CN107180132A - A kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect - Google Patents

A kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect Download PDF

Info

Publication number
CN107180132A
CN107180132A CN201710346441.0A CN201710346441A CN107180132A CN 107180132 A CN107180132 A CN 107180132A CN 201710346441 A CN201710346441 A CN 201710346441A CN 107180132 A CN107180132 A CN 107180132A
Authority
CN
China
Prior art keywords
mrow
msub
msup
msubsup
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710346441.0A
Other languages
Chinese (zh)
Other versions
CN107180132B (en
Inventor
钱玉洁
张�杰
孙宁
姚潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201710346441.0A priority Critical patent/CN107180132B/en
Publication of CN107180132A publication Critical patent/CN107180132A/en
Application granted granted Critical
Publication of CN107180132B publication Critical patent/CN107180132B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Architecture (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Secondary Cells (AREA)

Abstract

The invention discloses a kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect, comprise the following steps:Step one:Frequency spectrum and sound pressure level analysis are carried out to loud intensity Sound Field, according to the frequency domain distribution situation of noise energy, restrictive condition parameter and parameter to be designed is determined;Step 2:Choose one group of { d, t/d } parameter;Step 3:Calculate corresponding punching rate σ;Step 4:According to parameter combination { d, t/d, σ } and known parameters f0, microperforated panel structure-borne sound impedance Z is drawn with incident sound pressure level P by numerical simulationiThe curve of change;Step 5:Acoustic impedance obtains the transformation sound pressure level that nonlinear acoustic impedance is functioned to the relation curve of incident sound pressure level change in observation of steps three.The present invention makes it have good linear sound absorbing capabilities in the range of given sound pressure level, the sound pressure level scope that microperforated panel soundabsorbing construction can be applied effectively is widened significantly by realizing effective suppression to the nonlinear effect of microperforated panel soundabsorbing construction under high sound intensity.

