CN107151276B - 从海洋生物质中提取甲壳素纳米微纤的方法 - Google Patents

从海洋生物质中提取甲壳素纳米微纤的方法 Download PDF

Info

Publication number
CN107151276B
CN107151276B CN201710491126.7A CN201710491126A CN107151276B CN 107151276 B CN107151276 B CN 107151276B CN 201710491126 A CN201710491126 A CN 201710491126A CN 107151276 B CN107151276 B CN 107151276B
Authority
CN
China
Prior art keywords
chitin
thick
ball milling
suspension
nanometer fento
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710491126.7A
Other languages
English (en)
Other versions
CN107151276A (zh
Inventor
林宁
李乐
姚振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710491126.7A priority Critical patent/CN107151276B/zh
Publication of CN107151276A publication Critical patent/CN107151276A/zh
Application granted granted Critical
Publication of CN107151276B publication Critical patent/CN107151276B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种从海洋生物质中提取甲壳素纳米微纤的方法。以海洋生物质为原料制得粗甲壳素;将所得粗甲壳素与正辛醇或乙二胺室温下搅拌1~3天,过滤水洗,配成粗甲壳素水基悬浮液;将所得粗甲壳素水基悬浮液放置行星式球磨机上进行球磨,转速均控制为100~400转每分钟;将球磨后的悬浮液放入捣碎机中,室温下进行捣碎处理10~30分钟;将捣碎后的悬浮液用140目的滤布过滤,除去残存的大颗粒物质,得到滤液即为制备的甲壳素纳米微纤悬浮液。本发明的制备工艺相对简便,具有常温常压、制备过程环保无毒害、能耗相对较低、无需大型昂贵设备产率高(80‑90%)、产品质量稳定的优势。

Description

从海洋生物质中提取甲壳素纳米微纤的方法
技术领域
本发明属于生物高分子邻域,涉及一种甲壳素纳米微纤的新型制备方法。
背景技术
甲壳素是一种可再生、可生物降解、价廉易得的环境友好型天然高分子,在自然界中含量丰富。甲壳素有α和β两种晶型结构,虾壳14%-25%的α-甲壳素,蟹壳含有15%-20%的α-甲壳素,乌贼骨含有30%的β-甲壳素,从甲壳素中提取的甲壳素纳米微纤长度为1-30μm,直径在5-100nm之间。甲壳素纳米微纤以其优异的力学性能(较高的杨氏模量、断裂强度以及较低的热膨胀性等),良好的生物相容性、生物可降解性、可再生性和持续性,不仅广泛应用于复合材料中的增强填料,也可以作为一种天然生物质纳米材料,应用于食品包装、医药、农药添加剂等领域。日本科学家已有研究报道,利用甲壳素纳米微纤的光学透明性,在甲基丙烯酸树脂基体中加入甲壳素纳米微纤,获得光学透明的纳米复合材料。由于甲壳素纳米微纤的力学增强效应,树脂的杨氏模量增加至3.0GPa以上,拉伸强度显著增至44MPa,可以作为一种新型的生物可降解包装材料。加拿大科学家报道了甲壳素纳米微纤的手性识别性质,在相应的外消旋氨基混合物中,谷氨酸、苯丙氨酸和赖氨酸的右旋体通过甲壳素纳米微纤膜的速度要快于其左旋体,这就为医学、农药、液晶等方面的手性化合物的拆分提供了一种新的可能,在未来甲壳素纳米微纤可能会成为手性拆分膜的新替代物。
尽管甲壳素纳米微纤已有广泛研究基础和众多潜在应用前景,传统的制备甲壳素纳米微纤的方法仍然存在诸多缺陷:采用2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化法虽然能保证其氧化前后结晶度基本不变,但使用的化学试剂毒性高,对人体有害,产物也会部分降解成水溶性多聚醛糖,导致产率极低。并且在TEMPO氧化化学制备甲壳素纳米微纤的过程中,甲壳素化学结构分子上C6位的羟基被氧化为羧基,部分破坏了甲壳素纳米微纤的原始化学结构,不利于其后续应用;而日本和欧美开发出的高压均质设备(日本SangyoMasuko公司、美国Microfluidics公司等),虽然可以制备出化学结构稳定的甲壳素纳米微纤,然而设备造价很高,核心技术被国外公司垄断,难以在国内实验室、工业应用广泛推广使用。因此,研发出一种避免高毒害试剂,简单易行,不涉及造价高昂处理设备,结构性质稳定的甲壳素纳米微纤制备方法,是突破国外技术封锁、实现该领域核心技术自主化、推动这种生物质纳米粒子在众多领域应用的关键。
发明内容
本发明目的在于提供一种基于连续物理机械处理从海洋生物质中提取甲壳素纳米微纤的方法,制备出结构性质稳定的甲壳素纳米微纤。
从海洋生物质中提取甲壳素纳米微纤的方法,包括以下步骤:
1)粗甲壳素的制备:以海洋生物质为原料制得粗甲壳素;
2)溶胀:将所得粗甲壳素与正辛醇或乙二胺室温下搅拌1~3天,过滤水洗,配成粗甲壳素水基悬浮液;
3)球磨:将所得粗甲壳素水基悬浮液放置行星式球磨机上进行球磨,使用直径为0.25mm的球磨子进行球磨处理4~48小时,或使用直径为0.8~1.0mm的球磨子进行球磨处理8~96小时,转速均控制为100~400转每分钟;
4)捣碎:将球磨后的悬浮液放入捣碎机中,室温下进行捣碎处理10~30分钟;
5)过滤:将捣碎后的悬浮液用140目的滤布过滤,除去残存的大颗粒物质,得到滤液即为制备的甲壳素纳米微纤悬浮液。
按上述方案,步骤1将虾、蟹壳粉碎得蟹壳粉,加入盐酸,室温搅拌1~2天,过滤水洗;加入氢氧化钾溶液,在105℃下反应2~8小时,过滤水洗;加入亚氯酸钠和三水合乙酸钠水溶液中,80℃下反应1~4小时,过滤水洗;加入氢氧化钾溶液,室温搅拌处理1~2天,过滤水洗,干燥后制得粗甲壳素。
按上述方案,步骤1将乌贼骨经粉碎机粉碎,直接加入氢氧化钠溶液进行纯化处理,90℃下反应1~4小时,过滤水洗;加入盐酸,室温搅拌4~20小时,过滤水洗,干燥后制得粗甲壳素。
按上述方案,步骤2中粗甲壳素与正辛醇质量比为1:(10~80);配成粗甲壳素水基悬浮液固含量为0.5~5wt%。
按上述方案,步骤2中粗甲壳素与乙二胺质量比为1:(10~80);配成粗甲壳素水基悬浮液固含量为0.5~5wt%。
按上述方案,步骤3中甲壳素与球磨子的质量比为1:(10~60)。
本发明涉及到的溶胀处理,技术目的在于通过选择合适的溶胀溶剂对甲壳素粗纤维产生有效“剥离”效应,降低后续球磨处理所需能耗和时间;其技术效果和机理主要包括:基于溶剂分子和甲壳素纤维化学结构上活性基团的螯合作用,插入纤维晶区分子内部,实现削弱分子间氢键,分离甲壳素纤维的作用。
本发明涉及到的球磨处理,技术目的在于通过匹配合适的球磨条件(包括球磨子尺寸、球磨时间、转速),实现甲壳素纤维的有效分离和“剪切”效应,制备直径100纳米以下的甲壳素纳米微纤;其技术效果和机理主要包括:通过球磨过程中不同球磨子和接触的甲壳素纤维相向旋转产生的摩擦剥离效应,达到对纤维间的分离和纤维内部无定型区(不如结晶区结构稳定)的“剪切”作用。
本发明相对于现有技术的有益效果在于:
避免了传统化学反应方法制备甲壳素纳米微纤所需要的有毒有害试剂(如四甲基哌啶氮氧化物TEMPO等),突破了现有物理方法制备甲壳素纳米微纤需要造价高昂且高压均质处理条件下的大型精密设备(如欧美开发的Microfluidics设备、日本开发的Masuko设备),实现了通过溶胀、球磨、捣碎物理化学集成处理方法,制备出高产率、尺寸均一、在水中分散稳定的甲壳素纳米微纤产品。
和现有技术相比,本发明的制备工艺相对简便,具有常温常压、制备过程环保无毒害、能耗相对较低、无需大型昂贵设备(主要涉及工业中常用的价格低廉的球磨机等)、产率高(80-90%)、产品质量稳定的优势,是一种突破国外技术封锁、实现该领域核心技术自主化、推动甲壳素纳米微纤的规模制备和工业化应用的重要技术。
附图说明
附图1:本发明制备的甲壳素纳米微纤透射电镜形貌图;
附图2:本发明制备的甲壳素纳米微纤傅里叶红外光谱图;
附图3:本发明对甲壳素粗纤维不进行溶胀、水溶胀、正辛醇溶胀后的X射线衍射图。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但不作为对本方买那个保护范围的限制。
实施例1
将虾壳经粉碎机粉碎制得虾壳粉,称取30g虾壳粉缓慢加入300g的2mol/L的盐酸,室温搅拌2天。反应结束后水洗5次,加入600g质量分数5%的KOH溶液,105℃下反应6h。反应结束后水洗5次,将10.625g亚氯酸钠和20.4g的三水合乙酸钠溶于500g水中加入其中,80℃下反应2h。反应结束后水洗5次,加入300g质量分数5%的KOH溶液,室温搅拌2天,反应结束后水洗5次冷冻干燥后即制得粗甲壳素。将质量比为1:60的粗甲壳素与正辛醇室温下搅拌2天,反应结束后水洗5次,配成固含量为0.5%(质量分数)的水基悬浮液。甲壳素与球磨子的质量比为1:50,将上述固含量为0.5%(质量分数)的粗甲壳素悬浮液放置到行星式球磨机上进行球磨,用直径为0.25mm的球磨子球磨48h,转速均为250rpm。将球磨后的悬浮液放入捣碎机中每次捣碎5min,共捣碎6次,每次捣碎后冰水浴降温。将捣碎后的样液用140目的滤布过滤,除去仍存在的大颗粒物质,得到的滤液为含有α-甲壳素纳米微纤悬浮液。
对比例1
重复实施例1,但不进行溶胀处理,其余不变。
对比例2
重复实施例1,将正辛醇替换为水,其余不变。
本实施例所得α-甲壳素纳米微纤悬浮液透射电镜形貌图如图1所示。表明采用本发明制备出的甲壳素纳米微纤直径小于100纳米,长径比高于50,尺寸均一,符合优质甲壳素纳米微纤产品的标准。
本实施例所得α-甲壳素纳米微纤粉末傅里叶红外光谱图如附图2所示。从图中可以观测到归属于甲壳素纳米微纤的羟基和酰胺基特征谱带,证明了制备出高纯度的甲壳素纳米微纤。
本实施例和对比例1、对比例2所得产品进行X射线衍射图表征如图3所示。从图中可以观测到未经溶胀处理的粗甲壳素纤维在9.58°处表现出归属于020平面的结晶特征峰。作为对比实施例,经过水溶剂溶胀处理48小时,020平面的结晶特征峰位置没有太大变化(9.55°),表明如果选择的溶胀溶剂不合适,将不能起到预期的插入剥离效应。而实施例1中采用正辛醇对甲壳素纤维进行溶胀,020平面的结晶特征峰出现宽化现象,且向低度数迁移到7.97~9.31°。这种现象的出现证明正辛醇作为溶剂对甲壳素进行有效溶胀,且通过螯合作用插入到甲壳素纤维结晶区之间,有效剥离纤维,有利于后续球磨处理制备甲壳素纳米微纤。
实施例2
将虾壳经粉碎机粉碎得虾壳粉,称取30g虾壳粉缓慢加入300g的2mol/L的盐酸,室温搅拌2天。反应结束后水洗5次,加入600g质量分数5%的KOH溶液,105℃下反应6h。反应结束后水洗5次,将10.625g亚氯酸钠和20.4g的三水合乙酸钠溶于500g水中加入其中,80℃下反应2h。反应结束后水洗5次,加入300g质量分数5%的KOH溶液,室温搅拌2天,反应结束后水洗5次冷冻干燥后即制得粗甲壳素。将质量比为1:60的粗甲壳素与乙二胺室温下搅拌2天,反应结束后水洗5次,配成固含量为0.5wt%的水基悬浮液。甲壳素与球磨子的质量比为1:50,将上述固含量为0.5wt%的粗甲壳素悬浮液放置到行星式球磨机上进行球磨,用直径为0.8-1.0mm的球磨子球磨96h,转速均为250rpm。将球磨后的悬浮液放入捣碎机中每次捣碎5min,共捣碎6次,每次捣碎后冰水浴降温。将捣碎后的样液用140目的滤布过滤,除去仍存在的大颗粒物质,得到的滤液为含有α-甲壳素纳米微纤悬浮液。
实施例3
将蟹壳经粉碎机粉碎得蟹壳粉,称取30g蟹壳粉缓慢加入300g的2mol/L的盐酸,室温搅拌2天。反应结束后水洗5次,加入600g质量分数5%的KOH溶液,105℃下反应6h。反应结束后水洗5次,将10.625g亚氯酸钠和20.4g的三水合乙酸钠溶于500g水中加入其中,80℃下反应2h。反应结束后水洗5次,加入300g质量分数5%的KOH溶液,室温搅拌2天,反应结束后水洗5次冷冻干燥后即制得粗甲壳素。将质量比为1:60的粗甲壳素与正辛醇室温下搅拌2天,反应结束后水洗5次,配成固含量为质量分数5%的水基悬浮液。甲壳素与球磨子的质量比为1:50,将上述固含量为质量分数5%的粗甲壳素悬浮液放置到行星式球磨机上进行球磨,用直径为0.25mm的球磨子球磨48h,转速均为250rpm。将球磨后的悬浮液放入:捣碎机中每次捣碎5min,共捣碎6次,每次捣碎后冰水浴降温。将捣碎后的样液用140目的滤布过滤,除去仍存在的大颗粒物质,得到的滤液为含有α-甲壳素纳米微纤悬浮液。
实施例4
将乌贼骨经粉碎机粉碎制得乌贼骨粉,称取20g乌贼骨粉缓慢加入100ml的1mol/L的氢氧化钠溶液,90℃下反应2h,重复一次。反应结束后水洗5次,再加入0.1mol/L的盐酸,室温搅拌16h,反应结束后水洗5次冷冻干燥后即制得粗甲壳素。将质量比为1:60的粗甲壳素与乙二胺室温下搅拌2天,反应结束后水洗5次,配成固含量为质量分数5%的水基悬浮液。甲壳素与球磨子的质量比为1:50,将上述固含量为质量分数5%的粗甲壳素悬浮液放置到行星式球磨机上进行球磨,用直径为0.25mm的球磨子球磨48h,转速均为250rpm。将球磨后的悬浮液放入捣碎机中每次捣碎5min,共捣碎6次,每次捣碎后冰水浴降温。将捣碎后的样液用140目的滤布过滤,除去仍存在的大颗粒物质,得到的滤液为含有β-甲壳素纳米微纤悬浮液。

Claims (6)

1.从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于包括以下步骤:
1)粗甲壳素的制备:以海洋生物质为原料制得粗甲壳素;
2)溶胀:将所得粗甲壳素与正辛醇或乙二胺室温下搅拌1~3天,过滤水洗,配成粗甲壳素水基悬浮液;
3)球磨:将所得粗甲壳素水基悬浮液放置行星式球磨机上进行球磨,使用直径为0.25mm的球磨子进行球磨处理4~48小时,或使用直径为0.8~1.0mm的球磨子进行球磨处理8~96小时,转速均控制为100~400转每分钟;
4)捣碎:将球磨后的悬浮液放入捣碎机中,室温下进行捣碎处理10~30分钟;
5)过滤:将捣碎后的悬浮液用140目的滤布过滤,除去残存的大颗粒物质,得到滤液即为制备的甲壳素纳米微纤悬浮液。
2.如权利要求1所述从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于步骤1将虾、蟹壳粉碎得虾、蟹壳粉,加入盐酸,室温搅拌1~2天,过滤水洗;加入氢氧化钾溶液,在105℃下反应2~8小时,过滤水洗;加入亚氯酸钠和三水合乙酸钠水溶液中,80℃下反应1~4小时,过滤水洗;加入氢氧化钾溶液,室温搅拌处理1~2天,过滤水洗,干燥后制得粗甲壳素。
3.如权利要求1所述从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于步骤1将乌贼骨经粉碎机粉碎,直接加入氢氧化钠溶液进行纯化处理,90℃下反应1~4小时,过滤水洗;加入盐酸,室温搅拌4~20小时,过滤水洗,干燥后制得粗甲壳素。
4.如权利要求1所述从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于步骤2中粗甲壳素与正辛醇质量比为1:(10~80);配成粗甲壳素水基悬浮液固含量为0.5~5wt%。
5.如权利要求1所述从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于步骤2中粗甲壳素与乙二胺质量比为1:(10~80);配成粗甲壳素水基悬浮液固含量为0.5~5wt%。
6.如权利要求1所述从海洋生物质中提取甲壳素纳米微纤的方法,其特征在于步骤3中甲壳素与球磨子的质量比为1:(10~60)。
CN201710491126.7A 2017-06-23 2017-06-23 从海洋生物质中提取甲壳素纳米微纤的方法 Expired - Fee Related CN107151276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710491126.7A CN107151276B (zh) 2017-06-23 2017-06-23 从海洋生物质中提取甲壳素纳米微纤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710491126.7A CN107151276B (zh) 2017-06-23 2017-06-23 从海洋生物质中提取甲壳素纳米微纤的方法

Publications (2)

Publication Number Publication Date
CN107151276A CN107151276A (zh) 2017-09-12
CN107151276B true CN107151276B (zh) 2019-06-28

Family

ID=59795828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710491126.7A Expired - Fee Related CN107151276B (zh) 2017-06-23 2017-06-23 从海洋生物质中提取甲壳素纳米微纤的方法

Country Status (1)

Country Link
CN (1) CN107151276B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774289B (zh) * 2018-07-03 2020-11-24 南京林业大学 高羧基含量几丁质纳米纤维分散液的制备方法、高羧基含量几丁质纳米纤维分散液和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891719B (zh) * 2006-05-11 2010-05-12 江苏大学 一种龟足外壳的甲壳素、壳聚糖的制备方法
US9394375B2 (en) * 2011-03-25 2016-07-19 Board Of Trustees Of The University Of Alabama Compositions containing recyclable ionic liquids for use in biomass processing
CN105504093A (zh) * 2016-01-18 2016-04-20 南京林业大学 甲壳素纳米纤维/碳纳米管复合制备薄膜电极的方法

Also Published As

Publication number Publication date
CN107151276A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
Zinge et al. Nanocellulose based biodegradable polymers
Harini et al. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose
Abraham et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach
CN103403235B (zh) 用于加工纳米纤维状纤维素的方法
CN103342821B (zh) 一种利用虾蟹壳制备甲壳素纳米纤维的方法
EP3390456B1 (en) Method for producing parenchymal cell cellulose
Alle et al. Recent trends in isolation of cellulose nanocrystals and nanofibrils from various forest wood and nonwood products and their application
WO2016022172A1 (en) Method for isolating cellulose from a biomass and products provided therefrom
Matebie et al. Synthesis of cellulose nanocrystals (CNCs) from brewer’s spent grain using acid hydrolysis: characterization and optimization
Chen et al. Preparation and research of PCL/cellulose composites: Cellulose derived from agricultural wastes
CN111944178A (zh) 一种纳米综纤维素增强复合膜制备方法及制得的复合膜
CN107151276B (zh) 从海洋生物质中提取甲壳素纳米微纤的方法
Meraj et al. Effect of natural deep eutectic solvents on properties of micro crystalline cellulose isolated from kenaf fibre
Long et al. Mechanically strong and biodegradable holocellulose films prepared from Camellia oleifera shells
CN114197233B (zh) 一种从农林固废物中分离提取纤维素纳米纤维的方法
Cd et al. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers
Gopalan et al. Nanostructured Cellulose: Extraction and Characterization
CN114982939B (zh) 一种甜菜粕全组分乳化增稠剂及其制备方法与应用
Femina et al. Extraction of Cellulose
Ali et al. Extraction of cellulose from agro-industrial wastes
Nagappa et al. Recent perception into the extraction of nanocellulose: cross talk between natural resources and progressive applications
Mahadi et al. Isolation of nanocellulose from jatropha waste: an overview
CN110258151A (zh) 一种纳米结晶纤维素的制备方法
Makhanya Conversion of sugarcane bagasse into carboxymethl cellulose
CN115387143A (zh) 一种咖啡渣衍生纳米纤维素及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190628