CN107167431A - 一种基于光谱指数模型的黑臭水体识别方法及系统 - Google Patents

一种基于光谱指数模型的黑臭水体识别方法及系统 Download PDF

Info

Publication number
CN107167431A
CN107167431A CN201710385467.6A CN201710385467A CN107167431A CN 107167431 A CN107167431 A CN 107167431A CN 201710385467 A CN201710385467 A CN 201710385467A CN 107167431 A CN107167431 A CN 107167431A
Authority
CN
China
Prior art keywords
remote sensing
image
spectral
panchromatic
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710385467.6A
Other languages
English (en)
Other versions
CN107167431B (zh
Inventor
张兵
申茜
李俊生
张方方
吴艳红
曹红业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CN201710385467.6A priority Critical patent/CN107167431B/zh
Publication of CN107167431A publication Critical patent/CN107167431A/zh
Application granted granted Critical
Publication of CN107167431B publication Critical patent/CN107167431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于光谱指数模型的黑臭水体识别方法及系统,包括:对选取的高空间分辨率遥感图像进行处理,将处理后得到的融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到融合后的遥感反射率图像中,提取融合后的遥感反射率图像中的河流,得到河流遥感图像;获取河流遥感图像中每个像元的蓝、绿、红和近红外波段,依据这些波段和预设的光谱指数模型计算黑臭光谱指数;依据每个像元的光谱指数、预设的第一阈值和第二阈值的关系确定每个像元对应的水体的类别。采用本实施例中的黑臭光谱指数模型,识别出的城市河流的黑臭光谱指数更加准确,并且将河流的水体类别区分为重度黑臭、轻度黑臭和一般水体,对水体的区分更加的细致。

Description

一种基于光谱指数模型的黑臭水体识别方法及系统
技术领域
本发明涉及遥感图像处理领域,尤其涉及一种基于光谱指数模型的黑臭水体识别方法及系统。
背景技术
城市黑臭水体是指城市建设城区内,呈现令人不悦的颜色和/或散发令人不适气味的统称。随着城市化的快速发展,人口密度急剧增加,大量生活污水、工业废水被排放至城市河道中,造成城市水体水质日益恶化,部分水体甚至出现严重的季节性或终年黑臭现象,对城市河流的生态系统带来了很大的压力,对城市居民的健康及日常生活造成危害,对城市景观及城市发展造成恶劣影响。面对十份严峻的水体污染状况,整治黑臭水体、控制和治理城市水体污染已经刻不容缓。
目前,城市黑臭水体的识别主要依靠常规的地面监测方法,然而这种方法需要布设大量的人工监测点位,不仅浪费大量的人力、物力和财力,也无法做到长时间跟踪监测,并且,获得的水环境信息也有很大的局限性。
现有技术中,通常采用卫星遥感技术对城市水系进行监测,但是对于从卫星遥感图像中识别出黑臭水体,目前用到的识别方法准确率不高,而且,对水系黑臭程度的划分也不细致。
发明内容
有鉴于此,本发明实施例提供了一种基于光谱指数模型的黑臭水体识别方法及系统,通过本发明实施例提出的光谱指数模型计算得到的黑臭光谱指数,更加准确,并且,通过确定第一阈值和第二阈值,将水体划分为重度黑臭水体、轻度黑臭水体和一般水体,对水体黑臭程度的划分更加的细致。
本发明实施例提供的一种基于光谱指数模型的黑臭水体识别方法,可以包括:
获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。
可选的,所述预设的规则包括:
所述高空间分辨率遥感图像在预设的云量范围内,并且所述高空间分辨率遥感图像覆盖研究区域的范围。
可选的,对所述高空间分辨率遥感图像进行预处理包括:
采用满足预设时相规则的高几何精度图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到配准后的全色遥感图像和配准后的多光谱遥感图像;
采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到全色遥感反射率图像和多光谱遥感反射率图像。
可选的,所述将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,包括:
依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
可选的,还包括:
从所述融合后的遥感反射率图像中提取出河流水系矢量文件或者掩膜文件。
可选的,所述第一阈值n1=0.4,第二阈值n2=0.8,当H≤0.4时,表示该像元对应的水体为重度黑臭水体;当0.4<H≤0.8时,表示该像元对应的水体为轻度黑臭水体;H>0.8时,表示该像元对应的水体为一般水体。
本发明实施例还提供了一种基于光谱指数模型的黑臭水体识别系统,其特征在于,所述系统可以包括:
获取单元,用于获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
预处理单元,用于对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
融合单元,用于将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
叠加单元,用于将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
计算单元,用于获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
确定单元,用于依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。
可选的,所述预处理单元,包括:
几何精校正子单元,用于采用满足预设时相规则的高几何精度图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
配准子单元,用于将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到配准后的全色遥感图像和配准后的多光谱遥感图像;
辐射定标子单元,用于采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到全色遥感反射率图像和多光谱遥感反射率图像。
可选的,所述融合单元,包括:
融合子单元,用于依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
可选的,还包括:
提取子单元,用于从所述融合后的遥感反射率图像中提取出河流水系矢量文件或者掩膜文件。
本实施例中,识别遥感图像中的黑臭水体时,对选取的高空间分辨率图像中的全色遥感图像和多光谱遥感图像进行预处理和融合后,将融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;并依据每个像元的光谱指数、预设的第一阈值和第二阈值的关系确定每个像元对应的水体的类别。其中,水体的类别包括:重度黑臭水体、轻度黑臭水体和一般水体。因此,采用本实施例中的黑臭光谱指数模型,识别出的城市河流的黑臭光谱指数更加准确,并且,将河流的水体类别区分为重度黑臭水体、轻度黑臭水体和一般水体,对水体的区分更加的细致。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1示出了本发明实施例提供的一种基于光谱指数模型的黑臭水体识别方法的流程示意图;
图2示出了本发明实施例提供的一种基于光谱指数模型的黑臭水体识别方法的另一流程示意图;
图3示出了建模数据的分布数据图;
图4-a示出了重度黑臭水体和轻度黑臭水体光谱指数的示意图;
图4-b示出了轻度黑臭水体和一般水体光谱指数的示意图;
图5-a示出了重度黑臭水体验证图;
图5-b示出了轻度黑臭水体验证图;
图5-c示出了一般水体黑臭验证图;
图6示出了本发明实施例提供的一种基于光谱指数模型的黑臭水体识别系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考图1,示出了本发明实施例提供的一种基于光谱指数模型的黑臭水体识别方法的流程示意图,在本实施例中,所述方法可以包括如下步骤中的S101~S106:
S101:获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
本实施例中,所述预设规则可以包括以下两个方面:
方面一:所述高空间分辨率图像在预设的云量范围内;
方面二:所述高空间分辨率遥感图像覆盖研究区域的范围。
针对于方面一,获取到的高空间分辨率遥感图像的云量较少;针对于方面二:例如,若要研究北京区域的水系,获取到的高空间分辨率图像应该是覆盖北京区域水系的图像。
本实施例中,对于获取符合预设规则的高空间分辨率遥感图像,可能需要在大量的高空间分辨率图像中进行筛选,筛选的过程可以是人为手动筛选的,也可以是自动筛选的。
S102:对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
本实施例中,对高空间分辨率遥感图像进行预处理可以包括:对高空间分辨率遥感图像进行几何精校正、配准以及辐射定标处理,具体的如图2提供的一种基于光谱指数模型的黑臭水体识别方法的另一流程图所示,可以包括如下的步骤中的S201~S203:
S201:采用满足预设时相规则的高几何精度的图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
本实施例中,遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的图像,造成目标发生几何畸变,因此,在对图像中的黑臭水体进行识别之前,可以先对全色遥感图像和多光谱遥感图像进行几何精校正。
本实施例中,满足预设时相规则的高几何精度图像,即与全色遥感图像和多光谱遥感图像时相相近的高几何精度图像,具体的,可以理解为,与全色遥感图像和多光谱遥感图像拍摄的时间较为相近的,保证高几何精度图像中的地理坐标和全色遥感图像与多光谱遥感图像的地理坐标一致。
其中,例如,高几何精度图像可以为满足预设时相规则的Landsat图像。
本实施例中,可以在ENVI(英文全称:The Environment for VisualizingImages,中文全称:图像可视化环境)处理平台中对全色遥感图像和多光谱遥感图像进行几何精校正。
S202:将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到准配后的全色遥感图像和配准后的多光谱遥感图像;
本实施例中,为了之后的步骤中,全色遥感图像和校正过的多光谱遥感图像可以更好的融合,可以先将这两个图像进行配准。
S203:采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到预处理后的全色遥感反射率图像和预处理后的多光谱遥感反射率图像。
本实施例中,采用的预设的辐射定标系数可以为中国资源卫星应用中心官网公布的最新的辐射定标系数。
S103:将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
本实施例中,具体的,S103可以包括:
依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
S104:将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
本实施例中,河流水系矢量文件或者掩膜文件可以是预先设置的,也可以是从融合后的遥感反射率图像中提取出来的。对于预先设置的河流水系矢量文件或者掩膜文件,可以是预先从其它的遥感反射率图像中提取出来的。
其中,河流水系矢量文件或者掩膜文件均标明了河流在城市中的位置坐标。
S105:获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算所述每个像元的黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
本实施例中,对光谱指数模型建模时采用的数据范围比较广,例如可以包括:长春、沈阳、北京、常州、无锡和杭州这些区域中取得的光谱数据,共计209个采样点数据,实际点位分布如图3所示。
本实施例中,采用更为广泛的数据进行光谱指数模型的建模,如此,光谱指数模型的通用性更强。
本实施例中,计算河流遥感图像中每个像元的蓝、绿、红和近红外波段,可以是,按照一定的顺序,依次计算每个像元的蓝、绿、红和近红外波段;也可以是随机的计算每个像元的蓝、绿、红和近红外波段;或者还可以是同时计算每一个像元的蓝、绿、红和近红外波段。
S106:依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。
本实施例中,对于第一阈值n1和第二阈值n2的确定,可以采用图3中的城市数据,并从中选取75%的样本(其中重度黑臭:73个;轻度黑臭:23个;一般水体:60个)进行阈值的确定,然后采用25%样本(重度黑臭:25个;轻度黑臭:8个;一般水体:20个)进行精度验证。
如图4-a和图4-b所示,分别为建模数据计算出的光谱指数H,可以通过这些指数值,确定第一阈值和第二阈值;例如第一阈值可以为n1=0.4,第二阈值可以为n2=0.8,
故,
其中,重度黑臭可以表示水体的黑臭程度较重,轻度黑臭可以表示水体黑臭的程度较轻,一般水体可以表示正常的水体。
对确定的第一阈值和第二阈值进行验证时,如图5-a为重度黑臭水体验证图、5-b为轻度黑臭水体验证图、5-c为一般水体黑臭验证图所示;
从图中可以看出,重度黑臭水体有5个样本误判,识别正确率为80.0%;轻度黑臭水体有3个样本被误判,识别正确率为62.5%;一般水体有1个点位误判,一般水体的识别正确率为85.0%。
本实施例中,识别遥感图像中的黑臭水体时,对选取的高空间分辨率图像中的全色遥感图像和多光谱遥感图像进行预处理和融合后,将融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数H;依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。因此,采用本实施例中的黑臭光谱指数模型,识别出的城市河流的黑臭光谱指数更加准确,并且,将河流的水体类别区分为重度黑臭水体、轻度黑臭水体和一般水体,这样对水体的区分更加的细致。
参考图6,示出了本发明实施例提供的一种基于光谱指数模型的黑臭水体识别系统的结构示意图,其特征在于,所述系统可以包括:
获取单元601,用于获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
预处理单元602,用于对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
融合单元603,用于将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
叠加单元604,用于将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
计算单元605,用于获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
确定单元606,用于依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭、轻度黑臭和一般水体。
可选的,所述预设的规则包括:
所述高空间分辨率遥感图像在预设的云量范围内,并且所述高空间分辨率遥感图像覆盖研究区域的范围。
可选的,所述预处理单元,包括:
几何精校正子单元,用于采用满足预设时相规则的高几何精度图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
配准子单元,用于将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到配准后的全色遥感图像和配准后的多光谱遥感图像;
辐射定标子单元,用于采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到全色遥感反射率图像和多光谱遥感反射率图像。
可选的,所述融合单元,包括:
融合子单元,用于依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
可选的,还包括:
提取子单元,用于从所述融合后的遥感反射率图像中提取出河流水系矢量文件或者掩膜文件。
可选的,所述第一阈值n1=0.4,第二阈值n2=0.8,当H≤0.4时,表示该像元对应的水体为重度黑臭水体;当0.4<H≤0.8时,表示该像元对应的水体为轻度黑臭水体;H>0.8时,表示该像元对应的水体为一般水体。
通过本实施例提供的系统,识别遥感图像中的黑臭水体时,对选取的高空间分辨率图像中的全色遥感图像和多光谱遥感图像进行预处理和融合后,将融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数H;依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。因此,采用本实施例中的黑臭光谱指数模型,识别出的城市河流的黑臭光谱指数更加准确,并且,将河流的水体类别区分为重度黑臭、轻度黑臭和一般水体,对水体的区分更加的细致。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种基于光谱指数模型的黑臭水体识别方法,其特征在于,所述方法包括:
获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。
2.根据权利要求1所述的方法,其特征在于,所述预设的规则包括:
所述高空间分辨率遥感图像在预设的云量范围内,并且所述高空间分辨率遥感图像覆盖研究区域的范围。
3.根据权利要求1所述的方法,其特征在于,对所述高空间分辨率遥感图像进行预处理包括:
采用满足预设时相规则的高几何精度图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到配准后的全色遥感图像和配准后的多光谱遥感图像;
采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到全色遥感反射率图像和多光谱遥感反射率图像。
4.根据权利要求3所述的方法,其特征在于,所述将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,包括:
依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
5.根据权利要求1所述的方法,其特征在于,还包括:
从所述融合后的遥感反射率图像中提取出河流水系矢量文件或者掩膜文件。
6.根据权利要求1所述的方法,其特征在于,所述第一阈值n1=0.4,第二阈值n2=0.8,当H≤0.4时,表示该像元对应的水体为重度黑臭水体;当0.4<H≤0.8时,表示该像元对应的水体为轻度黑臭水体;H>0.8时,表示该像元对应的水体为一般水体。
7.一种基于光谱指数模型的黑臭水体识别系统,其特征在于,所述系统可以包括:
获取单元,用于获取符合预设规则的高空间分辨率遥感图像;所述高空间分辨率遥感图像包括:全色遥感图像和多光谱遥感图像;
预处理单元,用于对所述高空间分辨率遥感图像进行预处理,得到遥感反射率图像;所述遥感反射率图像包括:全色遥感反射率图像和多光谱遥感反射率图像;
融合单元,用于将所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合,得到融合后的遥感反射率图像;
叠加单元,用于将所述融合后的遥感反射率图像对应的河流水系矢量文件或者掩膜文件叠加到所述融合后的遥感反射率图像中,提取出所述融合后的遥感反射率图像中的河流,得到河流遥感图像;
计算单元,用于获取所述河流遥感图像中每个像元的蓝、绿、红和近红外波段,并依据所述波段和预设的光谱指数模型计算黑臭光谱指数;
光谱指数模型:
其中,b1为蓝光波段、b2为绿光波段、b3为红光波段和b4为近红外波段;
确定单元,用于依据每个像元的光谱指数H、预设的第一阈值n1和第二阈值n2的关系,确定所述每个像元对应的水体的类别;所述类别包括:重度黑臭水体、轻度黑臭水体和一般水体。
8.根据权利要求7所述的系统,其特征在于,所述预处理单元,包括:
几何精校正子单元,用于采用满足预设时相规则的高几何精度图像对所述全色遥感图像和多光谱遥感图像进行几何精校正,得到校正过的全色遥感图像和校正过的多光谱遥感图像;
配准子单元,用于将校正过的全色遥感图像和校正过的多光谱遥感图像进行配准,得到配准后的全色遥感图像和配准后的多光谱遥感图像;
辐射定标子单元,用于采用预设的辐射定标系数对配准后的全色遥感图像和配准后的多光谱遥感图像进行辐射定标处理,得到全色遥感反射率图像和多光谱遥感反射率图像。
9.根据权利要求8所述的系统,其特征在于,所述融合单元,包括:
融合子单元,用于依据Gram-Schmidt正交化算法对所述全色遥感反射率图像和所述多光谱遥感反射率图像进行融合。
10.根据权利要求7所述的系统,其特征在于,还包括:
提取子单元,用于从所述融合后的遥感反射率图像中提取出河流水系矢量文件或者掩膜文件。
CN201710385467.6A 2017-05-26 2017-05-26 一种基于光谱指数模型的黑臭水体识别方法及系统 Active CN107167431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710385467.6A CN107167431B (zh) 2017-05-26 2017-05-26 一种基于光谱指数模型的黑臭水体识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710385467.6A CN107167431B (zh) 2017-05-26 2017-05-26 一种基于光谱指数模型的黑臭水体识别方法及系统

Publications (2)

Publication Number Publication Date
CN107167431A true CN107167431A (zh) 2017-09-15
CN107167431B CN107167431B (zh) 2019-07-05

Family

ID=59820820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710385467.6A Active CN107167431B (zh) 2017-05-26 2017-05-26 一种基于光谱指数模型的黑臭水体识别方法及系统

Country Status (1)

Country Link
CN (1) CN107167431B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333148A (zh) * 2018-01-11 2018-07-27 中国科学院遥感与数字地球研究所 一种黑臭水体的识别方法及装置
CN109374537A (zh) * 2018-09-30 2019-02-22 中国科学院遥感与数字地球研究所 城市黑臭水体识别方法及装置
CN109508641A (zh) * 2018-10-15 2019-03-22 广州地理研究所 一种城市水体的识别方法、装置、储存介质及设备
CN109948482A (zh) * 2019-03-07 2019-06-28 中山市信息技术研究所 一种黑臭水体图像提取与识别方法
CN110688909A (zh) * 2019-09-05 2020-01-14 南京有春科技有限公司 城市黑臭水体的识别方法、装置、设备以及存储介质
CN110849821A (zh) * 2019-11-12 2020-02-28 北华航天工业学院 基于贝叶斯定理的黑臭水体遥感识别方法
CN110987955A (zh) * 2019-12-05 2020-04-10 南京师范大学 一种基于决策树的城市黑臭水体分级方法
CN110987825A (zh) * 2019-12-05 2020-04-10 南京师范大学 一种基于光谱匹配的城市黑臭水体分级方法
CN111272662A (zh) * 2019-11-18 2020-06-12 深圳市深水水务咨询有限公司 一种基于遥感光谱的城市黑臭水体识别方法
CN111339989A (zh) * 2020-03-12 2020-06-26 北京观澜智图科技有限公司 一种水体提取方法、装置、设备及存储介质
CN111426637A (zh) * 2020-04-16 2020-07-17 江苏省环境监测中心 一种利用无人机获取城市黑臭河流水质参数的方法
CN112147078A (zh) * 2020-09-22 2020-12-29 华中农业大学 一种农作物表型信息多源遥感监测方法
CN113436193A (zh) * 2021-08-26 2021-09-24 航天宏图信息技术股份有限公司 一种城市黑臭水体监测方法和装置
CN113780071A (zh) * 2021-07-30 2021-12-10 中南安全环境技术研究院股份有限公司 一种黑臭水体遥感识别系统及方法
CN114018338A (zh) * 2021-11-17 2022-02-08 天津市水利科学研究院 基于光谱指数模型的水体识别系统
CN114298562A (zh) * 2021-12-29 2022-04-08 神彩科技股份有限公司 水环境监测预警方法、装置、计算机设备、存储介质
CN115170947A (zh) * 2022-05-12 2022-10-11 广东省科学院广州地理研究所 基于遥感图像的河口浑浊带与水体分类方法、装置及设备
CN116309663A (zh) * 2023-02-02 2023-06-23 山东产研卫星信息技术产业研究院有限公司 一种基于高分2号影像的城市黑臭水体提取方法
CN113450425B (zh) * 2021-06-08 2023-07-28 河海大学 一种基于阴影去除的城市黑臭水体遥感制图方法
CN117233102A (zh) * 2023-11-15 2023-12-15 广东泓禹生态环境科技有限公司 一种基于大数据分析的水环境监测处理方法和系统
CN118015487B (zh) * 2024-03-26 2024-06-07 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种基于河网密集型区域的黑臭水体全面排查方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101239A1 (en) * 2008-05-08 2011-05-05 Iain Woodhouse Remote sensing system
CN103592234A (zh) * 2013-11-18 2014-02-19 苏州科技学院 一种评价景观水体表观质量的方法
CN104361602A (zh) * 2014-11-26 2015-02-18 中国科学院遥感与数字地球研究所 一种基于modis图像的水体颜色检测方法及装置
CN105046087A (zh) * 2015-08-04 2015-11-11 中国资源卫星应用中心 一种遥感卫星多光谱影像的水体信息自动提取方法
CN105488488A (zh) * 2015-12-10 2016-04-13 中国科学院遥感与数字地球研究所 城市黑臭水体遥感识别方法及装置
CN106650812A (zh) * 2016-12-27 2017-05-10 辽宁工程技术大学 一种卫星遥感影像的城市水体提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101239A1 (en) * 2008-05-08 2011-05-05 Iain Woodhouse Remote sensing system
CN103592234A (zh) * 2013-11-18 2014-02-19 苏州科技学院 一种评价景观水体表观质量的方法
CN104361602A (zh) * 2014-11-26 2015-02-18 中国科学院遥感与数字地球研究所 一种基于modis图像的水体颜色检测方法及装置
CN105046087A (zh) * 2015-08-04 2015-11-11 中国资源卫星应用中心 一种遥感卫星多光谱影像的水体信息自动提取方法
CN105488488A (zh) * 2015-12-10 2016-04-13 中国科学院遥感与数字地球研究所 城市黑臭水体遥感识别方法及装置
CN106650812A (zh) * 2016-12-27 2017-05-10 辽宁工程技术大学 一种卫星遥感影像的城市水体提取方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333148A (zh) * 2018-01-11 2018-07-27 中国科学院遥感与数字地球研究所 一种黑臭水体的识别方法及装置
CN109374537A (zh) * 2018-09-30 2019-02-22 中国科学院遥感与数字地球研究所 城市黑臭水体识别方法及装置
CN109508641A (zh) * 2018-10-15 2019-03-22 广州地理研究所 一种城市水体的识别方法、装置、储存介质及设备
CN109948482A (zh) * 2019-03-07 2019-06-28 中山市信息技术研究所 一种黑臭水体图像提取与识别方法
CN110688909A (zh) * 2019-09-05 2020-01-14 南京有春科技有限公司 城市黑臭水体的识别方法、装置、设备以及存储介质
CN110849821A (zh) * 2019-11-12 2020-02-28 北华航天工业学院 基于贝叶斯定理的黑臭水体遥感识别方法
CN111272662A (zh) * 2019-11-18 2020-06-12 深圳市深水水务咨询有限公司 一种基于遥感光谱的城市黑臭水体识别方法
CN111272662B (zh) * 2019-11-18 2022-07-26 深圳市深水水务咨询有限公司 一种基于遥感光谱的城市黑臭水体识别方法
CN110987955A (zh) * 2019-12-05 2020-04-10 南京师范大学 一种基于决策树的城市黑臭水体分级方法
CN110987825A (zh) * 2019-12-05 2020-04-10 南京师范大学 一种基于光谱匹配的城市黑臭水体分级方法
CN111339989A (zh) * 2020-03-12 2020-06-26 北京观澜智图科技有限公司 一种水体提取方法、装置、设备及存储介质
CN111339989B (zh) * 2020-03-12 2024-03-19 北京观澜智图科技有限公司 一种水体提取方法、装置、设备及存储介质
CN111426637A (zh) * 2020-04-16 2020-07-17 江苏省环境监测中心 一种利用无人机获取城市黑臭河流水质参数的方法
CN112147078A (zh) * 2020-09-22 2020-12-29 华中农业大学 一种农作物表型信息多源遥感监测方法
CN112147078B (zh) * 2020-09-22 2022-01-18 华中农业大学 一种农作物表型信息多源遥感监测方法
CN113450425B (zh) * 2021-06-08 2023-07-28 河海大学 一种基于阴影去除的城市黑臭水体遥感制图方法
CN113780071A (zh) * 2021-07-30 2021-12-10 中南安全环境技术研究院股份有限公司 一种黑臭水体遥感识别系统及方法
CN113780071B (zh) * 2021-07-30 2024-01-30 中南安全环境技术研究院股份有限公司 一种黑臭水体遥感识别系统及方法
CN113436193B (zh) * 2021-08-26 2021-11-30 航天宏图信息技术股份有限公司 一种城市黑臭水体监测方法和装置
CN113436193A (zh) * 2021-08-26 2021-09-24 航天宏图信息技术股份有限公司 一种城市黑臭水体监测方法和装置
CN114018338A (zh) * 2021-11-17 2022-02-08 天津市水利科学研究院 基于光谱指数模型的水体识别系统
CN114018338B (zh) * 2021-11-17 2023-08-22 天津市水利科学研究院 基于光谱指数模型的水体识别系统
CN114298562A (zh) * 2021-12-29 2022-04-08 神彩科技股份有限公司 水环境监测预警方法、装置、计算机设备、存储介质
CN115170947A (zh) * 2022-05-12 2022-10-11 广东省科学院广州地理研究所 基于遥感图像的河口浑浊带与水体分类方法、装置及设备
CN116309663A (zh) * 2023-02-02 2023-06-23 山东产研卫星信息技术产业研究院有限公司 一种基于高分2号影像的城市黑臭水体提取方法
CN117233102A (zh) * 2023-11-15 2023-12-15 广东泓禹生态环境科技有限公司 一种基于大数据分析的水环境监测处理方法和系统
CN117233102B (zh) * 2023-11-15 2024-01-26 广东泓禹生态环境科技有限公司 一种基于大数据分析的水环境监测处理方法和系统
CN118015487B (zh) * 2024-03-26 2024-06-07 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种基于河网密集型区域的黑臭水体全面排查方法及系统

Also Published As

Publication number Publication date
CN107167431B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN107167431B (zh) 一种基于光谱指数模型的黑臭水体识别方法及系统
CN108333148B (zh) 一种黑臭水体的识别方法及装置
CN111898543B (zh) 一种融合几何感知与图像理解的建筑物自动提取方法
Jia et al. Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data
CN103714339B (zh) 基于矢量数据的sar影像道路损毁信息提取方法
Skidmore Accuracy assessment of spatial information
CN108804394A (zh) 一种城市夜光总量-城镇人口回归模型的构建方法
CN108550174A (zh) 一种基于半全局优化的海岸线超分辨率制图方法及系统
Im et al. An automated binary change detection model using a calibration approach
Yang et al. Impervious surface extraction in urban areas from high spatial resolution imagery using linear spectral unmixing
CN111426637A (zh) 一种利用无人机获取城市黑臭河流水质参数的方法
Zang et al. Road network extraction via aperiodic directional structure measurement
CN111597930A (zh) 一种基于遥感云平台的海岸线提取方法
CN108898070A (zh) 一种基于无人机平台的高光谱遥感提取薇甘菊装置及方法
CN105869168A (zh) 基于多项式拟合的多源遥感图像形状配准方法
CN110456904A (zh) 一种无需标定的增强现实眼镜眼动交互方法及系统
CN112906455A (zh) 一种海岸带生态系统遥感识别方法
CN114596495A (zh) 一种基于Sentinel-2A遥感影像溜砂坡判识与自动提取方法
CN106650749B (zh) 一种高分辨率光学影像中直角建筑物的标绘方法
Bai et al. Quantifying tree cover in the forest–grassland ecotone of British Columbia using crown delineation and pattern detection
CN114112906A (zh) 一种基于无人机低空遥感和局部地形的水体特征提取系统
Zhang et al. Building footprint and height information extraction from airborne LiDAR and aerial imagery
CN111882573B (zh) 一种基于高分辨率影像数据的耕地地块提取方法及系统
Deng et al. Mapping bathymetry from multi-source remote sensing images: A case study in the Beilun Estuary, Guangxi, China
Guan et al. A novel remote sensing method to determine reservoir characteristic curves using high-resolution data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant