CN107169307A - Health risk assessment method and apparatus - Google Patents
Health risk assessment method and apparatus Download PDFInfo
- Publication number
- CN107169307A CN107169307A CN201710549362.XA CN201710549362A CN107169307A CN 107169307 A CN107169307 A CN 107169307A CN 201710549362 A CN201710549362 A CN 201710549362A CN 107169307 A CN107169307 A CN 107169307A
- Authority
- CN
- China
- Prior art keywords
- data
- user
- module
- risk
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明提供一种健康风险评估方法和装置,该方法至少包括数据采集步骤和风险分析步骤;数据采集步骤,采集至少一种用户生理体征数据,并保存所述数据;风险分析步骤,根据所述数据评估数据等级,所述数据等级结合所述数据的影响权重计算用户发病的风险系数。本发明的健康风险评估方法,可结合用户终端采集的生理体征数据输出可靠的疾病风险评估结果,使得应用该健康风险评估方法的装置,可以为用户提供准确、可靠、便携的医疗健康服务。
The present invention provides a health risk assessment method and device, the method at least includes a data collection step and a risk analysis step; the data collection step collects at least one user's physiological sign data, and saves the data; the risk analysis step, according to the The data evaluates the data level, and the data level combines the impact weight of the data to calculate the risk coefficient of the user's disease. The health risk assessment method of the present invention can combine the physiological sign data collected by the user terminal to output reliable disease risk assessment results, so that the device applying the health risk assessment method can provide users with accurate, reliable and portable medical and health services.
Description
技术领域technical field
本发明涉及计算机应用技术,特别涉及一种健康风险评估方法和装置。The invention relates to computer application technology, in particular to a health risk assessment method and device.
背景技术Background technique
医疗研究表明,人体心率、血压、血氧量和睡眠质量等指数和指数的变化对评估身体相关疾病、疲劳程度和健康评估有重要参考价值。Medical research shows that changes in indices and indexes such as heart rate, blood pressure, blood oxygen level, and sleep quality have important reference value for assessing body-related diseases, fatigue, and health assessment.
但是目前智能穿戴设备只能实现一些简单的运动管理功能,设备不能存储数据或存储容量有限,尚不能用于医疗层次的健康分析,对广大于慢性疾病患病人员或潜在的慢性疾病患病人群,如何结合智能终端,便携享受可靠的医疗健康服务,目前尚未提出有效的解决方案。However, at present, smart wearable devices can only implement some simple sports management functions. The devices cannot store data or have limited storage capacity, and cannot be used for health analysis at the medical level. , How to combine smart terminals to enjoy reliable medical and health services in a portable way has not yet proposed an effective solution.
发明内容Contents of the invention
本发明提供了一种健康风险评估方法和装置,结合智能终端的采集数据,可以为用户提供便携可靠的医疗健康风险评估服务。The invention provides a health risk assessment method and device, which can provide users with portable and reliable medical health risk assessment services in combination with data collected by an intelligent terminal.
本发明提供一种健康风险评估方法,包括:至少包括数据采集步骤和风险分析步骤;数据采集步骤,采集至少一种用户生理体征数据,并保存所述数据;风险分析步骤,根据数据评估数据等级,数据等级结合数据的影响权重计算用户发病的风险系数。The present invention provides a health risk assessment method, comprising: at least including a data collection step and a risk analysis step; the data collection step collects at least one user's physiological sign data and saves the data; the risk analysis step evaluates the data level according to the data , the data level is combined with the impact weight of the data to calculate the risk coefficient of the user's disease.
本发明还提供一种健康风险评估装置,至少包括数据采集模块、存储模块和风险分析模块;数据采集模块,采集至少一种用户生理体征数据,并将数据存储在所述存储模块;风险分析模块,根据存储模块存储的数据评估数据等级,数据等级结合数据的影响权重计算用户发病的风险系数。The present invention also provides a health risk assessment device, which at least includes a data collection module, a storage module, and a risk analysis module; a data collection module that collects at least one type of user physiological sign data and stores the data in the storage module; a risk analysis module , evaluating the data level according to the data stored in the storage module, and calculating the risk coefficient of the user's disease by combining the data level with the impact weight of the data.
本发明提供的健康风险评估方法,该方法可结合用户终端采集的生理体征数据输出可靠的健康风险评估结果,使得应用该健康风险评估方法的装置,可以为用户提供准确、可靠、便携的医疗健康服务。通过评估方法输出结果自动预警风险就医,代替现有的身体不适后再就医,可以让患者在发病初期获得治疗,减少患者治疗代价,改善现有医疗服务的体验感和时效性。同时智能终端能保存身体异常时的生理体征数据供医生诊断使用,使得医生可以更准确地了解用户的身体状态以提高诊断的准确性。The health risk assessment method provided by the present invention can output reliable health risk assessment results in combination with the physiological sign data collected by the user terminal, so that the device applying the health risk assessment method can provide users with accurate, reliable and portable medical and health care Serve. Through the output of the evaluation method, the automatic early warning risk medical treatment can replace the existing physical discomfort and then seek medical treatment, which can allow patients to receive treatment at the early stage of the disease, reduce the cost of treatment for patients, and improve the experience and timeliness of existing medical services. At the same time, the smart terminal can save the data of physiological signs when the body is abnormal for the doctor to diagnose, so that the doctor can understand the user's physical state more accurately to improve the accuracy of diagnosis.
附图说明Description of drawings
图1为本发明健康风险评估方法的流程图。Fig. 1 is a flowchart of the health risk assessment method of the present invention.
图2为本发明图1中的S102即时风险评估方法;Fig. 2 is the instant risk assessment method of S102 in Fig. 1 of the present invention;
图3为本发明图1中的S102风险预测评估方法;Fig. 3 is the S102 risk prediction and evaluation method in Fig. 1 of the present invention;
图4为图3中预测指标的预测模型构建方法;Fig. 4 is the forecasting model building method of forecasting index in Fig. 3;
图5为本发明健康分析评估装置的结构示意图。Fig. 5 is a schematic structural diagram of the health analysis and evaluation device of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明公开了一种健康风险评估方法,至少包括数据采集步骤和风险分析步骤。As shown in Fig. 1, the present invention discloses a health risk assessment method, which at least includes a data collection step and a risk analysis step.
数据采集步骤(S101),采集至少一种用户生理体征数据,并保存所述数据;Data collection step (S101), collect at least one kind of user physiological sign data, and save the data;
风险分析步骤(S102),根据所述数据评估数据等级,所述数据等级结合所述数据的影响权重计算用户发病的风险系数。Risk analysis step (S102), evaluating the data level according to the data, and calculating the risk coefficient of the user's disease by combining the data level with the impact weight of the data.
根据风险指数判断用户的发病风险,指数越高,发病风险越大。According to the risk index, the user's risk of disease is judged. The higher the index, the greater the risk of disease.
本发明的健康风险评估方法,能够通过实时采集用户生理体征数据,并存储在终端。经过长期的数据积累,风险分析模块分析存储的数据,根据生理体征数据变化趋势和异常等情况,通过分析评估,能够准确预测一些慢性疾病如心血管疾病,以及相关疾病导致的慢性疾病并发症如心血管并发症的风险,并给予风险提示,建议用户对突发疾病做好预防准备。The health risk assessment method of the present invention can collect the user's physiological sign data in real time and store them in the terminal. After long-term data accumulation, the risk analysis module analyzes the stored data, and can accurately predict some chronic diseases, such as cardiovascular diseases, and the complications of chronic diseases caused by related diseases, such as The risk of cardiovascular complications is given, and risk reminders are given, and users are advised to make preventive preparations for sudden diseases.
图1中S102步骤,如图2所示,可以包含如下步骤,以评估心血管疾病患者的发病即时风险系数:Step S102 in Fig. 1, as shown in Fig. 2, may include the following steps to assess the immediate risk coefficient of cardiovascular disease patients:
步骤201:将传感器器模块采集的用户心电信号ECG、血压BP和血氧SpO的3项指标数据与用户正常指标数据进行对比,评估采集指标数据的即时等级,记H1c,S1c,B1c为3项指标的即时评估等级。Step 201: Compare the three index data of the user's electrocardiogram signal ECG, blood pressure BP and blood oxygen SpO collected by the sensor module with the user's normal index data, evaluate the real-time level of the collected index data, record H1 c , S1 c , B1 c is the real-time evaluation grade of the three indicators.
用户正常指标数据是指经风险分析模块判定为用户身体健康的同类指标数据。本申请对H1c,S1c,B1c的等级划分不做限定,根据实际需求设定。The user's normal indicator data refers to the same kind of indicator data that is judged to be the user's physical health by the risk analysis module. This application does not limit the classification of H1 c , S1 c , and B1 c grades, which are set according to actual needs.
步骤202:计算即时风险评估系数Risk1=A·{H1c,S1c,B1c},其中影响权重向量A={a1,a2,a3}。影响权重向量可参考统计结果设定,或由专业医生根据用户的身体状况设定。Step 202: Calculate the immediate risk assessment coefficient Risk1=A·{H1 c , S1 c , B1 c }, where the influence weight vector A={a 1 , a 2 , a 3 }. The influence weight vector can be set with reference to statistical results, or set by a professional doctor according to the user's physical condition.
即时风险评估可实现对用户生理体征数据的实时监控,能实时监测用户的身体异常,提醒用户及时就医。同时智能终端能保存身体异常时的生理体征数据供医生诊断使用,使得医生可以更准确地了解用户的身体状态以提高诊断的准确性。Real-time risk assessment can realize real-time monitoring of the user's physiological signs data, real-time monitoring of the user's physical abnormalities, and remind the user to seek medical treatment in time. At the same time, the smart terminal can save the data of physiological signs when the body is abnormal for the doctor to diagnose, so that the doctor can understand the user's physical state more accurately to improve the accuracy of diagnosis.
图1中S102步骤,如图3所示,还可以包含如下步骤,以评估心血管疾病患者的发病预测风险系数:Step S102 in Fig. 1, as shown in Fig. 3, may also include the following steps, to evaluate the incidence prediction risk coefficient of cardiovascular disease patients:
步骤301:基于存储模块存储的用户的心电信号ECG、血压BP和血氧SpO的3项指标数据,预测用户3项指标在预定期限内的数值。Step 301: Based on the three index data of the user's electrocardiogram signal ECG, blood pressure BP and blood oxygen SpO stored in the storage module, predict the values of the user's three indexes within a predetermined period.
预定期限包括短期和长期,可以由用户根据自身需求设定。The predetermined period includes short-term and long-term, which can be set by users according to their own needs.
步骤302:通过对3项指标预测数值和正常指标数据对比,评估预测指标数值的等级,记H2c,S2c,B2c为3项指标的预测评估等级。Step 302: By comparing the predicted values of the three indicators with the data of the normal indicators, evaluate the grades of the predicted indicators, and record H2 c , S2 c , and B2 c as the predicted evaluation grades of the three indicators.
步骤303:计算风险评估预测系数Risk2=A·{H2c,S2c,B2c},其中影响权重向量A={a1,a2,a3}。Step 303: Calculate the risk assessment prediction coefficient Risk2=A·{H2 c , S2 c , B2 c }, where the influence weight vector A={a 1 , a 2 , a 3 }.
本申请的智能终端不仅可以实现即时风险评估,对于一些潜在的慢性疾病,也可以通过传感器模块采集的长期变化趋势,预测发病风险,提前警示用户,采取相应预防措施,或者提前就医。The smart terminal of this application can not only realize real-time risk assessment, but also predict the risk of some potential chronic diseases through the long-term trend collected by the sensor module, warn the user in advance, take corresponding preventive measures, or seek medical treatment in advance.
进一步地,图3中步骤S301中的预测指标数值,可以是使用现有的预测模型,也可以如图4所示,包括:Further, the value of the predictive index in step S301 in Figure 3 may use an existing predictive model, or as shown in Figure 4, including:
步骤401:构建模型,假设样本L的第i次采集的样本指标的数值Li,表示为过去p(p≤i)次采集的数值的线性组合,加上第i次的白噪声,即:Step 401: Construct a model, assuming that the value L i of the sample index collected for the i-th time of the sample L is expressed as a linear combination of values collected for the past p (p≤i) times, plus white noise for the i-th time, namely:
Li=θ0+φ1Li-1+…+φpLi-p+ai,其中{ai,i=0,±1,±2,…}为白噪声,φ1,φ2,…,φp为常数系数,θ0为常数。L i =θ 0 +φ 1 L i-1 +…+φ p L ip +a i , where {a i ,i=0,±1,±2,…} is white noise, φ 1 , φ 2 , ..., φ p is a constant coefficient, and θ 0 is a constant.
步骤402:基于样本数据,解算常数系数φ1,φ2,…,φp和θ0;Step 402: Calculate constant coefficients φ 1 , φ 2 , ..., φ p and θ 0 based on the sample data;
步骤403:预测指标数值,已知k次用户样本指标数据,预测第k+l次的指标数值,令i=k+l,得到第k+l的指标数值为:Step 403: Predicting the index value, knowing the k-th user sample index data, predicting the k+l-th index value, setting i=k+l, and obtaining the k+l-th index value is:
Lk+l=θ0+φ1Lk+l-1+φ2Lk+l-2+…+φpLk+l-p+ak+l。L k+l =θ 0 +φ 1 L k+l-1 +φ 2 L k+l-2 + . . . +φ p L k+lp +a k+l .
在本发明的方法中,数据存储时以预设数据包格式存储;In the method of the present invention, when data is stored, it is stored in a preset data packet format;
预设数据包格式按包头加数据的格式进行编码,包头包括起始位、设备号、时间戳、生理体征及状态数据名和校验位;起始位用于区分每段数据包;设备号用于区分显示用户的不同设备;时间戳用于记录采集时间;生理体征数据名用于区分不同传感器采集的生理体征数据以及用户不同的状态信息,校验位用于校验数据传输是否出错。The preset data packet format is encoded according to the format of packet header plus data. The packet header includes start bit, device number, time stamp, physiological signs and status data name and check digit; the start bit is used to distinguish each data packet; the device number is used to The time stamp is used to record the collection time; the physiological sign data name is used to distinguish the physiological sign data collected by different sensors and the different status information of the user, and the check digit is used to verify whether there is an error in data transmission.
在本发明的方法中,风险分析步骤还包括睡眠状态检测,睡眠状态检测至少包括以下步骤:In the method of the present invention, the risk analysis step also includes sleep state detection, and the sleep state detection at least includes the following steps:
步骤501:分析用户的姿态数据,提取用户的睡眠时间和深度睡眠时间;Step 501: analyzing the user's posture data, extracting the user's sleep time and deep sleep time;
步骤502:根据用户的睡眠时间和深度睡眠时间,以及2个时间内的用户心率HR、血氧SpO数据,判断用户睡眠状态。Step 502: According to the user's sleep time and deep sleep time, as well as the user's heart rate HR and blood oxygen SpO data within two periods, determine the user's sleep state.
其中,步骤501又可以包括以下步骤:Wherein, step 501 may further include the following steps:
步骤501-1、通过姿态检测自动开启睡眠状态检测;Step 501-1, automatically enable sleep state detection through posture detection;
步骤501-2、开始对用户睡眠计时,并采集加速度传感器数据和心率、血氧传感器采集的心率、血氧浓度数据;Step 501-2, start timing the sleep of the user, and collect acceleration sensor data and heart rate, heart rate and blood oxygen concentration data collected by the blood oxygen sensor;
步骤501-3、对加速度传感器实时采集的数据进行分析,判断用户姿态。在加速度采集数据长时间平稳时,开始对用户进行深度睡眠开始计时,一旦用户有姿态变化,停止深度睡眠计时;Step 501-3: Analyze the data collected by the acceleration sensor in real time to determine the user's posture. When the acceleration collection data is stable for a long time, start timing the deep sleep of the user, and stop the deep sleep timing once the user has a posture change;
步骤501-4、在睡眠过程和深度睡眠过程中,分别定时通过心率、血氧传感器采集用户心率、血氧数据;Step 501-4, during the sleep process and the deep sleep process, collect the user's heart rate and blood oxygen data through the heart rate and blood oxygen sensors at regular intervals;
步骤501-5、用户苏醒后,通过姿态检测自动结束睡眠状态监测功能。通过对姿态和心率数据分析,提取当晚睡眠时间量和深度睡眠时间量,以及睡眠过程中血氧浓度和心率。Step 501-5. After the user wakes up, the sleep state monitoring function is automatically terminated through posture detection. Through the analysis of posture and heart rate data, the amount of sleep time and deep sleep time of the night, as well as the blood oxygen concentration and heart rate during sleep are extracted.
在本发明的方法中,风险分析步骤还包括疲劳状态检测,疲劳状态检测至少包括以下步骤:In the method of the present invention, the risk analysis step also includes fatigue state detection, and the fatigue state detection at least includes the following steps:
步骤601:检测存储模块存储的心电信号ECG和心率变异信号HRV的波动特征,将波动特征对应转换为疲劳系数初值;Step 601: Detect the fluctuation characteristics of the electrocardiographic signal ECG and the heart rate variation signal HRV stored in the storage module, and convert the fluctuation characteristics into the initial value of the fatigue coefficient;
步骤602:将疲劳系数初值与用户心率HR、血氧SpO数据、用户睡眠状态,通过加权计算得到最终的疲劳系数。Step 602: Calculate the final fatigue coefficient by weighting the initial value of the fatigue coefficient with the user's heart rate HR, blood oxygen SpO data, and user's sleep state.
本发明提供的健康风险评估方法,该方法可结合用户终端采集的生理体征数据输出可靠的健康风险评估结果,使得应用该健康风险评估方法的智能终端,可以为用户提供准确、可靠、便携的医疗健康服务。通过评估方法输出结果自动预警风险就医,代替现有的身体不适后再就医,可以让患者在发病初期获得治疗,减少患者治疗代价,改善现有医疗服务的体验感和时效性。同时智能终端能保存身体异常时的生理体征数据供医生诊断使用,使得医生可以更准确地了解用户的身体状态以提高诊断的准确性。The health risk assessment method provided by the present invention can output reliable health risk assessment results in combination with the physiological sign data collected by the user terminal, so that the intelligent terminal applying the health risk assessment method can provide users with accurate, reliable and portable medical treatment. health service. Through the output of the evaluation method, the automatic early warning risk medical treatment can replace the existing physical discomfort and then seek medical treatment, which can allow patients to receive treatment at the early stage of the disease, reduce the cost of treatment for patients, and improve the experience and timeliness of existing medical services. At the same time, the smart terminal can save the data of physiological signs when the body is abnormal for the doctor to diagnose, so that the doctor can understand the user's physical state more accurately to improve the accuracy of diagnosis.
如图5所示,本发明还公开了一种健康风险评估装置,至少包括数据采集模块、存储模块和风险分析模块。As shown in Fig. 5, the present invention also discloses a health risk assessment device, which at least includes a data collection module, a storage module and a risk analysis module.
数据采集模块,采集至少一种用户生理体征数据,并将数据存储在存储模块。风险分析模块,根据存储模块存储的数据评估数据等级,所述数据等级结合所述数据的影响权重计算用户发病的风险系数。The data collection module collects at least one kind of user's physiological sign data, and stores the data in the storage module. The risk analysis module evaluates the data level according to the data stored in the storage module, and the data level combines the impact weight of the data to calculate the risk coefficient of the user's disease.
本发明的健康风险评估装置可以是智能手表,或手环,或其他可穿戴设备,也可以是用户终端中的部分设备。The health risk assessment device of the present invention may be a smart watch, or a wristband, or other wearable devices, or part of the devices in the user terminal.
举例说明,本发明的装置实时监测患有原发性心脏疾患用户的应用说明,包括:For example, the device of the present invention monitors the application description of the user suffering from primary heart disease in real time, including:
步骤A-1、装置传感器模块实时采集心电传感器的心电信号ECG数据、血氧传感器采集的心率HR、血压BP及血氧SpO浓度数据;Step A-1, the sensor module of the device collects the ECG signal ECG data of the ECG sensor in real time, the heart rate HR, blood pressure BP and blood oxygen SpO concentration data collected by the blood oxygen sensor;
步骤A-2、风险分析模块对实时采集的心率、血压及血氧数据进行分析;、一旦心率HR数据异常,血氧SpO浓度急剧降低,血压HR变化符合原发性心脏病的特征,评估用户发病的风险系数,如果判定该用户原发性心脏病发作,可能出现心脏骤停等紧急状况,则通过装置显示屏将评估结果显示;Step A-2, the risk analysis module analyzes the heart rate, blood pressure and blood oxygen data collected in real time; once the heart rate HR data is abnormal, the blood oxygen SpO concentration drops sharply, and the change of blood pressure HR conforms to the characteristics of primary heart disease, evaluate the user The risk factor of the disease, if it is determined that the user has a primary heart attack and may have an emergency such as cardiac arrest, the evaluation result will be displayed on the display screen of the device;
步骤A-3、或者,进一步地,装置通过通信模块,向相关机构和关联人请求医疗救助,并将采集的用户心电数据发送到相关机构,报告用户实时状态。Step A-3, or, further, the device requests medical assistance from relevant institutions and related persons through the communication module, and sends the collected user's ECG data to relevant institutions to report the user's real-time status.
又,举例说明,本发明装置实时监测老年用户严重意外摔倒的应用说明:Also, as an example, the application description of the real-time monitoring of serious accidental falls of elderly users by the device of the present invention:
步骤B-1、装置传感器模块实时采集加速度传感器的用户姿态数据;Step B-1, the sensor module of the device collects the user attitude data of the acceleration sensor in real time;
步骤B-2、当风险分析模块监测到用户姿态出现剧烈的变化时,同时在剧烈的姿态变化之后,用户姿态变化很小,或者没有姿态变化,说明用户可能摔倒;Step B-2. When the risk analysis module detects a drastic change in the user's posture, and after the drastic posture change, the user's posture changes very little or does not change, indicating that the user may fall;
步骤B-3、风险分析模块分析同时期传感器模块实时采集用户心率HR、血压BP体征数据变化,如果数据变化出现异常,则说明用户突发意外摔倒,通过装置显示屏将评估结果显示;Step B-3. The risk analysis module analyzes the changes in the user’s heart rate HR, blood pressure, and BP sign data collected by the sensor module in real time at the same time. If the data changes are abnormal, it means that the user has accidentally fallen, and the evaluation result is displayed on the device display screen;
步骤B-5、或者,进一步地,装置通过通信模块,向相关机构和关联人请求医疗救助,并将采集的生理体征数据发送到相关机构,报告用户实时状态。Step B-5, or, further, the device requests medical assistance from relevant institutions and related persons through the communication module, and sends the collected physiological sign data to relevant institutions to report the user's real-time status.
以上表明,本发明的装置能实时监控患有慢性突发疾病的用户,突发疾病如高血压、心脏病等;或者老年用户,突发意外情况如摔倒等。装置通过对用户的姿态和生理体征数据进行实时监测,一旦用户有突发疾病或者突发意外,装置会通过紧急通信功能,将用户情况发送到相关机构或关联人,以请求相应医疗措施和服务。The above shows that the device of the present invention can monitor users suffering from chronic sudden diseases in real time, such as high blood pressure, heart disease, etc.; or elderly users, sudden accidents such as falling down. The device monitors the user's posture and physiological sign data in real time. Once the user has a sudden illness or accident, the device will send the user's situation to the relevant organization or related person through the emergency communication function to request corresponding medical measures and services. .
风险分析模块采用DSP芯片作为微控制器,分析采集数据;存储模块采用SPI NandFlash作为存储设备,该类型芯片体积小,引脚少和容量大的特点,可以长期存储采集数据。存储模块的大容量存储设计,可以长时间采集存储用户数据,使智能终端对慢性疾病如心血管疾病的预测更加准确。The risk analysis module uses a DSP chip as a microcontroller to analyze and collect data; the storage module uses SPI NandFlash as a storage device. This type of chip has the characteristics of small size, few pins and large capacity, and can store collected data for a long time. The large-capacity storage design of the storage module can collect and store user data for a long time, making the smart terminal more accurate in predicting chronic diseases such as cardiovascular diseases.
在本申请中,用户生理体征数据包括姿态、心率HR、血氧SpO、血压BP、心电信号ECG和心率变异性信号HRV等。In this application, the user's physiological sign data includes posture, heart rate HR, blood oxygen SpO, blood pressure BP, electrocardiographic signal ECG, and heart rate variability signal HRV, etc.
传感器模块里有5类传感器用于检测用户姿态和采集生理体征数据,其中加速度传感器用于检测用户姿态和相关运动信息;血氧、心率传感器用于采集用户血氧SpO、心率HR数据,同时解算出血压BP数据;红外体温传感器用于采集用户体温数据;心电传感器用于采集用户的心电信号ECG数据,通过提取心电传感器所采集的心电信号ECG中的QRS波段,分析每次采集的QRS复合波波段的信号的每个周期R波峰值之间间隔标准差,以此来反映心率变异性信号HRV。There are 5 types of sensors in the sensor module to detect the user's posture and collect physiological sign data, among which the acceleration sensor is used to detect the user's posture and related motion information; the blood oxygen and heart rate sensors are used to collect the user's blood oxygen SpO and heart rate HR data, and simultaneously solve Calculate the blood pressure BP data; the infrared body temperature sensor is used to collect the user's body temperature data; the electrocardiogram sensor is used to collect the user's ECG signal ECG data, and analyze each acquisition by extracting the QRS band in the ECG signal ECG collected by the electrocardiogram sensor The interval standard deviation between the R wave peaks of each cycle of the signal of the QRS complex wave band is used to reflect the heart rate variability signal HRV.
智能终端实时采集用户生理体征数据,并以一定的格式打包成数据包,存储于存储模块。数据包格式,按照包头加数据的格式进行编码,其中包头包括起始位、设备号、时间戳、生理体征及状态数据名和校验位。起始位用于区分每段数据包;设备号用于区分显示用户的不同设备;时间戳用于记录采集时间;生理体征数据名主要用于区分不同传感器采集的生理体征数据以及用户不同的状态信息,如区分采集的数据时心电数据还是心率数据等;校验位用于校验数据传输是否出错。The smart terminal collects the user's physiological sign data in real time, packs them into data packets in a certain format, and stores them in the storage module. The data packet format is encoded according to the format of packet header plus data, where the packet header includes start bit, device number, time stamp, physiological signs and status data name and check digit. The start bit is used to distinguish each data packet; the device number is used to distinguish different devices that display the user; the timestamp is used to record the collection time; the physiological sign data name is mainly used to distinguish the physiological sign data collected by different sensors and the different states of the user Information, such as distinguishing whether the collected data is ECG data or heart rate data; the check digit is used to verify whether the data transmission is wrong.
进一步,数据在打包之前,或者在存储之前,先进行预处理,以剔除异常数据。Furthermore, before the data is packaged or stored, it is preprocessed to eliminate abnormal data.
在本发明的装置中,风险分析模块还即时风险分析模块,该模块包括:In the device of the present invention, the risk analysis module is also an instant risk analysis module, which includes:
即时等级评估模块:将传感器器模块采集的用户心电信号ECG、血压BP和血氧SpO的3项指标数据与用户正常指标数据进行对比,评估指标数值的即时等级,记H1c,S1c,B1c为3项指标的即时评估等级;Instant grade evaluation module: compare the three index data of the user's electrocardiogram signal ECG, blood pressure BP and blood oxygen SpO collected by the sensor module with the user's normal index data, evaluate the instant grade of the index value, record H1 c , S1 c , B1 c is the immediate evaluation grade of the three indicators;
即时风险计算模块:计算即时风险评估系数Risk1=A·{H1c,S1c,B1c},其中影响权重向量A={a1,a2,a3}。Immediate risk calculation module: Calculate the immediate risk assessment coefficient Risk1=A·{H1 c , S1 c , B1 c }, where the influence weight vector A={a 1 , a 2 , a 3 }.
在本发明的装置中,风险分析模块还包括风险预测模块,风险预测模块至少包括以下模块:In the device of the present invention, the risk analysis module also includes a risk prediction module, and the risk prediction module at least includes the following modules:
预测模块:基于存储模块存储的用户的心电信号ECG、血压BP和血氧SpO的3项指标数据,预测用户3项指标在预定期限内的数值;Prediction module: Based on the three index data of the user's electrocardiogram signal ECG, blood pressure BP, and blood oxygen SpO stored in the storage module, predict the values of the user's three indexes within a predetermined period;
预测等级评估模块:通过对3项指标预测数值和正常指标数据对比,评估预测指标数值的等级,记H2c,S2c,B2c为3项指标的预测评估等级;Forecast grade evaluation module: By comparing the predicted value of the three indicators with the normal index data, evaluate the grade of the predicted index value, record H2 c , S2 c , B2 c as the forecast evaluation grade of the three indicators;
风险预测计算模块:计算风险评估预测系数Risk2=A·{H2c,S2c,B2c},其中影响权重向量A={a1,a2,a3}。Risk prediction calculation module: calculate the risk assessment prediction coefficient Risk2=A·{H2 c , S2 c , B2 c }, where the influence weight vector A={a 1 , a 2 , a 3 }.
进一步地,预测指标数值包括:Further, the predictive index values include:
模型构建模块:构建模型,样本L的第i次采集的样本指标的数值Li,表示为过去p(p≤i)次采集的数值的线性组合,加上第i次的白噪声,即:Model building module: to build a model, the value L i of the sample index collected for the i-th time of the sample L is expressed as a linear combination of the values collected for the past p (p≤i) times, plus white noise for the i-th time, namely:
Li=θ0+φ1Li-1+…+φpLi-p+ai,其中{ai,i=0,±1,±2,…}为白噪声,φ1,φ2,…,φp为常数系数,θ0为常数;L i =θ 0 +φ 1 L i-1 +…+φ p L ip +a i , where {a i ,i=0,±1,±2,…} is white noise, φ 1 , φ 2 , ..., φ p is a constant coefficient, and θ 0 is a constant;
模型系数解算模块:基于样本数据,解算常数系数φ1,φ2,…,φp和θ0;Model coefficient calculation module: based on sample data, calculate constant coefficients φ 1 , φ 2 , ..., φ p and θ 0 ;
模型预测模块:预测指标数值,已知k次用户样本指标数据,预测第k+l次的指标数值,令i=k+l,得到第k+l的指标数值为:Model prediction module: predicting index value, knowing the k-th user sample index data, predicting the index value of the k+lth time, setting i=k+l, and obtaining the k+l-th index value as:
Lk+l=θ0+φ1Lk+l-1+φ2Lk+l-2+…+φpLk+l-p+ak+l。L k+l =θ 0 +φ 1 L k+l-1 +φ 2 L k+l-2 + . . . +φ p L k+lp +a k+l .
本发明的另一个实施例,风险分析模块还包括睡眠状态检测模块,具体包括:In another embodiment of the present invention, the risk analysis module also includes a sleep state detection module, specifically including:
睡眠时间检测模块:分析用户的姿态数据,提取用户的睡眠时间和深度睡眠时间;Sleep time detection module: analyze the user's posture data, extract the user's sleep time and deep sleep time;
睡眠状态分析模块:根据用户的睡眠时间和深度睡眠时间,以及2个时间内的用户心率HR、血氧SpO数据,判断用户睡眠状态。Sleep state analysis module: judge the user's sleep state according to the user's sleep time and deep sleep time, as well as the user's heart rate HR and blood oxygen SpO data within two periods of time.
本发明的另一个实施例,风险分析模块还包括疲劳状态检测模块,具体包括:In another embodiment of the present invention, the risk analysis module also includes a fatigue state detection module, specifically including:
疲劳系数初值计算模块:装置通过传感器采集用户心电信号(ECG)、心率变异性信号(HRV)、心率和血氧数据。风险分析模块检测存储模块存储的心电信号ECG和心率变异信号HRV的波动特征,将波动特征对应转换为疲劳系数初值。Fatigue coefficient initial value calculation module: the device collects the user's electrocardiogram signal (ECG), heart rate variability signal (HRV), heart rate and blood oxygen data through sensors. The risk analysis module detects the fluctuation characteristics of the electrocardiographic signal ECG and the heart rate variation signal HRV stored in the storage module, and converts the fluctuation characteristics into the initial value of the fatigue coefficient.
疲劳系数综合计算模块:风险分析模块将疲劳系数初值与心率HR、血氧SpO数据、用户睡眠状态,加权计算,得到最终的疲劳系数。Fatigue coefficient comprehensive calculation module: The risk analysis module weights the initial value of the fatigue coefficient with heart rate HR, blood oxygen SpO data, and user sleep status to obtain the final fatigue coefficient.
除图5外,本发明的装置还可以结合平台或服务器,获取更多的功能或服务,此时终端作为一个医疗健康服务平台的采集终端,采集供平台分析评估用户健康状况的生理体征数据;并用于对用户医疗诊断服务。终端可以通过蓝牙与智能手机连接,将采集的数据发送到智能手机等设备上,再通过互联网将数据发送到平台服务器上,或手机直接将采集的数据发送到平台服务器上。In addition to Figure 5, the device of the present invention can also be combined with a platform or server to obtain more functions or services. At this time, the terminal is used as a collection terminal of a medical and health service platform to collect physiological sign data for the platform to analyze and evaluate the user's health status; And used for medical diagnosis services to users. The terminal can be connected to the smart phone through Bluetooth, and the collected data can be sent to the smart phone and other devices, and then the data can be sent to the platform server through the Internet, or the mobile phone can directly send the collected data to the platform server.
以上所述仅为本发明的较佳实施例而已,并不用以限定本发明的包含范围,凡在本发明技术方案的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the technical solutions of the present invention are Should be included within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710549362.XA CN107169307A (en) | 2017-07-07 | 2017-07-07 | Health risk assessment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710549362.XA CN107169307A (en) | 2017-07-07 | 2017-07-07 | Health risk assessment method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107169307A true CN107169307A (en) | 2017-09-15 |
Family
ID=59823029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710549362.XA Pending CN107169307A (en) | 2017-07-07 | 2017-07-07 | Health risk assessment method and apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107169307A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107767956A (en) * | 2017-10-27 | 2018-03-06 | 秦皇岛市惠斯安普医学系统股份有限公司 | A kind of health risk assessment and management method based on biological electricity induction technology |
CN109620194A (en) * | 2018-12-12 | 2019-04-16 | 泰康保险集团股份有限公司 | Heart rate detection processing method, device, medium and electronic equipment |
CN109859844A (en) * | 2018-12-26 | 2019-06-07 | 江苏恒宝智能系统技术有限公司 | A kind of wearable device, human health danger forecasting system and prediction technique |
CN109961831A (en) * | 2019-03-29 | 2019-07-02 | 首都医科大学附属北京友谊医院 | A method and system for acquiring risk data of pediatric kidney stone surgery |
CN110101382A (en) * | 2019-03-27 | 2019-08-09 | 南京信息职业技术学院 | Risk monitoring device based on ECG signal analysis |
CN110808102A (en) * | 2019-11-01 | 2020-02-18 | 广州红腾文化科技有限公司 | Information pushing method, system and terminal of health platform |
CN110929988A (en) * | 2019-10-28 | 2020-03-27 | 广州柏颐信息科技有限公司 | Intelligent analysis method, system and device for care level and storage medium |
CN111009328A (en) * | 2019-12-25 | 2020-04-14 | 新绎健康科技有限公司 | Regional population health condition assessment method and device |
CN112885469A (en) * | 2021-02-01 | 2021-06-01 | 中国科学院苏州生物医学工程技术研究所 | Method and system for monitoring vital signs of chronic disease population |
CN113140323A (en) * | 2020-12-31 | 2021-07-20 | 上海明品医学数据科技有限公司 | Health portrait generation method, system, medium and server |
CN113257418A (en) * | 2021-03-29 | 2021-08-13 | 广州科克里特生命科技有限公司 | Risk detection system and method for low back pain |
CN114098655A (en) * | 2022-01-25 | 2022-03-01 | 慕思健康睡眠股份有限公司 | Intelligent sleep risk monitoring method and system |
CN114631945A (en) * | 2022-03-10 | 2022-06-17 | 南通大学附属医院 | A limb nursing device based on big data after interventional cardiology |
CN116110584A (en) * | 2023-02-23 | 2023-05-12 | 江苏万顶惠康健康科技服务有限公司 | Human health risk assessment early warning system |
CN116940990A (en) * | 2021-03-02 | 2023-10-24 | 株式会社花花 | health management system |
CN116936104A (en) * | 2023-09-15 | 2023-10-24 | 广东恒腾科技有限公司 | Health detector data analysis system and method based on artificial intelligence |
CN117064350A (en) * | 2023-08-18 | 2023-11-17 | 暨南大学附属第一医院(广州华侨医院) | A safety detection and intelligent assessment system |
CN118380159A (en) * | 2024-06-20 | 2024-07-23 | 湘江实验室 | Multi-user real-time collaboration system based on Metaverse |
CN119028517A (en) * | 2024-07-25 | 2024-11-26 | 广州健之杰洁具有限公司 | Underwater treadmill underwater motion risk identification method, device and equipment |
CN119359047A (en) * | 2024-12-23 | 2025-01-24 | 四川德阳德仪电子仪器有限公司 | Intelligent safety management and early warning system for power safety tools |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101739501A (en) * | 2008-11-04 | 2010-06-16 | 财团法人资讯工业策进会 | Patient risk degree identification system and method |
CN103778312A (en) * | 2012-10-24 | 2014-05-07 | 中兴通讯股份有限公司 | Remote home health care system |
CN105512505A (en) * | 2016-01-19 | 2016-04-20 | 宇龙计算机通信科技(深圳)有限公司 | Health prompting method and terminal equipment |
CN105534503A (en) * | 2016-02-01 | 2016-05-04 | 金昌红 | Old people heart rate monitoring and locating system and method |
CN105912870A (en) * | 2016-04-21 | 2016-08-31 | 张明飞 | Portable multi-sensor monitoring medical system |
CN106725382A (en) * | 2016-12-28 | 2017-05-31 | 天津众阳科技有限公司 | Sleep state judgement system and method based on action and HRV measurements |
-
2017
- 2017-07-07 CN CN201710549362.XA patent/CN107169307A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101739501A (en) * | 2008-11-04 | 2010-06-16 | 财团法人资讯工业策进会 | Patient risk degree identification system and method |
CN103778312A (en) * | 2012-10-24 | 2014-05-07 | 中兴通讯股份有限公司 | Remote home health care system |
CN105512505A (en) * | 2016-01-19 | 2016-04-20 | 宇龙计算机通信科技(深圳)有限公司 | Health prompting method and terminal equipment |
CN105534503A (en) * | 2016-02-01 | 2016-05-04 | 金昌红 | Old people heart rate monitoring and locating system and method |
CN105912870A (en) * | 2016-04-21 | 2016-08-31 | 张明飞 | Portable multi-sensor monitoring medical system |
CN106725382A (en) * | 2016-12-28 | 2017-05-31 | 天津众阳科技有限公司 | Sleep state judgement system and method based on action and HRV measurements |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107767956A (en) * | 2017-10-27 | 2018-03-06 | 秦皇岛市惠斯安普医学系统股份有限公司 | A kind of health risk assessment and management method based on biological electricity induction technology |
CN109620194A (en) * | 2018-12-12 | 2019-04-16 | 泰康保险集团股份有限公司 | Heart rate detection processing method, device, medium and electronic equipment |
CN109859844A (en) * | 2018-12-26 | 2019-06-07 | 江苏恒宝智能系统技术有限公司 | A kind of wearable device, human health danger forecasting system and prediction technique |
CN110101382A (en) * | 2019-03-27 | 2019-08-09 | 南京信息职业技术学院 | Risk monitoring device based on ECG signal analysis |
CN109961831A (en) * | 2019-03-29 | 2019-07-02 | 首都医科大学附属北京友谊医院 | A method and system for acquiring risk data of pediatric kidney stone surgery |
CN110929988A (en) * | 2019-10-28 | 2020-03-27 | 广州柏颐信息科技有限公司 | Intelligent analysis method, system and device for care level and storage medium |
CN110808102A (en) * | 2019-11-01 | 2020-02-18 | 广州红腾文化科技有限公司 | Information pushing method, system and terminal of health platform |
CN111009328A (en) * | 2019-12-25 | 2020-04-14 | 新绎健康科技有限公司 | Regional population health condition assessment method and device |
CN113140323A (en) * | 2020-12-31 | 2021-07-20 | 上海明品医学数据科技有限公司 | Health portrait generation method, system, medium and server |
CN112885469A (en) * | 2021-02-01 | 2021-06-01 | 中国科学院苏州生物医学工程技术研究所 | Method and system for monitoring vital signs of chronic disease population |
CN116940990A (en) * | 2021-03-02 | 2023-10-24 | 株式会社花花 | health management system |
CN113257418A (en) * | 2021-03-29 | 2021-08-13 | 广州科克里特生命科技有限公司 | Risk detection system and method for low back pain |
CN114098655B (en) * | 2022-01-25 | 2022-04-26 | 慕思健康睡眠股份有限公司 | A kind of intelligent sleep risk monitoring method and system |
CN114098655A (en) * | 2022-01-25 | 2022-03-01 | 慕思健康睡眠股份有限公司 | Intelligent sleep risk monitoring method and system |
CN114631945A (en) * | 2022-03-10 | 2022-06-17 | 南通大学附属医院 | A limb nursing device based on big data after interventional cardiology |
CN116110584A (en) * | 2023-02-23 | 2023-05-12 | 江苏万顶惠康健康科技服务有限公司 | Human health risk assessment early warning system |
CN116110584B (en) * | 2023-02-23 | 2023-09-22 | 江苏万顶惠康健康科技服务有限公司 | Human health risk assessment early warning system |
CN117064350A (en) * | 2023-08-18 | 2023-11-17 | 暨南大学附属第一医院(广州华侨医院) | A safety detection and intelligent assessment system |
CN116936104A (en) * | 2023-09-15 | 2023-10-24 | 广东恒腾科技有限公司 | Health detector data analysis system and method based on artificial intelligence |
CN116936104B (en) * | 2023-09-15 | 2023-12-08 | 广东恒腾科技有限公司 | Health detector data analysis system and method based on artificial intelligence |
CN118380159A (en) * | 2024-06-20 | 2024-07-23 | 湘江实验室 | Multi-user real-time collaboration system based on Metaverse |
CN119028517A (en) * | 2024-07-25 | 2024-11-26 | 广州健之杰洁具有限公司 | Underwater treadmill underwater motion risk identification method, device and equipment |
CN119359047A (en) * | 2024-12-23 | 2025-01-24 | 四川德阳德仪电子仪器有限公司 | Intelligent safety management and early warning system for power safety tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107169307A (en) | Health risk assessment method and apparatus | |
CN104077495B (en) | A kind of wearable wireless human body characteristic information collection and transport module, monitoring system | |
CN102930490A (en) | Intelligent terminal based health management system | |
CN103635130A (en) | Remote data monitoring and collection system with multi-tiered analysis | |
CN113520395A (en) | Real-time mental state assessment system and method | |
CN110226802A (en) | A kind of resource allocation management system based on multisensor towards health | |
CN111820879A (en) | A health evaluation management method suitable for patients with chronic diseases | |
CN206026335U (en) | Towards parkinson disease people's hand tremble aassessment intelligent ring | |
CN117174311A (en) | Post-traumatic sepsis course monitoring and early warning system, method and application | |
CN107403061A (en) | User's medical assessment model building method and medical assessment server | |
CN110353692A (en) | Physical efficiency, fatigue, the evaluating system of recovery capability and method based on bio signal | |
TW200840546A (en) | Monitoring apparatus, system and method | |
CN114694844A (en) | Chronic obstructive pulmonary disease assessment method based on oxygen saturation acquisition and analysis | |
CN114533048A (en) | Wearable acceleration sensor-based body activity intensity grading algorithm | |
CN113273973A (en) | Wearable device for daily health detection and monitoring method | |
US20220313148A1 (en) | Pregnancy-related complication identification and prediction from wearable-based physiological data | |
Li et al. | Design and implementation of wearable medical monitoring system on the internet of things | |
CN104305965A (en) | Health management system | |
CN217186095U (en) | A detection system for six-minute walk test | |
CN219982863U (en) | A health detection system | |
TWM583972U (en) | RFID smart health wearing device | |
KR102568281B1 (en) | Hyperkalemia prediction system using electrocardiogram | |
CN215227570U (en) | A health data monitoring system | |
KR20140102871A (en) | Bionic information monitoring system | |
CN116158732A (en) | Wearable intelligent patient information and monitoring integrated equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170915 |
|
RJ01 | Rejection of invention patent application after publication |