Description

A kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect
Technical field
The present invention relates to a kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect, sqouynd absorption lowering noise technology neck Domain.
Background technology
Microperforated panel soundabsorbing construction has the advantages that cleaning, light weight, protection against the tide, high temperature resistant, sheet material diversity, is described as 21 generation The environmental protection sound-absorbing material of discipline most attraction.Microperforated panel soundabsorbing construction be by China's acoustics authority's Ma Dayou teach in Propose that, by the development of decades, (sound pressure level SPL is general under compared with low sound pressure levels linear conditions for microperforated panel structure within 1975 It is even more small less than 100dB) acoustic impedance theoretical model and correlation acoustics design it is theoretical quite perfect, but in tool Under the application environment for having high intensity sound field, such as aero-engine, launching silo, the acoustic impedance of microperforated panel structure will be relied on In incident sound pressure level, strong nonlinear effect is shown, now its acoustic impedance includes two parts, and a part is linear acoustic resistance Anti-, another part is the nonlinear acoustic impedance caused by nonlinear effect.Linear acoustic impedance is unrelated with sound pressure level, can be using linear Under the conditions of ripe acoustic impedance calculation formula accurately calculated, therefore set up the accurate acoustic resistance of microperforated panel structure under high sound intensity The key of anti-model is the accurate acquisition of nonlinear acoustic impedance.Therefore, scholars are doing unremitting effort always, but it is sorry , so far, the nonlinear acoustic impedance model on microperforated panel structure is substantially a kind of semiempirical, also no public affairs The model or method recognized can be precisely calculated and be predicted to it.Entangle itself main reason is that, non-linear sound absorbing mechanism It is that sound whirlpool energy caused by nose end jet and vortex shedding is changed, because sound whirlpool energy changes the complexity of this physical process, The possibility for obtaining accurate acoustic impedance theoretical model under high sound intensity is blocked.Nonlinear effect not only makes microperforated panel structure Perfect acoustic impedance theoretical model and acoustics design are theoretical no longer suitable under the conditions of linear, also result in the decline of its sound absorbing capabilities And the problems such as be difficult to set up accurate acoustic impedance theoretical model.Because microperforated panel provides enough linear sound in itself Resistance, if along with nonlinear acoustic resistance, sound absorbing capabilities can be caused to decline on the contrary.Although lot of domestic and foreign scholar is linear by reduction Acoustic resistance, high sound pressure level can be extended to by the application of microperforated panel structure and (such as use aperture by being played a leading role using nonlinear acoustic resistance Conventional punch plate more than 1mm), but this method does not solve the applicable sound pressure level scope of microperforated panel structure fundamentally The problem of being limited to by nonlinear effect.Because nonlinear acoustic impedance can change with the change of sound pressure level size, thus be difficult Pervasive design is carried out for different sound pressure levels.These all bring limitation to effective utilize of nonlinear effect.
Research shows, the acoustic impedance of microperforated panel structure can undergo one from linear stage to non-with the increase of sound pressure level The transformation of linear stage, and one specific sound pressure level of correspondence at transformation, can be referred to as critical sound pressure level, it is non-linear The critical condition that acoustic impedance is functioned to.If effective suppression to nonlinear effect can be realized, that is, improve critical acoustic pressure The size of level, makes it have linear acoustical absorptivity, the then sound that can not only effectively apply microperforated panel below critical sound pressure level Scope of arbitrarily downgrading is widened to high sound intensity, moreover it is possible to which perfect acoustics design is theoretical under application linear conditions is carried out accurately to its sound absorption characteristics Prediction and required design.Such a method reduces linear acoustic resistance as far as possible with existing, and its application is expanded extremely by nonlinear acoustic impedance The method of high sound intensity has the difference of essence, and there is not been reported.
The content of the invention
Purpose:The problem of being limited to for application of the microperforated panel soundabsorbing construction under high sound intensity by nonlinear effect, this hair It is bright that a kind of method for suppressing microperforated panel nonlinear effect by design of Structural Parameters is provided, worn by realizing to micro- under high sound intensity Effective suppression of the nonlinear effect of soundabsorbing construction, makes it have good linear sound absorption in the range of given sound pressure level Performance, widens the sound pressure level scope that microperforated panel soundabsorbing construction can be applied effectively significantly.
Technical scheme:A kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect, comprises the following steps:
Step one:Frequency spectrum and sound pressure level analysis are carried out to loud intensity Sound Field, according to the frequency domain distribution situation of noise energy, Specify the linear sound pressure level scope and maximum noise reduction Frequency point of the desired work of microperforated panel, so determine restrictive condition parameter with And parameter to be designed, it is known that parameter includes:
P0:The maximum sound pressure level of microperforated panel working environment, unit is dB;
f0:Noise under the maximum noise reduction Frequency point of microperforated panel, i.e. resonant frequency, this frequency is maximum, and unit is Hz;
Parameter to be designed:
d:The penetration hole diameter of microperforated panel, unit is m;
t/d:Dimensionless group, represents the draw ratio of microperforated panel, t is thickness of slab, and unit is m;
σ:The punching rate of microperforated panel, dimensionless group;
Step 2:One group of { d, t/d } parameter is chosen, d is less than 0.2 × 10-3M, t/d are more than 1.
Step 3:{ d, the t/d } parameter selected according to step 2, substitutes into formula (1) and calculates corresponding punching rate σ:
Wherein,Dimensionless variable, thus obtains parameter combination { d, t/d, σ }
Step 4:Parameter combination { d, t/d, σ } and known parameters f in step 30, draw micro- by numerical simulation Perforated plate structure-borne sound impedance Z is with incident sound pressure level PiThe curve of change, wherein, PiIt is incident sound pressure PiiBe converted in units of dB Expression, acoustic impedance Z and incident sound pressure P under high sound intensityiiBasic relational expression be:
Wherein,
X/ρ0c0=ω H/ σ c0-cot(ωLc/c0) (4)
In above-mentioned formula (2)~(4), Z is microperforated panel structure acoustic impedance, and unit is MKS rayls;RL is linear sound Resistance, unit is MKS rayls;X is acoustic reactance, and unit is MKS rayls;PiiIt is incident sound pressure, unit is Pa;ρ0It is that air is close Degree, unit is kg/m3;c0It is the velocity of sound in air, unit is m;The π f of ω=2 are angular frequencies, and unit is rad/s, and v is that motion is viscous Stagnant coefficient;Unit is m2/ s, CDIt is discharge coefficient, expression is:
Wherein,
In the formula of above-mentioned (5)~(20), PpKUnit be Pa, deUnit be m, other parameters are dimensionless group.
KssIt is static viscous loss parameter, is dimensionless group:
Kss=13+10.23 (t/d)-1.44 (21)
KacIt is the viscous loss parameter of sound, is dimensionless group:
Kac=3+2.32 (t/d)-1 (22)
H is inertia length parameter:
κH=13.06 [1-exp (- 64.9 (t/d)4.365)] (25)
aH=0.725 (t/d)-1.227,bH=1.02 (t/d)-1.411, mH=3.42exp (- 0.117 (t/d)) (28)
In the formula of above-mentioned (23)~(28), H and HresUnit be m, remaining parameter being newly related to is dimensionless group;
During resonance:
Lc=(c0/2πf0)arccot(2πf0H/σc0) (29);
Wherein, LcIt is cavity depth, unit is m;
Step 5:Microperforated panel structure-borne sound impedance Z is with incident sound pressure level P in observation of steps fouriThe curve of change, is obtained non- The transformation sound pressure level that linear acoustic impedance is functioned to, i.e., critical sound pressure level Pt, unit is dB, if P0≤Pt, illustrate selected set The nonlinear effect that meter parameter meets microperforated panel structure suppresses, if P0>Pt, illustrate that selected design parameter is unsatisfactory for, now, Reduce aperture d or increase t/d, be then back to step 3, the structural parameters of nonlinear effect can be realized until obtaining.
Beneficial effect:The present invention uses a kind of method for suppressing microperforated panel nonlinear effect by design of Structural Parameters, The application for overcoming microperforated panel soundabsorbing construction under high sound intensity is limited to by nonlinear effect, by according to actual noise feelings Condition, determines maximum sound pressure level P0With maximum noise reduction Frequency point f0, can be designed that the micropunch for realizing that nonlinear effect effectively suppresses Plate structural parameters, make it have good linear sound absorbing capabilities under high sound intensity.Produced with existing utilization nonlinear effect non- Linear acoustic impedance carries out sqouynd absorption lowering noise and compared, and sound absorbing capabilities of the invention, thus will not be by incidence independent of nonlinear acoustic impedance The influence of sound pressure level, sound sucting band is wider, and applicable sound pressure level scope is wider.
Brief description of the drawings
Fig. 1 is microperforated panel soundabsorbing construction Parameter Map;
Fig. 2 is the Design method of structural parameters particular flow sheet for suppressing microperforated panel nonlinear effect;
Fig. 3 is acoustic impedance in embodiment 1 with incident sound pressure level change curve;
Fig. 4 is the 1st group of corresponding acoustic impedance of parameter combination in embodiment 2 with incident sound pressure level change curve;
Fig. 5 is the 2nd group of corresponding acoustic impedance of parameter combination in embodiment 2 with incident sound pressure level change curve;
Fig. 6 is the 3rd group of corresponding acoustic impedance of parameter combination in embodiment 2 with incident sound pressure level change curve;
Embodiment
In order that those skilled in the art more fully understand the technical scheme in the application, it is real below in conjunction with the application The accompanying drawing in example is applied, the technical scheme in the embodiment of the present application is clearly and completely described, it is clear that described implementation Example only some embodiments of the present application, rather than whole embodiments.Based on the embodiment in the application, this area is common The every other embodiment that technical staff is obtained under the premise of creative work is not made, should all belong to the application protection Scope.
As shown in figs. 1 to 6, a kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect, including following step Suddenly:
Step one:Frequency spectrum and sound pressure level analysis are carried out to loud intensity Sound Field, according to the frequency domain distribution situation of noise energy, Specify the linear sound pressure level scope and maximum noise reduction Frequency point of the desired work of microperforated panel, so determine restrictive condition parameter with And parameter to be designed, it is known that parameter includes:
P0:The maximum sound pressure level of microperforated panel working environment, by design of Structural Parameters, sound pressure level P is met as long as realizingt< P0When, the linear response of microperforated panel plays a leading role, and nonlinear effect can be ignored, and unit is dB;
f0:Noise under the maximum noise reduction Frequency point of microperforated panel, i.e. resonant frequency, this frequency is maximum, and unit is Hz;
Parameter to be designed:
d:The penetration hole diameter of microperforated panel, unit is m;
t/d:Dimensionless group, represents the draw ratio of microperforated panel, t is thickness of slab, and unit is m;
σ:The punching rate of microperforated panel, dimensionless group;
Step 2:One group of { d, t/d } parameter is chosen, d is less than 0.2 × 10-3M, t/d are more than 1.
Step 3:{ d, the t/d } parameter selected according to step 2, substitutes into formula (1) and calculates corresponding punching rate σ:
Wherein,Dimensionless variable, thus obtains parameter combination { d, t/d, σ }
Step 4:Parameter combination { d, t/d, σ } and known parameters f in step 30, draw micro- by numerical simulation Perforated plate structure-borne sound impedance Z is with incident sound pressure level PiThe curve of change, wherein, PiIt is incident sound pressure PiiBe converted in units of dB Expression, acoustic impedance Z and incident sound pressure P under high sound intensityiiBasic relational expression be:
Wherein,
X/ρ0c0=ω H/ σ c0-cot(ωLc/c0) (4)
In above-mentioned formula (2)~(4), Z is microperforated panel structure acoustic impedance, and unit is MKS rayls;RL is linear sound Resistance, unit is MKS rayls;X is acoustic reactance, and unit is MKS rayls;PiiIt is incident sound pressure, unit is Pa;ρ0It is that air is close Degree, unit is kg/m3;c0It is the velocity of sound in air, unit is m;The π f of ω=2 are angular frequencies, and unit is rad/s, and v is that motion is viscous Stagnant coefficient;Unit is m2/ s, CDIt is discharge coefficient, expression is:
Wherein,
af=0.785-0.76 (1-e-3.63t/d),bf=3.63 (t/d)0.6 (18)
In the formula of above-mentioned (5)~(20), PpKUnit be Pa, deUnit be m, other parameters are dimensionless group.
KssIt is static viscous loss parameter, is dimensionless group:
Kss=13+10.23 (t/d)-1.44 (21)
KacIt is the viscous loss parameter of sound, is dimensionless group:
Kac=3+2.32 (t/d)-1 (22)
H is inertia length parameter:
κH=13.06 [1-exp (- 64.9 (t/d)4.365)] (25)
aH=0.725 (t/d)-1.227,bH=1.02 (t/d)-1.411, mH=3.42exp (- 0.117 (t/d)) (28)
In the formula of above-mentioned (23)~(28), H and HresUnit be m, remaining parameter being newly related to is dimensionless group;
During resonance:
Lc=(c0/2πf0)arccot(2πf0H/σc0) (29);
Wherein, LcIt is cavity depth, unit is m;
Step 5:Microperforated panel structure-borne sound impedance Z is with incident sound pressure level P in observation of steps fouriThe curve of change, is obtained non- The transformation sound pressure level that linear acoustic impedance is functioned to, i.e., critical sound pressure level Pt, unit is dB, if P0≤Pt, illustrate selected set The nonlinear effect that meter parameter meets microperforated panel structure suppresses, if P0>Pt, illustrate that selected design parameter is unsatisfactory for, now, Reduce aperture d or increase t/d, be then back to step 3, the structural parameters of nonlinear effect can be realized until obtaining.
Embodiment 1:The non-linear porous plate acoustic adsorption device structural parameters for being suppressed to 110dB are realized in design.
First, in step one, frequency spectrum is carried out to loud intensity Sound Field and sound pressure level is analyzed, actual noise environment is determined Maximum sound pressure level is P0=110dB and maximum noise reduction Frequency point are f0=2000Hz;
Subsequently, as 110dB is moderate, considers from cost of manufacture, can first select larger aperture and smaller punching rate.Therefore first Choose d=0.5 × 10-3M, t/d=1, calculate according to formula (1) and obtain punching rate σ=0.0084;
Then, known parameters are substituted into formula (2)~(28) and obtains cavity depth Lc=0.0032m and acoustic impedance are with entering The curve of sound pressure level is penetrated, as shown in Figure 3.Observe Fig. 3, it can be seen that the transformation sound pressure level that nonlinear acoustic impedance is functioned to, I.e. critical sound pressure level Pt=115dB.
Then, the maximum sound pressure level P of noise reduction needed for comparing actual noise environment0With the P of critical sound pressure leveltSize, P0< Pt, therefore designed microperforated panel structural parameters meet requirement.
Embodiment 2:The non-linear porous plate acoustic adsorption device structural parameters for being suppressed to 140dB are realized in design.
First, in step one, frequency spectrum is carried out to loud intensity Sound Field and sound pressure level is analyzed, actual noise environment is determined Maximum sound pressure level is P0=140dB and maximum noise reduction Frequency point are f0=3000Hz;
Subsequently, as 140dB is larger, can be first from smaller aperture due and smaller punching rate.Therefore d=0.1 × 10 are first chosen-3M, T/d=4, calculates according to formula (1) and obtains punching rate σ=0.066;
Then, known parameters are substituted into formula (2)~(28) and obtains cavity depth Lc=0.0218m and acoustic impedance are with entering The curve of sound pressure level is penetrated, as shown in Figure 4.Observe Fig. 4, it can be seen that the transformation sound pressure level that nonlinear acoustic impedance is functioned to, I.e. critical sound pressure level Pt=125dB.
Then, the maximum sound pressure level P of noise reduction needed for comparing actual noise environment0With the P of critical sound pressure leveltSize, P0> Pt, therefore designed microperforated panel structural parameters are unsatisfactory for requirement, repeat step three;
Because the part of the non-linear partial in total acoustic impedance is inversely proportional to 1/d and t/d, therefore reduces aperture d or improve plate Thick t.Assuming that keeping aperture d constant, t/d=6 is improved, is now calculated according to formula (1) and obtains punching rate σ=0.0967;
Then, known parameters are substituted into formula (2)~(28) and obtains cavity depth Lc=0.022m and acoustic impedance are with entering The curve of sound pressure level is penetrated, as shown in Figure 5.Observe Fig. 5, it can be seen that the transformation sound pressure level that nonlinear acoustic impedance is functioned to, I.e. critical sound pressure level Pt=135dB;
Then, the maximum sound pressure level P of noise reduction needed for comparing actual noise environment0With the P of critical sound pressure leveltSize, P0> Pt, therefore designed microperforated panel structural parameters are unsatisfactory for requirement, continue repeat step three;
Assuming that continuing to reduce aperture d to 0.8 × 10-2M, now t/d=7.5 according to formula (1) calculate obtain punching rate σ= 0.1464。
Then, known parameters are substituted into formula (2)~(28) and obtains cavity depth Lc=0.024m and acoustic impedance are with entering The curve of sound pressure level is penetrated, as shown in Figure 6.Observe Fig. 6, it can be seen that the transformation sound pressure level that nonlinear acoustic impedance is functioned to, I.e. critical sound pressure level Pt=140dB;
Then, the maximum sound pressure level P of noise reduction needed for comparing actual noise environment0With the P of critical sound pressure leveltSize, P0≤ Pt, therefore designed microperforated panel structural parameters meet requirement.
The foregoing description of the disclosed embodiments, enables professional and technical personnel in the field to realize or using the present invention. A variety of modifications to these embodiments will be apparent for those skilled in the art, as defined herein General Principle can be realized in other embodiments without departing from the spirit or scope of the present invention.Therefore, it is of the invention The embodiments shown herein is not intended to be limited to, and is to fit to and principles disclosed herein and features of novelty phase one The most wide scope caused.

Claims (1)

1. a kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect, it is characterised in that comprise the following steps:
Step one:Frequency spectrum and sound pressure level analysis are carried out to loud intensity Sound Field, according to the frequency domain distribution situation of noise energy, clearly The linear sound pressure level scope and maximum noise reduction Frequency point of the desired work of microperforated panel, and then determine restrictive condition parameter and treat Design parameter, it is known that parameter includes:
P0:The maximum sound pressure level of microperforated panel working environment, unit is dB;
f0:Noise under the maximum noise reduction Frequency point of microperforated panel, i.e. resonant frequency, this frequency is maximum, and unit is Hz;
Parameter to be designed:
d:The penetration hole diameter of microperforated panel, unit is m;
t/d:Dimensionless group, represents the draw ratio of microperforated panel, t is thickness of slab, and unit is m;
σ:The punching rate of microperforated panel, dimensionless group;
Step 2:One group of { d, t/d } parameter is chosen, d is less than 0.2 × 10-3M, t/d are more than 1.
Step 3:{ d, the t/d } parameter selected according to step 2, substitutes into formula (1) and calculates corresponding punching rate σ:
<mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <mfrac> <mrow> <mn>1.47</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <mi>t</mi> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> <mrow> <mo>(</mo> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>k</mi> <mn>2</mn> </msup> <mn>32</mn> </mfrac> </mrow> </msqrt> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>k</mi> </mrow> <mn>8</mn> </mfrac> <mfrac> <mi>d</mi> <mi>t</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein,Dimensionless variable, thus obtains parameter combination { d, t/d, σ }
Step 4:Parameter combination { d, t/d, σ } and known parameters f in step 30, micropunch is drawn by numerical simulation Hardened structure acoustic impedance Z is with incident sound pressure level PiThe curve of change, wherein, PiIt is incident sound pressure PiiBe converted to the table in units of dB Show, acoustic impedance Z and incident sound pressure P under high sound intensityiiBasic relational expression be:
<mrow> <mi>Z</mi> <mo>/</mo> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <msqrt> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>C</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>C</mi> <mi>D</mi> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mi>&amp;rho;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msubsup> <mi>c</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>L</mi> </msub> <mo>/</mo> <mn>2</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>+</mo> <msub> <mi>R</mi> <mi>L</mi> </msub> <mo>/</mo> <mn>2</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>/</mo> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <msub> <mi>R</mi> <mi>L</mi> </msub> <mo>/</mo> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>&amp;sigma;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>/</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mi>d</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>S</mi> </mrow> </msub> <mo>+</mo> <msqrt> <mrow> <mo>(</mo> <msup> <mi>&amp;omega;d</mi> <mn>2</mn> </msup> <mo>/</mo> <mi>v</mi> <mo>)</mo> </mrow> </msqrt> <msub> <mi>K</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
X/ρ0c0=ω H/ σ c0-cot(ωLc/c0) (4)
In above-mentioned formula (2)~(4), Z is microperforated panel structure acoustic impedance, and unit is MKS rayls;RL is linear acoustic resistance, single Position is MKS rayls;X is acoustic reactance, and unit is MKS rayls;PiiIt is incident sound pressure, unit is Pa;ρ0It is atmospheric density, unit For kg/m3;c0It is the velocity of sound in air, unit is m;The π f of ω=2 are angular frequencies, and unit is rad/s, and v is kinematic coefficient of viscosity; Unit is m2/ s, CDIt is discharge coefficient, expression is:
<mrow> <msub> <mi>C</mi> <mi>D</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <msub> <mi>C</mi> <mi>D</mi> </msub> </msub> <msubsup> <mi>f</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>b</mi> <msub> <mi>C</mi> <mi>D</mi> </msub> </msub> <msubsup> <mi>f</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>a</mi> <msub> <mi>C</mi> <mi>D</mi> </msub> </msub> <msubsup> <mi>f</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> </msub> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>b</mi> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> </msub> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>110.5</mn> <msup> <mi>e</mi> <mrow> <mn>0.647</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>0.109</mn> <msup> <mi>e</mi> <mrow> <mn>0.647</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>b</mi> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>168.5</mn> <msup> <mi>e</mi> <mrow> <mn>0.647</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>0.109</mn> <msup> <mi>e</mi> <mrow> <mn>0.647</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <msub> <mi>C</mi> <mi>D</mi> </msub> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow> <mn>1</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>2</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mrow> <mn>3</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>1</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mn>18.81</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>-</mo> <mn>57.11</mn> <msqrt> <mrow> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msqrt> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mn>0.18</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mn>2</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>(</mo> <mn>33.5</mn> <mi>h</mi> <mo>/</mo> <mi>d</mi> <mo>-</mo> <mn>78</mn> <msup> <mrow> <mo>(</mo> <mi>h</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>131</mn> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>+</mo> <mn>917</mn> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mo>&amp;rsqb;</mo> <mo>/</mo> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>+</mo> <mn>148</mn> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> 1
<mrow> <msub> <mi>a</mi> <mrow> <mn>3</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mn>43.2</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>-</mo> <mn>147.1</mn> <msqrt> <mrow> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msqrt> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mn>0.19</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>b</mi> <msub> <mi>C</mi> <mi>D</mi> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mrow> <mn>1</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mn>2</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mn>3</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>1</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mn>3.44</mn> <mo>-</mo> <mn>0.182</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>0.342</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>2</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>18.23</mn> <mo>+</mo> <mn>1.33</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>0.151</mn> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mn>3</mn> <msub> <mi>C</mi> <mi>D</mi> </msub> </mrow> </msub> <mo>=</mo> <mn>38</mn> <mo>/</mo> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>+</mo> <mn>1.3</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>7</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>/</mo> <mi>f</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>f</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>/</mo> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>b</mi> <mi>f</mi> </msub> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
af=0.785-0.76 (1-e-3.63t/d),bf=3.63 (t/d)0.6 (18)
<mrow> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>K</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;d</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>K</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>d</mi> <mi>e</mi> </msub> <mo>=</mo> <mi>t</mi> <mo>+</mo> <mn>0.85</mn> <mi>d</mi> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>1.25</mn> <msqrt> <mi>&amp;sigma;</mi> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
In the formula of above-mentioned (5)~(20), PpKUnit be Pa, deUnit be m, other parameters are dimensionless group.
KssIt is static viscous loss parameter, is dimensionless group:
Kss=13+10.23 (t/d)-1.44 (21)
KacIt is the viscous loss parameter of sound, is dimensionless group:
Kac=3+2.32 (t/d)-1 (22)
H is inertia length parameter:
<mrow> <mi>H</mi> <mo>/</mo> <msub> <mi>d</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>H</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>d</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mi>m</mi> <mi>H</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>f</mi> <mo>/</mo> <msub> <mi>f</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>f</mi> <mn>0</mn> <mo>*</mo> </msubsup> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>m</mi> <mi>H</mi> </msub> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mi>H</mi> </msub> <mo>/</mo> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <msub> <mi>&amp;beta;</mi> <mi>H</mi> </msub> </msubsup> <mo>+</mo> <msub> <mi>&amp;kappa;</mi> <mi>H</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.011</mn> <mo>+</mo> <mn>2.086</mn> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.0325</mn> <mo>/</mo> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mn>3.7</mn> </msup> <mo>+</mo> <mn>3.4</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
κH=13.06 [1-exp (- 64.9 (t/d)4.365)] (25)
<mrow> <msubsup> <mi>f</mi> <mn>0</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.34</mn> <mo>/</mo> <msub> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>/</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>18.81</mn> <mo>(</mo> <mrow> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <mn>0.264</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mo>(</mo> <mrow> <mo>-</mo> <mn>4.49</mn> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>/</mo> <mi>d</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.436</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>H</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>d</mi> <mi>e</mi> </msub> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mi>H</mi> </msub> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>b</mi> <mi>H</mi> </msub> <msubsup> <mi>V</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
aH=0.725 (t/d)-1.227,bH=1.02 (t/d)-1.411, mH=3.42exp (- 0.117 (t/d)) (28)
In the formula of above-mentioned (23)~(28), H and HresUnit be m, remaining parameter being newly related to is dimensionless group;
During resonance:
Lc=(c0/2πf0)arccot(2πf0H/σc0) (29);
Wherein, LcIt is cavity depth, unit is m;
Step 5:Microperforated panel structure-borne sound impedance Z is with incident sound pressure level P in observation of steps fouriThe curve of change, is obtained non-linear The transformation sound pressure level that acoustic impedance is functioned to, i.e., critical sound pressure level Pt, unit is dB, if P0≤Pt, illustrate selected design ginseng The nonlinear effect that number meets microperforated panel structure suppresses, if P0>Pt, illustrate that selected design parameter is unsatisfactory for, now, reduce Aperture d or increase t/d, is then back to step 3, the structural parameters of nonlinear effect can be realized until obtaining.
CN201710346441.0A 2017-05-17 2017-05-17 Structural parameter design method for inhibiting nonlinear effect of micro-perforated plate Active CN107180132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710346441.0A CN107180132B (en) 2017-05-17 2017-05-17 Structural parameter design method for inhibiting nonlinear effect of micro-perforated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710346441.0A CN107180132B (en) 2017-05-17 2017-05-17 Structural parameter design method for inhibiting nonlinear effect of micro-perforated plate

Publications (2)

Publication Number Publication Date
CN107180132A true CN107180132A (en) 2017-09-19
CN107180132B CN107180132B (en) 2020-05-05

Family

ID=59831851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710346441.0A Active CN107180132B (en) 2017-05-17 2017-05-17 Structural parameter design method for inhibiting nonlinear effect of micro-perforated plate

Country Status (1)

Country Link
CN (1) CN107180132B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300463A (en) * 2018-09-19 2019-02-01 河海大学常州校区 The compound microperforated panel soundabsorbing construction of nonlinear effect under a kind of inhibition high sound intensity
CN111581734A (en) * 2020-05-22 2020-08-25 中国航空工业集团公司西安飞机设计研究所 Method for designing turbofan engine nacelle perforation sound absorption structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041528A (en) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd Sound absorbing structure
CN1917036A (en) * 2006-09-12 2007-02-21 浙江大学 Perforation plate for improving sound absorptivity
CN1917037A (en) * 2006-09-12 2007-02-21 浙江大学 Method for improving perforation plate, and weatherability of sound absorbing structure
CN102063896A (en) * 2010-10-15 2011-05-18 南京航空航天大学 Parameter design method of resonance sound absorption structure of engineering-oriented microperforated panel
CN104715749A (en) * 2015-03-17 2015-06-17 中国科学院合肥物质科学研究院 Acoustic impedance adjusting device and method based on self-adaptive micro-perforated panel sound absorber
CN105427853A (en) * 2015-10-30 2016-03-23 东南大学 Broadband micro-perforated board sound absorber, absorber performance prediction method and absorber structure design method
CN106297762A (en) * 2016-08-16 2017-01-04 南京工业大学 A kind of method that nonlinear characteristic utilizing Helmholtz resonator changes acoustics metamaterial passband

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041528A (en) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd Sound absorbing structure
CN1917036A (en) * 2006-09-12 2007-02-21 浙江大学 Perforation plate for improving sound absorptivity
CN1917037A (en) * 2006-09-12 2007-02-21 浙江大学 Method for improving perforation plate, and weatherability of sound absorbing structure
CN102063896A (en) * 2010-10-15 2011-05-18 南京航空航天大学 Parameter design method of resonance sound absorption structure of engineering-oriented microperforated panel
CN104715749A (en) * 2015-03-17 2015-06-17 中国科学院合肥物质科学研究院 Acoustic impedance adjusting device and method based on self-adaptive micro-perforated panel sound absorber
CN105427853A (en) * 2015-10-30 2016-03-23 东南大学 Broadband micro-perforated board sound absorber, absorber performance prediction method and absorber structure design method
CN106297762A (en) * 2016-08-16 2017-01-04 南京工业大学 A kind of method that nonlinear characteristic utilizing Helmholtz resonator changes acoustics metamaterial passband

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300463A (en) * 2018-09-19 2019-02-01 河海大学常州校区 The compound microperforated panel soundabsorbing construction of nonlinear effect under a kind of inhibition high sound intensity
CN109300463B (en) * 2018-09-19 2021-04-16 河海大学常州校区 Composite micro-perforated plate sound absorption structure for inhibiting nonlinear effect under high sound intensity
CN111581734A (en) * 2020-05-22 2020-08-25 中国航空工业集团公司西安飞机设计研究所 Method for designing turbofan engine nacelle perforation sound absorption structure

Also Published As

Publication number Publication date
CN107180132B (en) 2020-05-05

Similar Documents

Publication Publication Date Title
CN105427853B (en) Broadband micropunch plate sound absorber and performance prediction method and structure design method thereof
CN104715749B (en) Acoustic impedance adjusting means and adjusting method based on adaptive micro-perforated plate sound absorber
CN108133700A (en) A kind of acoustics black hole vibration and noise reducing device
CN102094922B (en) Porous rubber material member and full-frequency range vibration acoustical property analysis method thereof
CN107180132A (en) A kind of Design method of structural parameters for suppressing microperforated panel nonlinear effect
CN107039028A (en) A kind of performance test methods of wideband perforated plate
CN104061631B (en) Outdoor machine of air-conditioner denoising structure and the air-conditioning with the denoising structure
CN205194322U (en) Broadband microperforated panel acoustic absorber based on cycle temper back of body chamber
CN104358602A (en) Noise control method of wideband composite sound absorption structure-based steam turbine generator unit
CN209724715U (en) Blower sound-deadening and noise-reducing device and sound-insulating structure
CN107749295A (en) Wind power generating set Noise Active noise control method and active noise control system
CN209045162U (en) Noise impedance test macro in a kind of airflow line
CN105835503A (en) Expanded polytetrafluoroethylene film-polyurethane foam surface composite full-band strong sound-absorption sheet and preparation method thereof
CN105989829A (en) Multi-layer diaphragm type composite resonance sound absorption module
Yairi et al. Acoustical properties of microperforated panel absorbers with various configurations of the back cavity
CN111698598B (en) Design method of passive noise reduction earmuffs
CN210896602U (en) Cavity sound absorption structure of sound absorption protective surface of double-sided metal perforated plate in acoustic laboratory
DE102019002157B4 (en) WALL FOR LOW-FREQUENCY AND WIDE-FREQUENCY BANDINGS, MASSIVE ACOUSTIC ATTENUATION OF PLANIAL INCIDENT SOUND
CN208277554U (en) Noise reduction composite board
CN205560030U (en) Silent type horizontal flow workstation fan pipeline
CN111899710A (en) Method and device for actively reducing noise of power distribution room based on analytic hierarchy process
CN105895114A (en) Pulse-response-based room sound propagation path separation method
CN109741725A (en) A kind of acoustic metamaterial and its micro-processing method with broad band low frequency silencing function
CN112460076A (en) Main exhaust fan array type silencer for large air volume and strong mixed noise
Landström Human exposure to infrasound

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant