述的风电场次同步谐振抑制系统,其特征在于,通过优化参数,使得传递函数不同零点下的衰减率最优具体为:6. The wind farm subsynchronous resonance suppression system according to claim 5, characterized in that, by optimizing the parameters, the optimal attenuation rate under different zero points of the transfer function is specifically: 优化电流信号增益Ki,电流信号移相参数Tai,电压信号增益Ku,电压信号移相参数Tau,并当zh=σh+jωh,σh为零点zh的实部,ωh为零点zh的虚部,模态ωh的衰减率ξhOptimizing the current signal gain K i , the current signal phase shift parameter Tai , the voltage signal gain K u , the voltage signal phase shift parameter T au , and when z hh +jω h , σ h is the real part of the zero point z h , ω h is the imaginary part of the zero point z h , the attenuation rate ξ h of the mode ω h : <mrow> <msub> <mi>&amp;xi;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> </mrow> <msqrt> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> 2 <mrow> <msub> <mi>&amp;xi;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> </mrow> <msqrt> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> 2 衰减率ξh满足:The decay rate ξ h satisfies: 目标函数:max f=min(ξh)Objective function: max f=min(ξ h ) 约束条件: Restrictions: pu:标幺值单位,nTOT:风机台数最大值。pu: standard unit, n TOT : the maximum number of fans. 7.根据权利要求4所述的风电场次同步谐振抑制系统,其特征在于,还包括:电力电子变流器和变压器。7. The subsynchronous resonance suppression system for wind farm according to claim 4, further comprising: a power electronic converter and a transformer.
CN201710458370.3A 2017-06-16 2017-06-16 Method and system for inhibiting sub-synchronous resonance of wind power plant Active CN107181267B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458370.3A CN107181267B (en) 2017-06-16 2017-06-16 Method and system for inhibiting sub-synchronous resonance of wind power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458370.3A CN107181267B (en) 2017-06-16 2017-06-16 Method and system for inhibiting sub-synchronous resonance of wind power plant

Publications (2)

Publication Number Publication Date
CN107181267A true CN107181267A (en) 2017-09-19
CN107181267B CN107181267B (en) 2020-05-12

Family

ID=59835569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458370.3A Active CN107181267B (en) 2017-06-16 2017-06-16 Method and system for inhibiting sub-synchronous resonance of wind power plant

Country Status (1)

Country Link
CN (1) CN107181267B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281980A (en) * 2018-01-26 2018-07-13 国网山西省电力公司电力科学研究院 The method for real time discriminating of double-fed wind turbine wind power plant subsynchronous resonance system stability
CN108400591A (en) * 2018-04-11 2018-08-14 华北电力大学 A kind of wind power plant subsynchronous resonance suppressing method based on parallel connection type voltage source converter
CN108599236A (en) * 2018-04-24 2018-09-28 华北电力科学研究院有限责任公司 Double-fed fan motor play synchronized oscillation SVG suppressing methods and device
CN109193699A (en) * 2018-09-28 2019-01-11 上海交通大学 The wind power unit converter PI parameter optimization method inhibited for sub-synchronous oscillation
CN109888776A (en) * 2019-03-12 2019-06-14 深圳大学 Prediction method and terminal equipment for subsynchronous resonant frequency of direct-drive wind farms
CN110912156A (en) * 2019-12-05 2020-03-24 国家电网公司华北分部 Method and device for inhibiting doubly-fed fan subsynchronous resonance
CN117996741A (en) * 2024-01-30 2024-05-07 山东大学 Double-fed fan subsynchronous oscillation suppression method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290821A (en) * 2011-08-31 2011-12-21 东南大学 Damping stable region of electric power system and determining method thereof
CN104410084A (en) * 2014-11-20 2015-03-11 清华大学 Method for controlling sub-synchronous resonance of wind power station series compensated transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290821A (en) * 2011-08-31 2011-12-21 东南大学 Damping stable region of electric power system and determining method thereof
CN104410084A (en) * 2014-11-20 2015-03-11 清华大学 Method for controlling sub-synchronous resonance of wind power station series compensated transmission system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281980A (en) * 2018-01-26 2018-07-13 国网山西省电力公司电力科学研究院 The method for real time discriminating of double-fed wind turbine wind power plant subsynchronous resonance system stability
CN108281980B (en) * 2018-01-26 2021-03-26 国网山西省电力公司电力科学研究院 Method for judging stability of wind power field subsynchronous resonance system of doubly-fed wind turbine in real time
CN108400591A (en) * 2018-04-11 2018-08-14 华北电力大学 A kind of wind power plant subsynchronous resonance suppressing method based on parallel connection type voltage source converter
CN108599236A (en) * 2018-04-24 2018-09-28 华北电力科学研究院有限责任公司 Double-fed fan motor play synchronized oscillation SVG suppressing methods and device
CN108599236B (en) * 2018-04-24 2020-08-14 华北电力科学研究院有限责任公司 SVG suppression method and device for subsynchronous oscillation of doubly-fed wind farm
CN109193699A (en) * 2018-09-28 2019-01-11 上海交通大学 The wind power unit converter PI parameter optimization method inhibited for sub-synchronous oscillation
CN109888776A (en) * 2019-03-12 2019-06-14 深圳大学 Prediction method and terminal equipment for subsynchronous resonant frequency of direct-drive wind farms
CN109888776B (en) * 2019-03-12 2022-08-05 深圳大学 Prediction method for sub-synchronous resonant frequency of direct-drive wind power plant and terminal equipment
CN110912156A (en) * 2019-12-05 2020-03-24 国家电网公司华北分部 Method and device for inhibiting doubly-fed fan subsynchronous resonance
CN117996741A (en) * 2024-01-30 2024-05-07 山东大学 Double-fed fan subsynchronous oscillation suppression method and system

Also Published As

Publication number Publication date
CN107181267B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN107181267A (en) Wind power plant subsynchronous resonance suppressing method and system
CN108631338B (en) A method for suppressing subsynchronous oscillation of a doubly-fed wind farm connected to the grid
CN105790288B (en) Inhibit the control method and device of subsynchronous resonance
CN110518601B (en) Wind power grid-connected low-frequency oscillation suppression method based on broadband and improved active disturbance rejection control
CN105790270B (en) Suppress the method and device of subsynchronous resonance by double-fed fan rotor side converter
CN105098769B (en) The parameter tuning method of damping filter is bypassed in a kind of electricity generation system that can suppress subsynchronous resonance
CN108134399B (en) Method and device for optimizing full working condition of network side subsynchronous damping controller
CN112671009B (en) Double-fed fan subsynchronous oscillation suppression method with additional damping controller
US9500182B2 (en) Three-phase AC electrical system, and a method for compensating an inductance imbalance in such a system
CN107834575B (en) Device and method for restraining shafting torsional vibration of compressed air energy storage system
CN105790269B (en) Suppress the method and device of subsynchronous resonance by double-fed fan stator side converter
CN108448629A (en) Method and device for suppressing parallel resonance of multiple inverters based on virtual impedance
CN110707727B (en) Reactive damping controller based on flexible excitation system and parameter setting method
CN106712055A (en) Power system stabilizer (PSS) configuration method in coordination with low-excitation limiting function
CN117439114A (en) Broadband oscillation suppression method and system for net-structured direct-drive fan
CN115189361B (en) Flexible direct current transmission system alternating voltage feedforward method with improved damping performance
CN117937505A (en) Active and reactive decoupling-based virtual synchronous machine control oscillation suppression method and system
CN104410084A (en) Method for controlling sub-synchronous resonance of wind power station series compensated transmission system
CN112332427B (en) Subsynchronous Oscillation Suppression Method of Doubly-fed Wind Farm Based on Integral Control
CN110970927B (en) Method and system for restraining sub-synchronous oscillation of grid-side converter of direct-drive fan
CN206250775U (en) Wind power plant sub-synchronous oscillation restraining device containing serial supplementary line
CN110912156B (en) A method and device for suppressing subsynchronous resonance of a doubly-fed fan
CN114336720A (en) Flexible direct current power grid resonance suppression method and system
CN114123205B (en) Harmonic compensation system and phase correction method and device thereof
CN105186543B (en) A kind of parameter tuning device and method of subsynchronous oscillation damping controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared