CN107161943B - 一种基于微纳光纤的空气环境光力驱动微纳马达系统 - Google Patents

一种基于微纳光纤的空气环境光力驱动微纳马达系统 Download PDF

Info

Publication number
CN107161943B
CN107161943B CN201710300107.1A CN201710300107A CN107161943B CN 107161943 B CN107161943 B CN 107161943B CN 201710300107 A CN201710300107 A CN 201710300107A CN 107161943 B CN107161943 B CN 107161943B
Authority
CN
China
Prior art keywords
micro
nano
fiber
luminous power
nano fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710300107.1A
Other languages
English (en)
Other versions
CN107161943A (zh
Inventor
卢锦胜
李强
仇旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710300107.1A priority Critical patent/CN107161943B/zh
Publication of CN107161943A publication Critical patent/CN107161943A/zh
Application granted granted Critical
Publication of CN107161943B publication Critical patent/CN107161943B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/008Aspects related to assembling from individually processed components, not covered by groups B81C3/001 - B81C3/002

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

本发明公开一种基于微纳光纤的空气环境光力驱动微纳马达系统,包括至少一光纤支撑台,所述光纤支撑台悬空搭载有兼作定子的微纳光纤,非对称放置在微纳光纤上且兼作转子的微米金属片;在所述的微纳光纤内通入激光,驱动微米金属片绕微纳光纤旋转。本发明利用光力驱动微纳结构,以微纳光纤作为定子,以微米金属片为转子,提出基于微纳光纤的空气环境光力驱动微纳马达系统,能在空气中实现光力驱动微米金片绕光纤旋转运动。

Description

一种基于微纳光纤的空气环境光力驱动微纳马达系统
技术领域
本发明涉及光力驱动领域,具体涉及一种基于微纳光纤的空气环境光力驱动微纳马达系统。
背景技术
微纳马达是指在外界化学能、电能、光能、热能、磁能等能量输入下,微纳米级的器件能够产生运动,包括转动、平移、收缩等。微纳马达在未来的微纳机械、临床生物、环境治理等领域具有广泛的应用。
在人造微纳马达领域的开创工作为Whitesides在《Angewandte ChemieInternational Edition》(应用化学期刊)2002,41:4上发表的“Autonomous Movement andSelf-Assembly”(自主运动和自组装),以及Sen和Mallouk在《Journal of the AmericanChemical Society》(美国化学学会杂志)2004,126:41上发表的“Catalytic Nanomotors:Autonomous Movement of Striped Nanorods”(催化型微纳马达:条纹纳米棒的自主运动)。前者是过氧化物为燃料的柱状微纳马达,后者为双金属(Pt-Au)或金属-绝缘体(Pt-SiO2)微纳马达,两者都是通过Pt金属催化过氧化氢将化学能转换为马达运动的机械能。此后微纳马达的驱动能量以及结构材料都呈现多样化发展。驱动方式包括:以HCl、N2H4、I2等为燃料驱动、以紫外光和红外光的光驱动、以直流电或交流电为能源的电驱动、以及超声波驱动、磁场驱动等。而微纳马达的结构则包括:Janus球、齿轮状、螺旋线等。
然而,这些微纳马达都是在溶液中实现的。主要原因是在空气环境中,微纳结构小尺寸效应,短程吸引力如范德瓦耳斯作用力非常大,驱动力难以使微纳物体运动,而溶液环境中这种短程吸引力会大大减弱。
发明内容
本发明针对现有技术的不足,提供一种基于微纳光纤的空气环境光力驱动微纳马达系统,即利用非常细的微纳光纤作为定子,微米金属片作为转子,向微纳光纤中通入激光,即可在空气中用光力驱动微米金属片绕微纳光纤旋转运动。
本发明具体是通过以下技术方案实现的:
一种基于微纳光纤的空气环境光力驱动微纳马达系统,包括至少一光纤支撑台,所述光纤支撑台悬空搭载有兼作定子的微纳光纤,非对称放置在微纳光纤上且兼作转子的微米金属片;
在所述的微纳光纤内通入激光,驱动微米金属片绕微纳光纤旋转。
在空气环境中,将微纳光纤搭载在光纤支撑台上,然后将微米金属片放置在光纤上,放置时微米金属片与光纤要非对称。微米金属片和微纳光纤间的短程吸引力使得微米金属片不会脱离微纳光纤。向微纳光纤中通入激光,即可驱动微米金属片绕光纤旋转,通过改变激光的功率,可以改变金属片旋转的速度。
所述的微纳光纤是由单模光纤拉细制成,其形状可以是均匀拉细的或者拉锥状的,直径为亚微米量级。
优选的,所述的微纳光纤呈U型,两端搭设在同一光纤支撑台上,所述微米金属片放置在微纳光纤的中部;或者并列优选的,所述的光纤支撑台为间隔设置的两个,微纳光纤的两端分别搭设在两光纤支撑台上。
本发明中,光纤支撑台可以是任意材料和任意形状的,微纳光纤搭载的方式可以是光纤两端分别搭载在不同的光纤支撑台上,也可以是光纤两端搭载在同一个支撑台上,其最终目的是使得微纳光纤悬空。
所述的微米金属片可以是六边形,三角形,材料可以是金或银。金和银能够通过化学方法合成出这种微米级的片子,而且金和银稳定性,抗氧化性,耐腐蚀性都比较优越。
所述的激光光源,可以是宽谱光源,包括超连续激光;或者是单波长脉冲激光光源,包括纳秒脉冲激光、皮秒脉冲激光和飞秒脉冲激光。
所述的微米金属片与微纳光纤的非对称,是指微米金属片的中心对称轴与微纳光纤轴不重合(或者相交),有一定的偏移。非对称的目的是使微米金属片受到的光致力不平衡,从而能驱动金属片旋转。
微米金属片旋转的原理简述如下:在微纳光纤中通入激光后,微纳光纤外部由于光纤直径很小因而有很强的倏逝场,与置于微纳光纤上的微米金片作用,从而产生驱动力,其中驱动力产生有三种方式:其一是光被金属片散射和吸收从而产生光力;其二是金属片吸收光产生热,由于受热不均匀,形成温度梯度,产生光热力;其三是当激光功率(平均或者瞬时功率)很高时,金属片会喷发电子或者原子,也能产生驱动力。当金属片在微纳光纤上有偏移时,这些力的不平衡驱动金属片绕微纳光纤旋转。
本发明具有的有益效果是:本发明利用光力驱动微纳结构,以微纳光纤作为定子,以微米金属片为转子,提出基于微纳光纤的空气环境光力驱动微纳马达系统,能在空气中实现光力驱动微米金片绕光纤旋转运动。系统简单紧凑,装置制备的方法简易,操作简便。该系统在微纳机械、光能机械能转换等领域很有应用价值。
附图说明
图1为微纳光纤两端搭载不同支撑台的空气环境光力驱动微纳马达系统的结构示意图;
图2为微纳光纤两端搭载同一支撑台的空气环境光力驱动微纳马达系统的结构示意图。
1.微纳光纤,2.微米金属片,3.光纤支撑台,4.激光,5.衬底。
具体实施方式
如图1所示,本发明将拉细的微纳光纤1搭载在两个不同的光纤支撑台3上,或者将其搭载在同一光纤支撑台3上,使得微纳光纤1中部悬于空气中。光纤支撑台3放置在衬底5上,将微米金属片2放置在微纳光纤1上,并使得微米金属片2的中心对称轴适当与微纳光纤1偏移。向微纳光纤1中通入激光4,即可在空气中实现光力驱动微米金属片2绕微纳光纤1旋转运动。下面结合实施例来详细说明本发明,但本发明并不仅限于此。
用直径约为1微米的拉细光纤以图2的方式搭载在玻璃载波片上,通过光纤探针将衬底上的六边形微米金片挑到光纤上,使微米金片中心对称轴与光纤轴偏移1微米。其中,金片边长约为6微米,厚度约为30纳米,通过化学方法合成。向光纤中通入功率约为10毫瓦的超连续激光,即可驱动微米金片绕光纤旋转运动,旋转速度最高可达600转/分钟。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发明精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于微纳光纤的空气环境光力驱动微纳马达系统,其特征在于:包括至少一光纤支撑台,所述光纤支撑台悬空搭载有兼作定子的微纳光纤,非对称放置在微纳光纤上且兼作转子的微米金属片;所述的非对称是指微米金属片的中心对称轴偏移微纳光纤轴;
在所述的微纳光纤内通入激光,驱动微米金属片绕微纳光纤旋转。
2.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:微纳光纤由单模光纤拉细制成。
3.如权利要求2所述的空气环境光力驱动微纳马达系统,其特征在于:所述微纳光纤由单模光纤均匀拉细制成,或者所述的微纳光纤是由单模光纤拉锥状制成的。
4.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:所述的微纳光纤呈U型,两端搭设在同一光纤支撑台上,所述微米金属片放置在微纳光纤的中部。
5.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:所述的光纤支撑台为间隔设置的两个,微纳光纤的两端分别搭设在两光纤支撑台上。
6.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:所述的微米金属片为六边形或三角形,材料为金或银。
7.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:所述激光的光源是宽谱光源或单波长脉冲激光光源。
8.如权利要求1所述的空气环境光力驱动微纳马达系统,其特征在于:所述激光的光源为超连续激光、纳秒脉冲激光、皮秒脉冲激光和飞秒脉冲激光中的一种。
CN201710300107.1A 2017-04-28 2017-04-28 一种基于微纳光纤的空气环境光力驱动微纳马达系统 Expired - Fee Related CN107161943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710300107.1A CN107161943B (zh) 2017-04-28 2017-04-28 一种基于微纳光纤的空气环境光力驱动微纳马达系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710300107.1A CN107161943B (zh) 2017-04-28 2017-04-28 一种基于微纳光纤的空气环境光力驱动微纳马达系统

Publications (2)

Publication Number Publication Date
CN107161943A CN107161943A (zh) 2017-09-15
CN107161943B true CN107161943B (zh) 2019-05-31

Family

ID=59812661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710300107.1A Expired - Fee Related CN107161943B (zh) 2017-04-28 2017-04-28 一种基于微纳光纤的空气环境光力驱动微纳马达系统

Country Status (1)

Country Link
CN (1) CN107161943B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107758608B (zh) * 2017-10-13 2019-10-08 济南大学 一种可精确调控的微马达一步制备方法
CN108267815B (zh) * 2018-02-09 2019-12-13 哈尔滨工业大学 基于波导与谐振腔耦合的微纳光学马达及其驱动方法
CN112684539B (zh) * 2021-01-13 2022-11-29 上海理工大学 使用光力效应控制金属纳米线移动的方法及光子集成系统
CN113050219B (zh) * 2021-02-19 2022-11-04 西湖大学 基于光-机械相互作用的主动式片上调制器及调控方法
CN114442227A (zh) * 2022-01-28 2022-05-06 西湖大学 一种基于微纳光纤的真空环境光驱动系统及光驱动方法
CN117419791B (zh) * 2023-12-19 2024-05-10 浙江大学 基于微纳光纤微弱力传感器的质量测量装置和制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170773A (ja) * 1993-12-15 1995-07-04 Nikon Corp 正逆回転可能な光駆動モータ
KR20050030332A (ko) * 2003-09-25 2005-03-30 광주과학기술원 기계적 파장가변 광섬유 장주기격자 제작방법
CN102183820A (zh) * 2011-05-04 2011-09-14 哈尔滨工程大学 双向弯曲表面芯光纤微小粒子旋转器
CN102231292A (zh) * 2011-05-04 2011-11-02 哈尔滨工程大学 双向锥体光纤微小粒子旋转器
CN105197870A (zh) * 2015-09-30 2015-12-30 西交利物浦大学 自旋极化电流驱动的亚微米/纳米马达及其制作方法
CN106276774A (zh) * 2015-06-09 2017-01-04 国家纳米科学中心 一种高效碳基风力纳米发电机及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147654A1 (en) * 2008-06-02 2009-12-10 Maradin Technologies Ltd. Gimbaled scanning micro-mirror apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170773A (ja) * 1993-12-15 1995-07-04 Nikon Corp 正逆回転可能な光駆動モータ
KR20050030332A (ko) * 2003-09-25 2005-03-30 광주과학기술원 기계적 파장가변 광섬유 장주기격자 제작방법
CN102183820A (zh) * 2011-05-04 2011-09-14 哈尔滨工程大学 双向弯曲表面芯光纤微小粒子旋转器
CN102231292A (zh) * 2011-05-04 2011-11-02 哈尔滨工程大学 双向锥体光纤微小粒子旋转器
CN106276774A (zh) * 2015-06-09 2017-01-04 国家纳米科学中心 一种高效碳基风力纳米发电机及其制备方法
CN105197870A (zh) * 2015-09-30 2015-12-30 西交利物浦大学 自旋极化电流驱动的亚微米/纳米马达及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force;Jinsheng Lu et al.;《PHYSICAL REVIEW LETTERS》;20170127;第043601-1页右栏最后一段第-043601-4页左栏第1段以及图1

Also Published As

Publication number Publication date
CN107161943A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107161943B (zh) 一种基于微纳光纤的空气环境光力驱动微纳马达系统
Zhang et al. Spiropyran-decorated SiO2–Pt Janus micromotor: Preparation and light-induced dynamic self-assembly and disassembly
Chen et al. Heat-mediated optical manipulation
Guo et al. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices
Xu et al. Light-driven micro/nanomotors: from fundamentals to applications
Dong et al. Highly efficient light-driven TiO2–Au Janus micromotors
Farrer et al. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles
Stamatopoulos et al. Droplet self-propulsion on superhydrophobic microtracks
Lim et al. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers
Aguirre et al. Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination
Liz-Marzán et al. Nanoplasmonics
Du et al. Motor and rotor in one: Light-active ZnO/Au twinned rods of tunable motion modes
Hirakawa et al. Photoinduced electron storage and surface plasmon modulation in Ag@ TiO2 clusters
Wu et al. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets
US20170175720A1 (en) Nanomotor Propulsion
Xie et al. The synthesis of SERS-active gold nanoflower tags for in vivo applications
Geddes et al. Luminescent blinking from silver nanostructures
Chen et al. Instabilities in nanoporous media
Liu et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation
Ilic et al. Exploiting optical asymmetry for controlled guiding of particles with light
Fan et al. Hotspots on the move: Active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing
Liao et al. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering
Liu et al. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus
Huang et al. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance
Gibbs Shape-and material-dependent self-propulsion of photocatalytic active colloids, interfacial effects, and dynamic interparticle interactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190531

Termination date: 20200428