CN107169137A - 一种基于Group Lasso的半监督哈希图像搜索装置 - Google Patents
一种基于Group Lasso的半监督哈希图像搜索装置 Download PDFInfo
- Publication number
- CN107169137A CN107169137A CN201710437582.3A CN201710437582A CN107169137A CN 107169137 A CN107169137 A CN 107169137A CN 201710437582 A CN201710437582 A CN 201710437582A CN 107169137 A CN107169137 A CN 107169137A
- Authority
- CN
- China
- Prior art keywords
- image
- label
- label image
- module
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/5866—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using information manually generated, e.g. tags, keywords, comments, manually generated location and time information
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/32—Normalisation of the pattern dimensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/247—Aligning, centring, orientation detection or correction of the image by affine transforms, e.g. correction due to perspective effects; Quadrilaterals, e.g. trapezoids
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Library & Information Science (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明提供一种基于Group Lasso的半监督哈希图像搜索装置,属于图像搜索领域。所述装置包括:预处理模块,用于识别图像数据库中的标签图像和非标签图像,并对输入图像、标签图像和非标签图像进行预处理;训练学习模块,用于根据预处理之后的输入图像、标签图像和非标签图像进行基于Group Lasso的半监督哈希学习得到各图像对应的二进制哈希码;计算模块,用于根据二进制哈希码计算输入图像与图像数据库中各图像之间的海明距离,并返回最小海明距离对应的图像作为图像搜索结果。本发明中,能够结合现有图像数据的状况,有效的建模图像数据结构,快速准确的搜索到所需的图像,并且无需存储图像本身,大大节约了存储空间。
Description
技术领域
本发明涉及图像搜索领域,尤其涉及一种基于Group Lasso的半监督哈希图像搜索装置。
背景技术
大数据时代的到来、互联网技术的飞速发展和智能手机与照相机等成像设备的日渐普及,使图像等媒体资源的数据采集越来越便捷。在Web2.0时代,人们早已不满足于仅仅使用文字来传达信息,尤其是随着Facebook、推特、微信、微博等社交软件的流行,人们在日常生活中已经非常熟练的使用聊天“表情包”、朋友圈小视频、语音信息等。这些图像、视频、音频等海量的非结构化数据每天都在以惊人的速度增长。据市场调查研究公司IDC的一项调查报告指出:世界上80%的数据都是非结构化数据,以文档、图像、视频、音频等形式存储信息,这些数据每年都按指数增长60%。这其中,图像数据占据了极大的比例,也蕴含了大量的信息。
面对以几何速度增长的网络图像数量,传统的图像数据的分析和处理面临资源基数庞大、特征维度高、需要的存储空间大、查询速度慢等方面的挑战;因此诞生了多种拥有亚线性、对数甚至常数的时间复杂度的近似最近邻算法 (Approximate NearestNeighbor,ANN),其中基于哈希的近似最近邻算法以常数的查询时间和只需存储少量压缩的二进制码等优点获得大量关注。
然而,从现实生活中的图像数据标记现状考虑,尤其是在图像搜索与识别等领域,最大量的、获取最便捷的图像数据都是没有标签的,只有少部分是耗费人力和物力获得的带有标签的图像数据。因此,只需少量带标签的图像数据和大量没有标签的图像数据的图像搜索方法是具有重大现实意义和实际需求的。
再者,从图像数据的结构考虑,由于图像本身具有颜色、性质、纹理等全局特征和局部子特征,图像数据的不同维度之间可能具有某些结构或语义联系,因此,有效的建模图像数据的结构同样成为图像搜索方法的关键点之一。
最后,从图像数据的规模考虑,图像数据在与日俱增,设计有效的求解算法对大规模数据集上的图像搜索亦是重中之重。
发明内容
为解决现有技术的缺陷,本发明提供一种基于Group Lasso的半监督哈希图像搜索装置,包括:
预处理模块,用于识别图像数据库中的标签图像和非标签图像,对输入图像、所述标签图像和所述非标签图像进行预处理;
训练学习模块,用于根据所述预处理模块预处理之后的所述输入图像、所述标签图像和所述非标签图像进行基于Group Lasso的半监督哈希学习得到各图像对应的二进制哈希码;
计算模块,用于根据所述训练学习模块得到的二进制哈希码计算所述输入图像与所述图像数据库中各图像之间的海明距离,并返回最小海明距离对应的图像作为图像搜索结果。
可选地,所述预处理模块,具体用于:识别图像数据库中的标签图像和非标签图像,对输入图像、所述标签图像和所述非标签图像进行灰度化、归一化、几何变换和降噪操作。
可选地,所述训练学习模块包括:优化子模块,用于使用邻近算法优化求解模型。
可选地,所述优化子模块,具体用于:在邻近算法每次迭代时,从当前迭代点沿着梯度方向找到另一个点使得目标函数的二次近似函数的函数值最小,并将所述当前迭代点更新为得到的最小函数值,将所述目标函数的二次近似函数写成邻近算子的形式,则具体包括:
步骤1:梯度步,在第t次迭代时,沿着f(Wt)梯度方向移动,另:
其中,t=1、2、···N,为迭代次数;ut是第t次迭代的值;Wt为第t次迭代的模型系数;满足利普希茨连续;L>0,是的利普希茨常数的上界;
步骤2:邻近算子步,用每次迭代的解,即Group Lasso的邻近算子,更新 Wt+1,直到收敛或达到最大迭代次数N:
Wt+1=[Proxμθ(ut)]g
步骤3:输出最优解。
可选地,所述训练学习模块包括:选择子模块,用于根据所述Group Lasso 算法引入稀疏性,进行Group Lasso的嵌入式图像特征选择。
可选地,所述选择子模块,具体用于:以组为单位将同一组的图像特征同时选入或者同时剔除。
可选地,所述装置还包括:排序模块,用于在所述计算模块根据所述二进制哈希码计算所述输入图像与所述图像数据库中的各图像之间的海明距离之后,将所述海明距离排序得到最小海明距离。
本发明的优点在于:
面对以几何速度增长的图像数量,能够结合现有图像数据的状况,有效的建模图像数据结构,快速准确的搜索到所需的图像,并且无需存储图像本身,大大节约了存储空间。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
附图1为本发明提供的一种基于Group Lasso的半监督哈希图像搜索框架图;
附图2为本发明实施例一提供的一种基于Group Lasso的半监督哈希图像搜索装置框图;
附图3为本发明实施例二提供的一种基于Group Lasso的半监督哈希图像搜索方法流程图;
附图4为本发明实施例三提供的一种基于Group Lasso的半监督哈希图像搜索框架图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明在图像搜索领域现状的背景下,由图像数据的结构和标签情况驱动有效建模,在已有的半监督哈希图像搜索算法基础上,提出了一种基于Group Lasso的半监督哈希图像搜索方法。如图1所示,方法包括预处理步骤(1)、基于Group Lasso的半监督哈希学习步骤(2)和计算搜索结果步骤(3);本发明中引入Group Lasso算法和邻近算法,使有效建模的图像搜索方法具有更高的准确性和更快的查询速度,并且只需存储图像的二进制哈希码作为学习的结果,节省了存储空间,还可以推广至超大规模图像数据集搜索。
其中,邻近算法常用于解决形如minF(x)=f(x)+μθ(x)的凸优化问题,其中,f:Rp→R是可微分的凸函数,θ:Rp→R是不可微分的闭凸函数,x∈X是p 维向量;以下将F(x)=f(x)+μθ(x)称为目标函数;
邻近算法中邻近算子的定义为使取最小值的解;
目标函数的二次近似函数为:其中,t=1、2、···N,为迭代次数;满足利普希茨连续;L>0,是的利普希茨常数的上界。
以下将结合上述内容,对本发明中公开的图像搜索方法进行进一步的详细说明。
实施例一
根据本发明的实施方式,提供一种基于Group Lasso的半监督哈希图像搜索装置,如图2所示,包括:
预处理模块201,用于识别图像数据库中的标签图像和非标签图像,对输入图像、标签图像和非标签图像进行预处理;
训练学习模块202,用于根据预处理模块201预处理之后的输入图像、标签图像和非标签图像进行基于Group Lasso的半监督哈希学习得到各图像对应的二进制哈希码;
计算模块203,用于根据训练学习模块202得到的二进制哈希码计算输入图像与图像数据库中各图像之间的海明距离,并返回最小海明距离对应的图像作为图像搜索结果。
根据本发明的实施方式,预处理模块201,具体用于:识别图像数据库中的标签图像和非标签图像,对输入图像、标签图像和非标签图像进行灰度化、归一化、几何变换和降噪操作。
根据本发明的实施方式,训练学习模块202包括:优化子模块,用于使用邻近算法优化求解模型。
其中,优化子模块,具体用于:在邻近算法每次迭代时,从当前迭代点沿着梯度方向找到另一个点使得目标函数的二次近似函数的函数值最小,并将当前迭代点更新为得到的最小函数值,将目标函数的二次近似函数写成邻近算子的形式,则具体包括:
步骤1:梯度步,在第t次迭代时,沿着f(Wt)梯度方向移动,另:
其中,t=1、2、···N,为迭代次数;ut是第t次迭代的值;Wt为第t次迭代的模型系数;满足利普希茨连续;L>0,是的利普希茨常数的上界;
步骤2:邻近算子步,用每次迭代的解,即Group Lasso的邻近算子,更新Wt+1,直到收敛或达到最大迭代次数N:
Wt+1=[Proxμθ(ut)]g
步骤3:输出最优解。
根据本发明的实施方式,训练学习模块202还包括:选择子模块,用于根据GroupLasso算法引入稀疏性,进行Group Lasso的嵌入式图像特征选择。
其中,选择子模块,具体用于:以组为单位将同一组的图像特征同时选入或者同时剔除。
根据本发明的实施方式,所述装置还包括:排序模块,用于在计算模块203 根据训练学习模块202得到的二进制哈希码计算输入图像与图像数据库中的各图像之间的海明距离之后,将海明距离排序得到最小海明距离。
实施例二
根据本发明的实施方式,提出一种基于Group Lasso的半监督哈希图像搜索方法,如图3所示,包括:
步骤101:识别图像数据库中的标签图像和非标签图像,对输入图像、标签图像和非标签图像进行预处理;
步骤102:根据预处理之后的输入图像、标签图像和非标签图像进行基于 GroupLasso的半监督哈希学习得到各图像对应的二进制哈希码;
步骤103:根据二进制哈希码计算输入图像与图像数据库中各图像之间的海明距离,并返回最小海明距离对应的图像作为图像搜索结果。
根据本发明的实施方式,步骤101中,预处理包括但不限于:灰度化、归一化、几何变换和降噪操作。
需要说明地,由于海量的原始图像本身具有不同的颜色、纹理、分辨率、大小等,在使用图像进行分析、学习之前,对原始图像数据进行必要的预处理可以有效的简化数据、去除噪声等无关信息的干扰。
根据本发明的实施例方式,步骤102还包括:使用临近算法优化求解模型。
其中,使用临近算法优化求解模型,具体包括:在邻近算法每次迭代时,从当前迭代点沿着梯度方向找到另一个点使得目标函数的二次近似函数的函数值最小,并将当前迭代点更新为得到的最小函数值;将目标函数的二次近似函数写成邻近算子的形式,则具体包括:
步骤1:梯度步,在第t次迭代时,沿着f(Wt)梯度方向移动,另:
其中,t=1、2、···N,为迭代次数;ut是第t次迭代的值;Wt为第t次迭代的模型系数;满足利普希茨连续;L>0,是的利普希茨常数的上界;
步骤2:邻近算子步,用每次迭代的解,即Group Lasso的邻近算子,更新 Wt+1,直到收敛或达到最大迭代次数N,即:
Wt+1=[Proxμθ(ut)]g
步骤3:输出最优解。
根据本发明的实施例方式,步骤102中,在基于Group Lasso的半监督哈希学习运算中,还包括:根据Group Lasso算法引入稀疏性,进行Group Lasso的嵌入式图像特征选择。
其中,进行Group Lasso的嵌入式图像特征选择,具体为:以组为单位将同一组的图像特征同时选入或者同时剔除。
在本实施例中,嵌入式图像特征选择,其将特征选择过程和学习过程融合为一体,两者在同一优化过程中完成,没有明显的划分。
优选地,本实施例步骤102中,得到对应的二进制哈希码之后,还包括:根据得到的二进制哈希码生成哈希查找表。
根据本发明的实施例方式,步骤103中,根据二进制哈希码计算输入图像与图像数据库中的各图像之间的海明距离之后,还包括:将海明距离排序得到最小海明距离。
进一步地,在本实施例中,根据二进制哈希码计算输入图像与图像数据库中的各图像之间的海明距离,具体为:计算输入图像的二进制哈希码与图像数据库中的各图像的二进制哈希码的对应位上编码不同的位数,得到输入图像与图像数据库中的各图像之间的海明距离;
例如,输入图像的二进制哈希码为10101,图像数据库中的某一图像的二进制哈希码为00110,两个二进制哈希码中第一位、第四位、第五位上的编码不同,则得到输入图像与图像数据库中的某一图像之间的海明距离为3。
更进一步地,在本实施例中,将Group Lasso算法引入了基于半监督哈希的学习模型中,同时引入了稀疏性,起到以组为单位进行特征选择的作用;对应地,步骤103中返回最小海明距离对应的图像可能为一组图像,也可能为一个图像。
实施例三
根据本发明的实施方式,提出一种基于Group Lasso的半监督哈希图像搜索方法,如图4所示,包括:训练图像数据过程和搜索图像数据过程;
其中,训练图像数据过程,包括:
步骤a1:识别图像数据库中的标签图像和非标签图像,并对图像数据库中的各图像进行预处理;
步骤a2:根据处理后的标签图像和非标签图像进行基于Group Lasso的半监督哈希学习得到各图像对应的二进制哈希码;
其中,基于Group Lasso的半监督哈希学习得到以组为单位的组结构学习结果,并具有稀疏性。
步骤a3:根据得到的各二进制哈希码生成哈希查找表。
在图像搜索过程中,包括:
步骤b1:对输入图像进行预处理;
步骤b2:根据预处理后的输入图像进行基于Group Lasso的半监督哈希学习得到输入图像的二进制哈希码;
步骤b3:根据输入图像的二进制哈希码和哈希查找表中的二进制哈希码依次计算输入图像与训练数据库中各图像之间的海明距离并排序得到最小海明距离,返回最小海明距离对应的图像作为搜索结果。
需要说明地,在本实施例中,将Group Lasso算法引入了基于半监督哈希的学习模型中,同时引入了稀疏性,起到以组为单位进行特征选择的作用;对应地,步骤b3中返回最小海明距离对应的图像可能为一组图像,也可能为一个图像。
本发明中的技术方案,面对以几何速度增长的图像数量,能够结合现有图像数据的状况,有效的建模图像数据结构,快速准确的搜索到所需的图像,并且无需存储图像本身,大大节约了存储空间。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (7)
1.一种基于Group Lasso的半监督哈希图像搜索装置,其特征在于,包括:
预处理模块,用于识别图像数据库中的标签图像和非标签图像,对输入图像、所述标签图像和所述非标签图像进行预处理;
训练学习模块,用于根据所述预处理模块预处理之后的所述输入图像、所述标签图像和所述非标签图像进行基于Group Lasso的半监督哈希学习得到各图像对应的二进制哈希码;
计算模块,用于根据所述训练学习模块得到的二进制哈希码计算所述输入图像与所述图像数据库中各图像之间的海明距离,并返回最小海明距离对应的图像作为图像搜索结果。
2.根据权利要求1所述的装置,其特征在于,所述预处理模块,具体用于:识别图像数据库中的标签图像和非标签图像,对输入图像、所述标签图像和所述非标签图像进行灰度化、归一化、几何变换和降噪操作。
3.根据权利要求1所述的装置,其特征在于,所述训练学习模块包括:优化子模块,用于使用邻近算法优化求解模型。
4.根据权利要求3所述的装置,其特征在于,所述优化子模块,具体用于:在邻近算法每次迭代时,从当前迭代点沿着梯度方向找到另一个点使得目标函数的二次近似函数的函数值最小,并将所述当前迭代点更新为得到的最小函数值,将所述目标函数的二次近似函数写成邻近算子的形式,则具体包括:
步骤1:梯度步,在第t次迭代时,沿着f(Wt)梯度方向移动,另:
<mrow>
<msup>
<mi>u</mi>
<mi>t</mi>
</msup>
<mo>=</mo>
<msup>
<mi>W</mi>
<mi>t</mi>
</msup>
<mo>-</mo>
<mfrac>
<mn>1</mn>
<mi>L</mi>
</mfrac>
<mo>&dtri;</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<msup>
<mi>W</mi>
<mi>t</mi>
</msup>
<mo>)</mo>
</mrow>
</mrow>
其中,t=1、2、···N,为迭代次数;ut是第t次迭代的值;Wt为第t次迭代的模型系数;满足利普希茨连续;L>0,是的利普希茨常数的上界;
步骤2:邻近算子步,用每次迭代的解,即Group Lasso的邻近算子,更新Wt+1,直到收敛或达到最大迭代次数N:
Wt+1=[Proxμθ(ut)]g
步骤3:输出最优解。
5.根据权利要求1所述的装置,其特征在于,所述训练学习模块包括:选择子模块,用于根据所述Group Lasso算法引入稀疏性,进行Group Lasso的嵌入式图像特征选择。
6.根据权利要求5所述的装置,其特征在于,所述选择子模块,具体用于:以组为单位将同一组的图像特征同时选入或者同时剔除。
7.根据权利要求1所述的装置,其特征在于,所述装置还包括:排序模块,用于在所述计算模块根据所述二进制哈希码计算所述输入图像与所述图像数据库中的各图像之间的海明距离之后,将所述海明距离排序得到最小海明距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710437582.3A CN107169137B (zh) | 2017-06-09 | 2017-06-09 | 一种基于Group Lasso的半监督哈希图像搜索装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710437582.3A CN107169137B (zh) | 2017-06-09 | 2017-06-09 | 一种基于Group Lasso的半监督哈希图像搜索装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107169137A true CN107169137A (zh) | 2017-09-15 |
CN107169137B CN107169137B (zh) | 2019-10-08 |
Family
ID=59825236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710437582.3A Active CN107169137B (zh) | 2017-06-09 | 2017-06-09 | 一种基于Group Lasso的半监督哈希图像搜索装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107169137B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104268572A (zh) * | 2014-09-23 | 2015-01-07 | 南京大学 | 面向后台多源数据的特征提取和特征选择方法 |
WO2015124772A1 (en) * | 2014-02-21 | 2015-08-27 | Ventana Medical Systems, Inc. | Group sparsity model for image unmixing |
US20160026738A1 (en) * | 2014-07-23 | 2016-01-28 | International Business Machines Corporation | Modeling and visualizing a dynamic interpersonal relationship from social media |
CN106295794A (zh) * | 2016-07-27 | 2017-01-04 | 中国石油大学(华东) | 基于光滑Group Lasso惩罚项的分数阶的神经网络建模方法 |
-
2017
- 2017-06-09 CN CN201710437582.3A patent/CN107169137B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015124772A1 (en) * | 2014-02-21 | 2015-08-27 | Ventana Medical Systems, Inc. | Group sparsity model for image unmixing |
US20160026738A1 (en) * | 2014-07-23 | 2016-01-28 | International Business Machines Corporation | Modeling and visualizing a dynamic interpersonal relationship from social media |
CN104268572A (zh) * | 2014-09-23 | 2015-01-07 | 南京大学 | 面向后台多源数据的特征提取和特征选择方法 |
CN106295794A (zh) * | 2016-07-27 | 2017-01-04 | 中国石油大学(华东) | 基于光滑Group Lasso惩罚项的分数阶的神经网络建模方法 |
Non-Patent Citations (1)
Title |
---|
吴双: ""基于Group Lasso的半监督哈希图像搜索优化及算法研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Also Published As
Publication number | Publication date |
---|---|
CN107169137B (zh) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Git: Graph interactive transformer for vehicle re-identification | |
CN112084331B (zh) | 文本处理、模型训练方法、装置、计算机设备和存储介质 | |
CN109840322B (zh) | 一种基于强化学习的完形填空型阅读理解分析模型及方法 | |
CN111858954A (zh) | 面向任务的文本生成图像网络模型 | |
CN109886072B (zh) | 基于双向Ladder结构的人脸属性分类系统 | |
CN116431847B (zh) | 基于多重对比和双路对抗的跨模态哈希检索方法及设备 | |
CN112199462A (zh) | 跨模态的数据处理方法、装置、存储介质以及电子装置 | |
CN103778227A (zh) | 从检索图像中筛选有用图像的方法 | |
CN108959522B (zh) | 基于半监督对抗生成网络的迁移检索方法 | |
CN110516530A (zh) | 一种基于非对齐多视图特征增强的图像描述方法 | |
CN108304376A (zh) | 文本向量的确定方法、装置、存储介质及电子装置 | |
CN110458132A (zh) | 一种基于端到端的不定长文本识别方法 | |
CN107273478A (zh) | 一种基于Group Lasso的半监督哈希图像搜索方法 | |
CN116932722A (zh) | 一种基于跨模态数据融合的医学视觉问答方法及系统 | |
CN114329181A (zh) | 一种题目推荐方法、装置及电子设备 | |
CN115690549A (zh) | 一种基于并联交互架构模型实现多维度特征融合的目标检测方法 | |
CN114187506B (zh) | 视点意识的动态路由胶囊网络的遥感图像场景分类方法 | |
US20230072445A1 (en) | Self-supervised video representation learning by exploring spatiotemporal continuity | |
Yuan et al. | Shrec’19 track: Extended 2D scene sketch-based 3D scene retrieval | |
CN114549845A (zh) | 一种基于特征融合的Logo图像检测方法及系统 | |
CN114168773A (zh) | 一种基于伪标签和重排序的半监督草图图像检索方法 | |
CN116595343B (zh) | 基于流形排序学习的在线无监督跨模态检索方法及系统 | |
CN113887501A (zh) | 行为识别方法、装置、存储介质及电子设备 | |
Zhang et al. | A small target detection algorithm based on improved YOLOv5 in aerial image | |
CN113657473A (zh) | 一种基于迁移学习的Web服务分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |