CN107151092A - The preparation method and doped single crystal multi-core fiber of a kind of doped single crystal multi-core fiber - Google Patents
The preparation method and doped single crystal multi-core fiber of a kind of doped single crystal multi-core fiber Download PDFInfo
- Publication number
- CN107151092A CN107151092A CN201710258664.1A CN201710258664A CN107151092A CN 107151092 A CN107151092 A CN 107151092A CN 201710258664 A CN201710258664 A CN 201710258664A CN 107151092 A CN107151092 A CN 107151092A
- Authority
- CN
- China
- Prior art keywords
- core
- single crystal
- optical fiber
- fiber
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 161
- 239000000835 fiber Substances 0.000 title claims abstract description 87
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 239000013307 optical fiber Substances 0.000 claims abstract description 124
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000010453 quartz Substances 0.000 claims abstract description 47
- 238000005253 cladding Methods 0.000 claims abstract description 39
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 11
- 238000002425 crystallisation Methods 0.000 claims abstract description 10
- 230000008025 crystallization Effects 0.000 claims abstract description 9
- 238000007789 sealing Methods 0.000 claims description 29
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000012681 fiber drawing Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 229940085805 fiberall Drugs 0.000 claims description 2
- 239000003708 ampul Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 210000005239 tubule Anatomy 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 110
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 14
- 239000000155 melt Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000668842 Lepidosaphes gloverii Species 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- OJIKOZJGHCVMDC-UHFFFAOYSA-K samarium(iii) fluoride Chemical group F[Sm](F)F OJIKOZJGHCVMDC-UHFFFAOYSA-K 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01262—Depositing additional preform material as liquids or solutions, e.g. solution doping of preform tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Glass Compositions (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
本发明提供的是一种掺杂单晶多芯光纤的制备方法及掺杂单晶多芯光纤。掺杂单晶多芯光纤为在同一石英包层内含有两个及以上的掺杂单晶纤芯,由低折射率二氧化硅石英玻璃和高折射率掺杂单晶构成光纤波导结构。是获得多孔光纤预制棒,再经拉制得到多孔毛细管,然后在高温、高压下将掺杂晶体熔体注入到石英毛细管中的多微孔内形成多晶体纤芯,最后经过横向加热使得纤芯完成单晶化等步骤来制备出石英包层掺杂单晶多芯光纤。通过将毛细管多孔内熔体注入与后期晶体生长相结合,用该方法生长出的掺杂单晶多芯光纤具有丝径长度可控、纤芯数量和位置任意排列等优点,可用于微小型及在线光子调控的相位调制器、光开关和干涉仪等。
The invention provides a preparation method of a doped single crystal multi-core optical fiber and a doped single crystal multi-core optical fiber. Doped single crystal multi-core fiber contains two or more doped single crystal cores in the same silica cladding, and the fiber waveguide structure is composed of low refractive index silica silica glass and high refractive index doped single crystal. It is to obtain a porous optical fiber preform rod, and then draw a porous capillary tube, and then inject the doped crystal melt into the micropores in the quartz capillary tube under high temperature and high pressure to form a polycrystalline core, and finally make the core through transverse heating. Steps such as single crystallization are completed to prepare a silica cladding doped single crystal multi-core optical fiber. By combining the capillary porous inner melt injection with later crystal growth, the doped single crystal multi-core optical fiber grown by this method has the advantages of controllable wire diameter length, arbitrary arrangement of core number and position, etc., and can be used in micro and small Phase modulators, optical switches and interferometers controlled by online photons.
Description
技术领域technical field
本发明涉及的是一种光纤,特别涉及一种掺杂单晶多芯光纤。本发明还涉及这种光纤的制造方法。The invention relates to an optical fiber, in particular to a doped single crystal multi-core optical fiber. The invention also relates to a method of manufacturing such an optical fiber.
背景技术Background technique
单晶光纤也被称为晶体纤维或纤维晶体,它是将晶体材料生长为纤维状的单晶体,直径在几微米到数百微米之间,它兼备块状晶体和一般石英光纤的功能。与块状晶体相比,单晶光纤具有体积小、集成度高、能与石英光纤相耦合等特点,与一般石英光纤相比具有质量高、物理效应强、功能全、能更好地与各类可见与非可见光波段的激光器相匹配,能用于大功率激光的传输等优点,在光电子学领域中具有重要的实用价值。Single crystal optical fiber is also called crystal fiber or fiber crystal. It is a single crystal that grows crystal material into a fiber shape, with a diameter ranging from a few microns to hundreds of microns. It has both the functions of bulk crystals and ordinary silica fibers. Compared with bulk crystals, single crystal optical fibers have the characteristics of small size, high integration, and can be coupled with quartz optical fibers. It has the advantages of matching the lasers in the visible and non-visible bands, and can be used for the transmission of high-power lasers. It has important practical value in the field of optoelectronics.
普通的纯净单晶体功能有限,为得到所期望的物理性质,常需要在晶体中掺入杂质元素,例如在非线性光学铌酸锂晶体中掺入Mg元素能增强抗激光损伤能力,掺入钛、氢元素能提高晶体折射率;在半导体硅晶体中掺入一定量的磷,得到n型半导体,掺入一定量的铝或稼,得到p型半导体;在晶体中掺入镧系元素能得到荧光特性材料等。Ordinary pure single crystals have limited functions. In order to obtain the desired physical properties, it is often necessary to dope impurity elements in the crystal. For example, doping Mg elements in nonlinear optical lithium niobate crystals can enhance the ability to resist laser damage. Hydrogen can increase the refractive index of the crystal; doping a certain amount of phosphorus in the semiconductor silicon crystal can obtain an n-type semiconductor, and doping a certain amount of aluminum or gallium can obtain a p-type semiconductor; doping a lanthanide element in the crystal can obtain fluorescence characteristic materials, etc.
通常的晶体光纤生长方法有,(1)导模法,涉及到的文献和报道有:[1]NorioOhnishi and Takafumi Yao,A Novel Growth Technique for Single-Crystal Fibers:The Micro-Czochralski(μ-CZ)Method,Jpn.J.Appl.Phys.,28(2):L278-L280;1989;[2]Dae-Ho Yoon,Ichiro Yonenaga,Tsuguo Fukuda,Norio Ohnishi,Crystal growth ofdislocation-free LiNbO3single crystals by micro pulling down method,J.Cryst.Growth,142:339-343,1994;[3]钟鹤裕,侯印春,杈宁三,陈杏达,王人淑,铌酸锂单晶光纤的生长,硅酸盐学报,19(6):527-531,1991。该类生长方法为熔体从带有小孔或凸起的模具中引出,馈入籽晶后进行定向生长。其主要优点是能连续生长较长及特殊截面的光纤,但受模具材料限制,难以生长高熔点的晶纤,且难以避免污染问题。(2)激光加热基座法,涉及到的文献和报道有:[4]Yalin Lu,Dajani A.Iyad,and R.J.Knize,Fabricationand characterization of periodically poled lithium niobate single crystalfibers,Integrated Ferroelectrics,90:53-62,2007;[5]日本专利Production ofSingle Crystal Optical Fiber,Bibliographic data:JPH0375292(A)―1991-03-29。该方法是利用CO2激光加热形成局部熔区,馈入籽晶后连续生长出单晶纤维。该方法优点是,不需要模具和高温下无污染,能生长出高熔点光纤,生长速率快,但是受到生长条件的限制,往往只能制成短光纤,且难以控制光纤直径。(3)直接成型法,涉及到的文献和报道有:[6]P.Rudolph,T.Fukuda,Fiber crystal growth from the melt,Crystal Research andTechnology,34:3–40,1999;[7]J.Ballato,T.Hawkins,and P.Foy et al.Siliconoptical fiber.Optics Express.2008 16:18675-18683;[8]Yi-Chung Huang,and Jau-Sheng Wang et al.Preform fabrication and fiber drawing of 320nm broadband Cr-doped fibers,Optics Express.2007,15:14382-14388。该方法是利用毛细管效应使得熔体一次性结晶固化成晶体光纤,或是通过管棒法与拉丝技术得到晶体芯光纤。然而该类制备方法只能制成短光纤,且纤芯难以保证为单晶体。(4)其他生长方法,如日本专利(Fibrous Oxide Optical Single Crystal and Its Production,Bibliographic data:JPH08278419(A)―1996-10-22)给出了一种铌酸锂晶体芯光纤的制备方法,该方法是利用外延生长技术在单晶光纤表面生长一层低折射率氧化物单晶包层。在该晶体光纤制备方法中,外延层氧化物熔点必须比单晶光纤熔点低,同时受外延层熔体、提拉机构等限制,生长的晶体光纤较短,且外径尺寸较大。还有,如美国专利(Method of cladding singlecrystal optical fiber,Patent Number,5077087;Claddings for single crystaloptical fibers and devices and methods and apparatus for making suchcladdings,Patent Number,5037181)描述了一种掺杂铌酸锂单晶光纤的制备方法,该方法通过高温处理使得涂覆在单晶光纤表层的氧化物涂层扩散进入到光纤中,起到降低单晶光纤表面层折射率。在该晶体光纤制备方法中,晶体光纤包层中离子呈抛物线分布,其包层折射率分布由外至内也会逐渐递减,会导致光纤损耗增加。另外,这种方法可控性差,扩散程度不均匀,扩散深度不宜控制,产品性能稳定性较差。此外,中国专利(一种微结构包层单晶光纤及制备方法,CN102298170A;一种具有布拉格结构包层单晶光纤及制备方法,CN102253445A)公开了一种微结构包层和晶体芯构成的单晶光纤制备方法。该方法为,首先制备出空心包层套,将微尺寸单晶体插入到空心包层套中,然后加热拉伸包层套使纤芯被包层套裹住,制成微结构包层单晶光纤。该光纤制备方法的缺点在于,其一,由于表面静电吸引作用,很难将长尺度的微单晶体插入到包层套微孔内;其二,石英玻璃软化温度点与晶体熔点的大差异,导致在拉伸包层套过程中出现纤芯熔体挥发产生不连续或缺失,以及石英溶解于纤芯熔体中,产生杂质污染和阻碍纤芯熔体的结晶过程,形成不了单晶体;其三,包层套拉伸温度梯度远高于促使纤芯熔体结晶形核、长大形成单晶的温度梯度力,不符合单晶生长的动力学条件。Common crystal fiber growth methods include: (1) Guided mode method, related literature and reports include: [1] NorioOhnishi and Takafumi Yao, A Novel Growth Technique for Single-Crystal Fibers: The Micro-Czochralski(μ-CZ) Method, Jpn.J.Appl.Phys., 28(2):L278-L280; 1989; [2] Dae-Ho Yoon, Ichiro Yonenaga, Tsuguo Fukuda, Norio Ohnishi, Crystal growth of dislocation-free LiNbO 3 single crystals by micro pulling down method, J.Cryst.Growth, 142:339-343, 1994; [3] Zhong Heyu, Hou Yinchun, Zhi Ningsan, Chen Xingda, Wang Renshu, growth of lithium niobate single crystal optical fiber, Journal of Silicates, 19(6 ): 527-531, 1991. This type of growth method is that the melt is drawn from a mold with small holes or protrusions, and then fed into the seed crystal for directional growth. Its main advantage is that it can continuously grow long and special cross-section optical fibers, but limited by the mold material, it is difficult to grow crystal fibers with high melting point, and it is difficult to avoid pollution problems. (2) Laser heating pedestal method, related literature and reports are: [4] Yalin Lu, Dajani A.Iyad, and RJKnize, Fabrication and characterization of periodically poled lithium niobate single crystalfibers, Integrated Ferroelectrics, 90:53-62, 2007; [5] Japanese Patent Production of Single Crystal Optical Fiber, Bibliographic data: JPH0375292(A) - 1991-03-29. In this method, CO2 laser heating is used to form a local melting zone, and single crystal fibers are continuously grown after feeding seed crystals. The advantage of this method is that it does not require molds and is pollution-free at high temperatures, and can grow high-melting-point optical fibers with a fast growth rate. However, limited by the growth conditions, it can only be made into short optical fibers, and it is difficult to control the diameter of the optical fiber. (3) Direct molding method, the literature and reports involved are: [6] P.Rudolph, T. Fukuda, Fiber crystal growth from the melt, Crystal Research and Technology, 34:3–40, 1999; [7] J. Ballato, T.Hawkins, and P.Foy et al.Siliconoptical fiber.Optics Express.2008 16:18675-18683; [8]Yi-Chung Huang, and Jau-Sheng Wang et al.Preform fabrication and fiber drawing of 320nm broadband Cr-doped fibers, Optics Express. 2007, 15:14382-14388. In this method, the capillary effect is used to make the melt crystallize and solidify at one time to form a crystal optical fiber, or to obtain a crystal core optical fiber through a tube rod method and wire drawing technology. However, this kind of preparation method can only make short optical fibers, and it is difficult to ensure that the core is a single crystal. (4) Other growth methods, such as the Japanese patent (Fibrous Oxide Optical Single Crystal and Its Production, Bibliographic data: JPH08278419 (A)-1996-10-22) provides a preparation method for lithium niobate crystal core optical fiber, the The method is to grow a layer of low refractive index oxide single crystal cladding layer on the surface of single crystal optical fiber by epitaxial growth technology. In this crystal fiber preparation method, the melting point of the oxide of the epitaxial layer must be lower than that of the single crystal fiber, and at the same time, limited by the melt of the epitaxial layer and the pulling mechanism, the grown crystal fiber is shorter and has a larger outer diameter. Also, as the U.S. Patent (Method of cladding single crystal optical fiber, Patent Number, 5077087; Claddings for single crystal optical fibers and devices and methods and apparatus for making such claddings, Patent Number, 5037181) describes a doped lithium niobate single crystal The preparation method of the optical fiber, the method makes the oxide coating coated on the surface layer of the single crystal optical fiber diffuse into the optical fiber through high temperature treatment, so as to reduce the refractive index of the surface layer of the single crystal optical fiber. In the preparation method of the crystal optical fiber, the ions in the cladding of the crystal optical fiber are distributed in a parabola, and the refractive index distribution of the cladding will gradually decrease from the outside to the inside, which will lead to an increase in fiber loss. In addition, the controllability of this method is poor, the degree of diffusion is uneven, the depth of diffusion is not suitable for control, and the stability of product performance is relatively poor. In addition, Chinese patents (a microstructure cladding single crystal fiber and its preparation method, CN102298170A; a cladding single crystal fiber with a Bragg structure and its preparation method, CN102253445A) disclose a single crystal fiber composed of a microstructure cladding and a crystal core. Preparation method of crystal fiber. The method is as follows: first, a hollow cladding sleeve is prepared, a micro-sized single crystal is inserted into the hollow cladding sleeve, and then the cladding sleeve is heated and stretched so that the fiber core is wrapped by the cladding sleeve to produce a microstructure clad single crystal optical fiber . The disadvantages of this optical fiber preparation method are: firstly, due to the surface electrostatic attraction, it is difficult to insert long-scale micro-single crystals into the micropores of the cladding sleeve; secondly, the large difference between the softening temperature point of quartz glass and the crystal melting point leads to In the process of stretching the cladding sleeve, the volatilization of the core melt occurs discontinuously or missing, and the quartz dissolves in the core melt, resulting in impurity pollution and hindering the crystallization process of the core melt, so that no single crystal can be formed; third, The stretching temperature gradient of the cladding sleeve is much higher than the temperature gradient force that promotes the crystallization of the core melt to nucleate and grow to form a single crystal, which does not meet the kinetic conditions of single crystal growth.
综上所述,前面所涉及到的晶体光纤,或为无包层结构,或纤芯难以保证为单晶体,而且光纤中通常只含有一个纯净晶体的纤芯,不涉及离子掺杂,因此所制备的晶体光纤功能受限,无法满足进一步的光纤传感、新型纤维集成器件需求。To sum up, the above-mentioned crystal fiber either has no cladding structure, or the core is difficult to guarantee to be a single crystal, and the fiber usually only contains a pure crystal core, which does not involve ion doping, so the prepared The function of the crystal fiber is limited, and it cannot meet the needs of further optical fiber sensing and new fiber integrated devices.
发明内容Contents of the invention
本发明的目的在于提供一种工艺简便实用,制得的光纤石英包层外径及单晶芯径可控、结晶质量均匀的掺杂单晶多芯光纤的制备方法。本发明的目的还在于提供一种兼备块状晶体和一般石英光纤的功能的掺杂单晶多芯光纤。The purpose of the present invention is to provide a method for preparing a doped single-crystal multi-core optical fiber with simple and practical process, controllable outer diameter of optical fiber quartz cladding and single crystal core diameter, and uniform crystal quality. The object of the present invention is also to provide a doped single crystal multi-core optical fiber which has the functions of bulk crystal and common silica optical fiber.
本发明的掺杂单晶多芯光纤的制备方法为:The preparation method of the doped single crystal multi-core optical fiber of the present invention is:
步骤一:通过堆积束法或石英棒打孔法获得多孔光纤预制棒,并用氢氧焰对多孔光纤预制棒一端进行加热密封,然后配合抽气、充气装置,利用光纤拉丝塔在1900℃以上的温度将多孔光纤预制棒拉制成多孔毛细管;Step 1: Obtain a porous optical fiber preform by stacking beam method or quartz rod punching method, and heat and seal one end of the porous optical fiber preform with a hydrogen-oxygen flame, and then cooperate with the pumping and inflating device, use the optical fiber drawing tower at 1900 °C or more The temperature draws the porous optical fiber preform into a porous capillary;
步骤二:将装有掺杂多晶粉末的铂金内坩埚嵌套于密封的钨外坩埚中,一起放置于高温马弗炉内以稍高于多晶粉末熔点的温度加热致内坩埚中的掺杂多晶粉末完全熔化处于过热状态,然后通过外坩埚密封盖上一凸起内孔向外坩埚内部中充入惰性气体,维持恒定正压力,多孔毛细管一端从外坩埚密封盖上的另一凸起内孔插入到内坩埚熔体中,多孔毛细管另一端与外部抽气装置相连,使得毛细管孔内形成恒定负压,在充气正压与抽气负压作用下,熔融液体快速充满毛细管的多孔中,降温消除光纤内应力,熔体固化变成多晶,得到掺杂多晶多芯光纤;Step 2: Nest the platinum inner crucible containing the doped polycrystalline powder in the sealed tungsten outer crucible, and place them together in a high-temperature muffle furnace to heat at a temperature slightly higher than the melting point of the polycrystalline powder to cause the doping in the inner crucible The heteropolycrystalline powder is completely melted and in an overheated state, and then an inert gas is filled into the inside of the outer crucible through a raised inner hole on the sealing cover of the outer crucible to maintain a constant positive pressure. The inner hole is inserted into the inner crucible melt, and the other end of the porous capillary is connected with the external air pumping device, so that a constant negative pressure is formed in the capillary hole. In the process, the internal stress of the optical fiber is eliminated by cooling down, the melt solidifies and becomes polycrystalline, and a doped polycrystalline multi-core optical fiber is obtained;
步骤三:将制备的掺杂多晶多芯光纤放置于带有旋转夹具的水平光纤拉锥机上,光纤在横向旋转的同时,微加热装置沿导轨从一端向另一端移动加热光纤,微加热装置中心温高于纤芯多晶体熔点但低于石英软化点温度,此时掺杂多晶多芯光纤中的纤芯被加热成熔体,外部包层保持石英玻璃固态,在微尺寸毛细管内孔及温度梯度动力作用下纤芯熔体结晶形核、长大生成单晶体,制成掺杂单晶多芯光纤;Step 3: Place the prepared doped polycrystalline multi-core fiber on a horizontal fiber taper machine with a rotating fixture. While the fiber is rotating laterally, the micro-heating device moves along the guide rail from one end to the other to heat the fiber. The micro-heating device The central temperature is higher than the melting point of the core polycrystal but lower than the softening point of quartz. At this time, the core in the doped polycrystalline multi-core fiber is heated into a melt, and the outer cladding keeps the quartz glass solid. In the micro-sized capillary inner hole And under the dynamic action of temperature gradient, the crystallization of the core melt nucleates and grows to form a single crystal, which is made into a doped single crystal multi-core optical fiber;
步骤四:当夹具两端之间的光纤纤芯完成单晶化后,移动未单晶化的光纤部分至旋转夹具两端,重复步骤一至三的过程,整根掺杂多晶多芯光纤中的纤芯都实现单晶化。Step 4: After the fiber core between the two ends of the fixture has been single-crystallized, move the part of the fiber that has not been single-crystallized to the two ends of the rotating fixture, and repeat the process of steps 1 to 3. The entire doped polycrystalline multi-core fiber All fiber cores are single crystallized.
本发明的掺杂单晶多芯光纤的制造方法还可以包括:The manufacturing method of the doped single crystal multi-core optical fiber of the present invention may also include:
1、获得多孔光纤预制棒的方法是:先选取石英毛细棒,用堆积技术形成堆积束,将堆积束中两个及以上位置上的石英毛细棒替换为相同材质的石英毛细管,然后将堆积束装入薄壁石英玻璃管中,构成复合式多孔光纤预制棒,并用氢氧焰对多孔光纤预制棒一端进行加热密封。1. The method to obtain the porous optical fiber preform is: first select the quartz capillary rod, use the stacking technology to form a stacking bundle, replace the quartz capillary rods at two or more positions in the stacking bundle with quartz capillaries of the same material, and then stack the stacking bundle Put it into a thin-walled quartz glass tube to form a composite porous optical fiber preform, and heat and seal one end of the porous optical fiber preform with a hydrogen-oxygen flame.
2、获得多孔光纤预制棒的方法是:在一段实心石英棒上打两个及以上通孔,然后在石英棒一端焊接上同等外径尺寸的薄壁石英管,构成焊接式多孔光纤预制棒,并用氢氧焰对多孔光纤预制棒另一端进行加热密封。2. The method of obtaining a porous optical fiber preform is: punch two or more through holes on a section of solid quartz rod, and then weld a thin-walled quartz tube with the same outer diameter on one end of the quartz rod to form a welded porous optical fiber preform. The other end of the porous optical fiber preform is heated and sealed with an oxyhydrogen flame.
本发明的掺杂单晶多芯光纤是:石英包层内含有两个晶体纤芯,两个晶体纤芯位置成非对称或对称分布。The doped single-crystal multi-core optical fiber of the present invention is: the quartz cladding contains two crystal cores, and the positions of the two crystal cores are asymmetrically or symmetrically distributed.
本发明的掺杂单晶多芯光纤是:石英包层内同时含有三个晶体纤芯,三个晶体纤芯位置成等腰三角形或一字形分布。The doped single-crystal multi-core optical fiber of the present invention is: three crystal cores are contained in the quartz cladding at the same time, and the positions of the three crystal cores are distributed in an isosceles triangle or a straight line.
本发明的掺杂单晶多芯光纤是:石英包层内同时含有四个晶体纤芯,四个晶体纤芯位置成长方形分布。The doped single-crystal multi-core optical fiber of the present invention is: four crystal cores are contained in the quartz cladding at the same time, and the positions of the four crystal cores are rectangularly distributed.
本发明的掺杂单晶多芯光纤是:石英包层内同时含有五个晶体纤芯,五个晶体纤芯位置成对称分布。The doped single-crystal multi-core optical fiber of the present invention is: the quartz cladding contains five crystal cores at the same time, and the positions of the five crystal cores are symmetrically distributed.
本发明的掺杂单晶多芯光纤,根据纤芯材质以及掺杂离子不同,还可以实现不同单晶纤芯和不同离子掺杂的多芯光纤。The doped single crystal multi-core optical fiber of the present invention can also realize multi-core optical fibers doped with different single crystal cores and different ions according to different core materials and doping ions.
本发明的掺杂单晶多芯光纤为同一石英包层内含有两个及以上的掺杂单晶纤芯,且纤芯晶体熔点低于石英包层软化点。The doped single crystal multi-core optical fiber of the present invention contains two or more doped single crystal cores in the same quartz cladding, and the melting point of the core crystal is lower than the softening point of the quartz cladding.
本发明提供了一种兼备块状晶体和一般石英光纤的功能,把块状掺杂晶体所具有的优良物理、光学特性与光纤的导光性与几何形状有机结合在一起,可应用于光纤传感、新型纤维集成器件的掺杂单晶多芯光纤。本发明还提供了一种制备工艺简便实用,制得的光纤石英包层外径及单晶芯径可控、结晶质量均匀的掺杂单晶多芯光纤的制造方法。The invention provides a function of both bulk crystals and ordinary silica optical fibers, organically combines the excellent physical and optical properties of bulk doped crystals with the light guiding properties and geometric shapes of optical fibers, and can be applied to optical fiber transmission. Doped single crystal multi-core optical fiber with sense and novel fiber integrated devices. The invention also provides a method for manufacturing a doped single crystal multi-core optical fiber with a simple and practical preparation process, controllable outer diameter of the quartz cladding of the obtained optical fiber and controllable single crystal core diameter, and uniform crystal quality.
与现有技术相比,本发明的优点为:Compared with prior art, the advantage of the present invention is:
1、制作的掺杂单晶多芯光纤兼备块状晶体和一般石英光纤的功能,把块状掺杂晶体所具有的优良物理、光学特性与光纤的导光性及几何形状有机结合在一起,可以制成多种功能的光纤光学器件,在新型光纤传感和光纤通信领域有广泛应用。1. The doped single-crystal multi-core optical fiber produced has both the functions of bulk crystal and ordinary silica fiber, and organically combines the excellent physical and optical properties of bulk doped crystal with the optical conductivity and geometric shape of the optical fiber. It can be made into a fiber optic device with multiple functions, and is widely used in the fields of new fiber optic sensing and fiber optic communication.
2、制作的掺杂单晶多芯光纤石英包层内同时含有多个晶体纤芯,可以灵活的实现多种纤芯排列的掺杂单晶光纤,制备工艺简便实用。2. The quartz cladding of the doped single crystal multi-core optical fiber contains multiple crystal cores at the same time, which can flexibly realize the doped single crystal optical fiber with various core arrangements, and the preparation process is simple and practical.
3、在掺杂单晶多芯光纤制备过程中,首先制备多孔毛细管,然后利用高压技术将熔体填充到多孔中,最后利用加热后处理方式实现纤芯单晶化。基于这种工艺过程,可以方便实现不同单晶纤芯材质和掺杂的多芯光纤的制备,晶体缺陷少,生长的单晶芯光纤较长。3. In the preparation process of doped single-crystal multi-core optical fiber, the porous capillary is prepared first, and then the melt is filled into the pores by high-pressure technology, and finally the core is single-crystallized by post-heating treatment. Based on this process, the preparation of different single crystal core materials and doped multi-core optical fibers can be conveniently realized, the crystal defects are few, and the grown single crystal core optical fibers are longer.
上述光纤制造技术的发明,拓宽了掺杂单晶多芯光纤的种类,特别对具有掺杂的单晶多芯光纤的制备方法而言,制作工艺简单,低廉的成本将有助于把它推向市场。The invention of the above optical fiber manufacturing technology has broadened the types of doped single crystal multi-core optical fiber, especially for the preparation method of doped single crystal multi-core optical fiber, the manufacturing process is simple, and the low cost will help to promote it. to the market.
附图说明Description of drawings
图1为实施例一所示的非对称形双芯掺杂单晶光纤截面示意图;Fig. 1 is a schematic cross-sectional view of an asymmetrical double-core doped single crystal fiber shown in Embodiment 1;
图2至图3为实施例一所示的两种非对称形双孔光纤预制棒截面示意图;2 to 3 are schematic cross-sectional views of two asymmetric dual-hole optical fiber preforms shown in Embodiment 1;
图4为实施例一所示的非对称形双孔毛细管截面示意图;4 is a schematic cross-sectional view of an asymmetric double-hole capillary shown in Embodiment 1;
图5为实施例一所示的非对称形双芯掺杂多晶体光纤制备示意图;5 is a schematic diagram of the preparation of an asymmetric double-core doped polycrystalline fiber shown in Embodiment 1;
图6为图5中所示的双坩埚局部放大图;Fig. 6 is a partially enlarged view of the double crucible shown in Fig. 5;
图7(a)为图6中所示的外坩埚的密封盖主视图,图7(b)为图6中所示的外坩埚的密封盖俯视图;Fig. 7 (a) is the front view of the sealing cover of the outer crucible shown in Fig. 6, and Fig. 7 (b) is the top view of the sealing cover of the outer crucible shown in Fig. 6;
图8为图6中所示的外坩埚的密封垫结构示意图;Fig. 8 is a schematic diagram of the gasket structure of the outer crucible shown in Fig. 6;
图9(a)为图6中所示的外坩埚上的密封螺帽主视图,图9(b)为图6中所示的外坩埚上的密封螺帽俯视图;Fig. 9 (a) is the front view of the sealing nut on the outer crucible shown in Fig. 6, and Fig. 9 (b) is the top view of the sealing nut on the outer crucible shown in Fig. 6;
图10为实施例一所示的非对称形双芯掺杂多晶体光纤中纤芯单晶化的工艺示意图;Fig. 10 is a schematic diagram of the process of single-crystallization of the core in the asymmetric double-core doped polycrystalline fiber shown in Embodiment 1;
图11为图10中所示的沿光纤轴向方向上的被加热光纤芯内的温度场分布示意图;FIG. 11 is a schematic diagram of the temperature field distribution in the heated optical fiber core along the axial direction of the optical fiber shown in FIG. 10;
图12(a)至与12(e)为其它的掺杂单晶多芯光纤截面示意图。12(a) to 12(e) are schematic cross-sectional views of other doped single crystal multi-core optical fibers.
具体实施方式detailed description
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
说明书附图上各附图标记的含义为:1-掺杂单晶纤芯;2-石英包层;3-石英玻璃毛细棒;4-石英玻璃毛细管;5-薄壁石英管;6-石英玻璃填充棒;7-石英棒;8-通孔;9-毛细孔;10-石英包层;11-高纯氩气瓶;12-压力显示表;13-橡皮管;14-炉子加热元件;15-钨管;16-加热炉;17-多孔毛细管;18-橡皮管;19-真空泵;20-氧化铝纤维垫;21-钨坩埚;22-铂金坩埚;23-熔体;24-氧化锆保温砂;25-外螺纹;26-内孔;27-外螺纹;28-圆锥形孔;29-内螺纹;30-内孔;31-密封帽小孔;32-内螺纹;33-光纤旋转夹具;34-微电加热炉;35-掺杂多晶体多芯光纤;36-导轨;37-单晶芯;38-石英包层;39-纤芯熔区;40-多晶芯;41-多晶芯与熔区的固液界面;42-单晶芯与熔区的固液界面;I-复合式非对称形双孔光纤预制棒;Ⅱ-焊接式非对称形双孔光纤预制棒;Ⅲ-非对称形双孔毛细管;Ⅳ-双坩埚;Ⅴ-外坩埚密封盖;Ⅵ-外坩埚密封垫;Ⅶ-外坩埚上的密封螺帽;v-微加热炉横向移动速度;T1-单晶区温度;T2-熔区温度;T3-多晶区温度。The meanings of the reference marks on the drawings of the specification are: 1-doped single crystal core; 2-quartz cladding; 3-quartz glass capillary rod; 4-quartz glass capillary; 5-thin-walled quartz tube; 6-quartz Glass filled rod; 7-quartz rod; 8-through hole; 9-capillary hole; 10-quartz cladding; 11-high-purity argon cylinder; 12-pressure display gauge; 13-rubber tube; 14-furnace heating element; 15-tungsten tube; 16-heating furnace; 17-porous capillary; 18-rubber tube; 19-vacuum pump; 20-alumina fiber mat; 21-tungsten crucible; 22-platinum crucible; 23-melt; 24-zirconia Insulation sand; 25-external thread; 26-inner hole; 27-external thread; 28-conical hole; 29-internal thread; 30-inner hole; 31-sealing cap hole; 32-inner thread; 33-optical fiber rotation Fixture; 34-microelectric heating furnace; 35-doped polycrystalline multi-core optical fiber; 36-guide rail; 37-single crystal core; 38-quartz cladding; 39-core melting zone; 40-polycrystalline core; 41- Solid-liquid interface between polycrystalline core and melting zone; 42-solid-liquid interface between single crystal core and melting zone; I-compound asymmetric double-hole optical fiber preform; II-welded asymmetric double-hole optical fiber preform; Ⅲ-Asymmetric double-hole capillary; Ⅳ-Double crucible; Ⅴ-Sealing cover of the outer crucible; Ⅵ-Sealing gasket of the outer crucible; Ⅶ-Sealing nut on the outer crucible ; Single crystal zone temperature; T 2 - melting zone temperature; T 3 - polycrystalline zone temperature.
实施例一Embodiment one
图1是本发明的第一种镁离子掺杂铌酸锂单晶双芯光纤的横截面示意图,纤芯1为镁离子掺杂铌酸锂单晶,纤芯位置呈非对称分布,包层2为石英,纤芯1的折射率大于包层2的折射率。Fig. 1 is a schematic cross-sectional view of the first magnesium ion-doped lithium niobate single crystal double-core optical fiber of the present invention, the core 1 is a magnesium ion doped lithium niobate single crystal, the core position is asymmetrically distributed, and the cladding 2 is quartz, and the refractive index of the core 1 is greater than that of the cladding 2.
在本发明的制造过程中用到了内、外双坩埚。结合图6,外坩埚21采用钨材质,上面带有钨材质密封盖Ⅴ,二者之间填充耐高温(1800℃)的氧化铝纤维密封垫Ⅵ,外坩埚密封盖Ⅴ上含有一密封螺帽Ⅶ,多孔毛细管17穿过密封螺帽Ⅶ上的小孔31和坩埚密封盖Ⅴ上的圆锥形孔28后,插入到内坩埚的熔体23中,多孔毛细管与圆锥形孔之间的空隙采用氧化铝纤维垫20进行密封。内坩埚22采用铂金材质,里面盛装掺杂多晶粉,内、外坩埚之间的缝隙填充有氧化锆保温砂24,起到保温和固定内坩埚22作用;结合图7,坩埚密封盖Ⅴ含有两凸起的内孔,其中一凸起内孔带外螺纹25和微小内孔26,高纯惰性气体从孔26中注入到外坩埚21内部,另一凸起内孔带外螺纹27和圆锥形内孔28,圆锥形内孔28填充有氧化铝纤维密封垫20,坩埚密封盖Ⅴ带有内螺纹29,它与坩埚21上的外螺纹配合密封连接;结合图8,氧化铝纤维密封垫Ⅵ上带有两圆形孔30,其中一圆孔与密封盖Ⅴ上的小孔26相通,另一圆孔与密封盖Ⅴ上的圆锥形孔28相通;结合图9,密封螺帽Ⅶ带有一小孔31,光纤17穿过此孔,螺帽内表面带有内螺纹32,它与外坩埚密封盖Ⅴ上凸起内孔的外螺纹27配合密封连接。Used inner and outer double crucibles in the manufacturing process of the present invention. Referring to Fig. 6, the outer crucible 21 is made of tungsten material, with a tungsten sealing cover V on it, and a high temperature resistant (1800°C) alumina fiber sealing gasket VI is filled between the two, and a sealing nut is included on the outer crucible sealing cover V VII, after the porous capillary 17 passes through the small hole 31 on the sealing nut VII and the conical hole 28 on the crucible sealing cover V, it is inserted into the melt 23 of the inner crucible, and the gap between the porous capillary and the conical hole adopts Alumina fiber mat 20 is used for sealing. The inner crucible 22 is made of platinum, which is filled with doped polycrystalline powder. The gap between the inner and outer crucibles is filled with zirconia heat insulating sand 24, which plays the role of heat preservation and fixing the inner crucible 22; referring to FIG. 7, the crucible sealing cover V contains Two raised inner holes, one of which has an external thread 25 and a tiny inner hole 26, high-purity inert gas is injected into the outer crucible 21 from the hole 26, and the other raised inner hole has an external thread 27 and a conical Shaped inner hole 28, conical inner hole 28 is filled with alumina fiber sealing pad 20, crucible sealing cover V has internal thread 29, and it cooperates with the external thread on the crucible 21 to be sealed and connected; In conjunction with Fig. 8, alumina fiber sealing pad There are two circular holes 30 on the VI, one of which communicates with the small hole 26 on the sealing cover V, and the other circular hole communicates with the conical hole 28 on the sealing cover V; in conjunction with Fig. 9, the sealing nut VII has There is a small hole 31 through which the optical fiber 17 passes, and the inner surface of the nut has an internal thread 32, which cooperates with the external thread 27 of the raised inner hole on the outer crucible sealing cover V to be sealed and connected.
结合图2至图5、图10和图11,实施例一所示的镁离子掺杂铌酸锂单晶双芯光纤的制备方法包含以下步骤:With reference to Figures 2 to 5, Figure 10 and Figure 11, the preparation method of the magnesium ion-doped lithium niobate single crystal double-core optical fiber shown in Embodiment 1 includes the following steps:
1)选取长度为700mm外径为1mm的石英玻璃毛细棒3,密排六方堆积形成堆积束,将堆积束中的中心位置和一个非中心位置上的石英毛细棒替换为同等长度、内外径尺寸 的石英毛细管4,然后将堆积束装入一根内外径为长750mm的石英玻璃管5中,堆积束一侧端头露出石英玻璃管5的端面,堆积束与石英玻璃管5之间的空隙填充直径的石英毛细棒6,形成了复合式多孔光纤预制棒Ⅰ,如图2所示;用氢氧焰对多孔光纤预制棒一端进行加热密封,另一露出有堆积束的端头安装有抽气和充气装置,对毛细棒、毛细管和外层石英套管之间的空隙进行抽气,真空度维持在0.3×105Pa以上;对毛细管内部进行充气,使毛细管内部压力维持在~1000Pa;在拉丝塔上以1900℃以上的温度将多孔光纤预制棒拉制成外径的双孔毛细管Ⅲ,如图4所示,双孔毛细管包含两个的非对称形微孔9,以及石英包层10。1) Select a quartz glass capillary rod 3 with a length of 700 mm and an outer diameter of 1 mm, and close-packed hexagonal stacking to form a stacking bundle, and replace the quartz capillary rods at the central position and a non-central position in the stacking bundle with the same length and inner and outer diameters Quartz capillary 4, and then pack the stacked bundle into a In the quartz glass tube 5 with a length of 750mm, the end face of the quartz glass tube 5 is exposed at the end of one side of the accumulation bundle, and the gap filling diameter between the accumulation bundle and the quartz glass tube 5 is The quartz capillary rod 6 forms a composite porous optical fiber preform I, as shown in Figure 2; one end of the porous optical fiber preform is heated and sealed with an oxyhydrogen flame, and an exhaust and Inflatable device, which pumps air from the gap between the capillary rod, capillary and outer quartz sleeve, and maintains the vacuum degree above 0.3×10 5 Pa; inflates the inside of the capillary to maintain the internal pressure of the capillary at ~1000Pa; The holey optical fiber preform is drawn to the outer diameter at a temperature above 1900°C on the tower The double-hole capillary III, as shown in Figure 4, the double-hole capillary contains two The asymmetric micropore 9, and the quartz cladding 10.
2)将掺杂有微量氧化镁的同成分铌酸锂多晶粉(Li/Nb=48.6:51.4)放置于铂金坩埚22中,然后嵌套于钨坩埚21内,一起放入高温马弗炉16中,放置于马弗炉内的双孔毛细管17一端穿过坩埚密封盖Ⅴ上的圆锥形孔28后插入到铌酸锂多晶粉内,毛细管另一端穿过马弗炉后通过软管18与外部抽气装置19相连,带有内螺纹的钨管15一端与坩埚密封盖Ⅴ上的外螺纹25相连,钨管15另一端穿过马弗炉后通过软管13与外部高纯高压氩气瓶11相连接;将马弗炉升温到稍高于铌酸锂晶体熔点1250℃,但低于石英软化温度,使得坩埚中的掺杂多晶粉体完全熔化处于过热熔融状态,此时多孔毛细管仍保持石英玻璃固态,其一端没入到内坩埚的熔体23中;通过高纯氩气瓶11、压力显示表12、软管13和钨管15,向外坩21内部充入气体,维持恒定正压力0.2×106Mpa以上;通过真空泵19和软管18,对多孔毛细管孔17内部抽气,形成恒定负压0.5×105Mpa以上,在充气正压与抽气负压作用下,熔融液体23快速充满毛细管内的多孔中,维持正压和负压值不变,以程序控制降温方式降至室温,消除光纤内应力,纤芯熔体固化变成了多晶,形成掺镁铌酸锂多晶体双芯光纤35;2) Place lithium niobate polycrystalline powder of the same composition (Li/Nb=48.6:51.4) doped with a trace amount of magnesium oxide in a platinum crucible 22, then nested in a tungsten crucible 21, and put them into a high-temperature muffle furnace together In 16, one end of the double-hole capillary 17 placed in the muffle furnace passes through the conical hole 28 on the crucible sealing cover V and is inserted into the lithium niobate polycrystalline powder, and the other end of the capillary passes through the muffle furnace and passes through the hose 18 is connected with the external air extraction device 19, and one end of the tungsten tube 15 with internal thread is connected with the external thread 25 on the crucible sealing cover V, and the other end of the tungsten tube 15 passes through the muffle furnace and connects with the external high-purity high-pressure tube 13 through the hose 13. The argon cylinders 11 are connected; the temperature of the muffle furnace is raised to 1250°C slightly higher than the melting point of lithium niobate crystals, but lower than the softening temperature of quartz, so that the doped polycrystalline powder in the crucible is completely melted and is in an overheated melting state. At this time The porous capillary still maintains the solid state of quartz glass, and one end of the capillary is immersed in the melt 23 of the inner crucible; through the high-purity argon gas bottle 11, the pressure display gauge 12, the flexible pipe 13 and the tungsten tube 15, the outer crucible 21 is filled with gas, Maintain a constant positive pressure above 0.2×10 6 Mpa; through the vacuum pump 19 and hose 18, pump air inside the porous capillary hole 17 to form a constant negative pressure above 0.5×10 5 Mpa. , the molten liquid 23 quickly fills the pores in the capillary, maintains the positive and negative pressure values, and cools down to room temperature by program-controlled cooling to eliminate the internal stress of the optical fiber. The core melt solidifies and becomes polycrystalline, forming magnesium-doped Lithium niobate polycrystalline dual-core optical fiber 35;
3)将掺杂多晶体双芯光纤35放置于有旋转夹具33的水平光纤拉锥机上,如图10所示,光纤以~10r/min的速度旋转,微电加热炉34在步进电机带动下,沿导轨从一端向另一端以v=30~50mm/h速度缓慢移动加热光纤;微加热装置中心温稍高于铌酸锂纤芯多晶体熔点1250℃,但低于石英软化点温度1730℃。以其中一个纤芯为例,如图11所示,掺杂多晶体双芯光纤中的纤芯被加热成熔区39,两侧各有一个固液界面41和42,而外部包层38仍保持石英玻璃固态;在加热的纤芯区,熔区39与单晶体37之间的固液界面42的温度梯度为(T2-T1),该区域内,在微尺寸毛细管内孔及温度梯度动力作用下,纤芯熔体结晶形核、长大生成单晶体37,完成了纤芯的单晶化过程;另一固液界面41为微加热炉向前移动时熔区39与多晶体40之间的界面,该区域的温度梯度为(T1-T3),这里T2>T1=T3;当夹具33两端之间的光纤纤芯完成了单晶化后,移动未单晶化的光纤部分至旋转夹具两端,多次重复上述过程,这样整根掺杂多晶体双芯光纤中的纤芯都实现了单晶化。3) Place the doped polycrystalline double-core optical fiber 35 on a horizontal optical fiber tapering machine with a rotating fixture 33, as shown in Figure 10, the optical fiber rotates at a speed of ~10r/min, and the microelectric heating furnace 34 is driven by a stepping motor Next, move the heating fiber slowly from one end to the other along the guide rail at a speed of v=30-50mm/h; the central temperature of the micro-heating device is slightly higher than the melting point of lithium niobate core polycrystal at 1250°C, but lower than the softening point of quartz at 1730°C ℃. Taking one of the cores as an example, as shown in Figure 11, the core in the doped polycrystalline dual-core fiber is heated to form a melting zone 39, with a solid-liquid interface 41 and 42 on both sides, while the outer cladding 38 remains Keep the quartz glass solid; in the heated core area, the temperature gradient of the solid-liquid interface 42 between the melting zone 39 and the single crystal 37 is (T 2 -T 1 ), in this area, in the micro-sized capillary inner hole and the temperature gradient Under the action of power, the core melt crystallizes nucleation and grows to form a single crystal 37, completing the single crystallization process of the fiber core; another solid-liquid interface 41 is between the melting zone 39 and the polycrystal 40 when the micro-heating furnace moves forward. The interface between them, the temperature gradient in this region is (T 1 -T 3 ), where T 2 >T 1 =T 3 ; when the fiber core between the two ends of the clamp 33 has completed single crystallization, move the non-single crystal Repeat the above-mentioned process several times, so that the cores in the entire doped polycrystalline dual-core optical fiber are single-crystallized.
实施例二Embodiment two
结合图3和图4,本发明的另外一种镁离子掺杂铌酸锂单晶双芯光纤的制备方法为,在一段直径长度70mm的实心石英棒Ⅱ上打两个直径的孔8,然后在石英棒一端焊接上同等外径尺寸的薄壁石英管,用氢氧焰对多孔石英棒另一端进行加热密封,构成了焊接式双孔光纤预制棒,在石英管一端安装充气装置,对孔8内部进行充气,维持正压力在~1000Pa;在拉丝塔上以1900℃以上的温度将双孔光纤预制棒拉制成外径的双孔毛细管Ⅲ,双孔毛细管包含两个的非对称微孔9,以及石英包层10。其余工艺过程与实施例一相同。With reference to Fig. 3 and Fig. 4, the preparation method of another kind of magnesium ion doped lithium niobate single crystal double-core optical fiber of the present invention is, in a section of diameter Two diameters are punched on a solid quartz rod II with a length of 70mm 8 holes, and then weld a thin-walled quartz tube with the same outer diameter on one end of the quartz rod, heat and seal the other end of the porous quartz rod with an oxyhydrogen flame, forming a welded double-hole optical fiber preform, which is installed at one end of the quartz tube The inflating device is used to inflate the inside of the hole 8 to maintain a positive pressure of ~1000Pa; draw the double-hole optical fiber preform to the outer diameter at a temperature above 1900°C on the drawing tower The dual-bore capillary III, the dual-bore capillary contains two The asymmetric micropore 9, and the quartz cladding 10. All the other technological processes are identical with embodiment one.
根据本发明所阐述的掺杂单晶多芯光纤的制备方法,还可以实现纤芯不同排列结构的单晶多芯光纤。例如:根据掺杂单晶双芯光纤在包层圆形截面上的位置不同可以构成非对称形双芯光纤(如图1所示),对称形双芯光纤(如图12(a)所示)或者是其它任意角度位置关系的双芯光纤。相同的工艺方法可以制备出其它种类的掺杂单晶多芯光纤,如等腰三角形三芯光纤(如图12(b)所示),一字形三芯光纤(如图12(c)所示),长方形四芯光纤(如图12(d)所示),对称形五芯光纤(如图12(e)所示)等。According to the preparation method of the doped single-crystal multi-core optical fiber described in the present invention, single-crystal multi-core optical fibers with different arrangement structures of the cores can also be realized. For example: according to the different positions of the doped single-crystal dual-core fiber on the cladding circular cross-section, an asymmetrical dual-core fiber (as shown in Figure 1), and a symmetrical dual-core fiber (as shown in Figure 12(a) ) or any other dual-core optical fiber with any angular position relationship. The same process can prepare other types of doped single crystal multi-core optical fiber, such as isosceles triangular three-core optical fiber (as shown in Figure 12(b)), inline three-core optical fiber (as shown in Figure 12(c) ), rectangular four-core optical fiber (as shown in Figure 12(d)), symmetrical five-core optical fiber (as shown in Figure 12(e)), etc.
根据本发明所阐述的掺杂单晶多芯光纤的制备方法,根据纤芯材质以及掺杂离子不同,还可以实现不同单晶纤芯和掺杂的多芯光纤。例如:具有非线性效应的掺镁钽酸锂单晶多芯光纤(掺入物质为氧化镁,制备过程中,马弗炉和光纤拉锥机上电加热炉温度稍高于钽酸锂单晶熔点,但低于石英软化温度);掺磷或铝的半导体硅单晶多芯光纤(掺入物质为磷或铝单质,制备过程中,马弗炉和光纤拉锥机上电加热炉温度稍高于硅单晶熔点,但低于石英软化温度);具有激光特性的掺钐氟化钙单晶多芯光纤等(掺入物质为三氟化钐,制备过程中,马弗炉和光纤拉锥机上电加热炉温度稍高于氟化钙单晶熔点,但低于石英软化温度)。According to the preparation method of the doped single crystal multi-core optical fiber described in the present invention, different single crystal cores and doped multi-core optical fibers can also be realized according to different core materials and doping ions. For example: Magnesium-doped lithium tantalate single crystal multi-core fiber with nonlinear effect (the doped material is magnesium oxide, during the preparation process, the temperature of the electric heating furnace on the muffle furnace and optical fiber tapering machine is slightly higher than the melting point of lithium tantalate single crystal , but lower than the softening temperature of quartz); phosphorous or aluminum-doped semiconductor silicon single crystal multi-core optical fiber (the doped material is phosphorus or aluminum simple substance, during the preparation process, the temperature of the electric heating furnace on the muffle furnace and optical fiber tapering machine is slightly higher than The melting point of silicon single crystal, but lower than the softening temperature of quartz); samarium-doped calcium fluoride single-crystal multi-core optical fiber with laser characteristics, etc. (the doped substance is samarium trifluoride. The temperature of the electric heating furnace is slightly higher than the melting point of calcium fluoride single crystal, but lower than the softening temperature of quartz).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710258664.1A CN107151092B (en) | 2017-04-19 | 2017-04-19 | A preparation method of doped single crystal multi-core optical fiber and doped single crystal multi-core optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710258664.1A CN107151092B (en) | 2017-04-19 | 2017-04-19 | A preparation method of doped single crystal multi-core optical fiber and doped single crystal multi-core optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107151092A true CN107151092A (en) | 2017-09-12 |
CN107151092B CN107151092B (en) | 2019-09-27 |
Family
ID=59792641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710258664.1A Active CN107151092B (en) | 2017-04-19 | 2017-04-19 | A preparation method of doped single crystal multi-core optical fiber and doped single crystal multi-core optical fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107151092B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108411359A (en) * | 2018-02-27 | 2018-08-17 | 同济大学 | A kind of method of the interior growth Crystal cladding of metal tube |
CN108456926A (en) * | 2018-02-27 | 2018-08-28 | 同济大学 | A kind of method of the interior growth crystal optical fibre fibre core of Crystal cladding |
CN108594359A (en) * | 2018-05-09 | 2018-09-28 | 上海大学 | Niobic acid lithium doping silica fibre |
CN109592894A (en) * | 2018-12-25 | 2019-04-09 | 通鼎互联信息股份有限公司 | A kind of drawing optical fibers sealing device and encapsulating method |
CN111170629A (en) * | 2020-01-09 | 2020-05-19 | 华南理工大学 | Fiber core single crystallization post-processing method and fiber core single crystallization device |
CN111424318A (en) * | 2020-06-10 | 2020-07-17 | 眉山博雅新材料有限公司 | Method for preparing doped YAG single crystal optical fiber |
CN112255710A (en) * | 2020-11-03 | 2021-01-22 | 山东大学 | Full single crystal optical fiber modified based on ion implantation technology, preparation method, numerical aperture regulation and control and application thereof |
CN114355504A (en) * | 2021-12-16 | 2022-04-15 | 中科南京未来能源系统研究院 | A kind of preparation method of semiconductor core fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1605894A (en) * | 2004-11-18 | 2005-04-13 | 上海大学 | Magneto-optic effect photon crystal fiber and manufacturing method thereof |
CN102298170A (en) * | 2011-08-22 | 2011-12-28 | 北京交通大学 | Microstructure cladding monocrystalline optical fiber and preparation method |
-
2017
- 2017-04-19 CN CN201710258664.1A patent/CN107151092B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1605894A (en) * | 2004-11-18 | 2005-04-13 | 上海大学 | Magneto-optic effect photon crystal fiber and manufacturing method thereof |
CN102298170A (en) * | 2011-08-22 | 2011-12-28 | 北京交通大学 | Microstructure cladding monocrystalline optical fiber and preparation method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108411359A (en) * | 2018-02-27 | 2018-08-17 | 同济大学 | A kind of method of the interior growth Crystal cladding of metal tube |
CN108456926A (en) * | 2018-02-27 | 2018-08-28 | 同济大学 | A kind of method of the interior growth crystal optical fibre fibre core of Crystal cladding |
CN108411359B (en) * | 2018-02-27 | 2020-11-27 | 同济大学 | A method for growing crystal cladding in a metal tube |
CN108594359A (en) * | 2018-05-09 | 2018-09-28 | 上海大学 | Niobic acid lithium doping silica fibre |
CN109592894A (en) * | 2018-12-25 | 2019-04-09 | 通鼎互联信息股份有限公司 | A kind of drawing optical fibers sealing device and encapsulating method |
CN111170629A (en) * | 2020-01-09 | 2020-05-19 | 华南理工大学 | Fiber core single crystallization post-processing method and fiber core single crystallization device |
CN111170629B (en) * | 2020-01-09 | 2022-06-07 | 华南理工大学 | A kind of core single crystallization post-processing method and fiber core single crystallization device |
CN111424318A (en) * | 2020-06-10 | 2020-07-17 | 眉山博雅新材料有限公司 | Method for preparing doped YAG single crystal optical fiber |
US11136690B1 (en) | 2020-06-10 | 2021-10-05 | Meishan Boya Advanced Materials Co., Ltd. | Method for preparing doped yttrium aluminum garnet single crystal fiber by performing a cylindrical surface polishing operation and growing a cladding layer |
CN112255710A (en) * | 2020-11-03 | 2021-01-22 | 山东大学 | Full single crystal optical fiber modified based on ion implantation technology, preparation method, numerical aperture regulation and control and application thereof |
CN114355504A (en) * | 2021-12-16 | 2022-04-15 | 中科南京未来能源系统研究院 | A kind of preparation method of semiconductor core fiber |
CN114355504B (en) * | 2021-12-16 | 2024-03-12 | 中科南京未来能源系统研究院 | Preparation method of semiconductor core fiber |
Also Published As
Publication number | Publication date |
---|---|
CN107151092B (en) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107151092B (en) | A preparation method of doped single crystal multi-core optical fiber and doped single crystal multi-core optical fiber | |
CN106980152B (en) | Preparation method of embedded lithium niobate or lithium tantalate single crystal core fiber and single crystal core fiber | |
KR101997565B1 (en) | Method for producing monocrystalline silicon | |
JP4466813B2 (en) | Glass preform and method for producing the same | |
CN108418085B (en) | Full crystal optical fiber and cladding manufacturing process | |
CN106498488A (en) | Device for Simultaneous Growth of Multiple Doped CaF2 Crystals and Preparation Method Based on the Device | |
KR102038925B1 (en) | Silicon single crystal manufacturing method | |
TW202300714A (en) | Drawing method of single crystal silicon rod and single crystal silicon rod | |
TW202300715A (en) | Drawing method of single crystal silicon rod and single crystal silicon rod | |
CN109326333B (en) | Rapid growth of rare-earth crystal fiber by micro-pull-down method | |
CN117702275B (en) | Indium phosphide single crystal growth method based on double-layer crucible | |
CN111074337B (en) | Method and device for growing high-concentration titanium-doped sapphire crystals by guided mode method | |
CN100465357C (en) | Fluoride crystal manufacturing equipment | |
JP2013126926A (en) | Method for producing silicon single crystal | |
JP2012229134A (en) | Method for producing oxide eutectic body | |
JP4738174B2 (en) | Method for producing fluoride crystals | |
CN109402736B (en) | Optimization method for growing rare earth crystal optical fiber by micro-pulling down method | |
CN101328614A (en) | Yb and Er double-doped lead tungstate crystal up-conversion material and preparation method thereof | |
CN112695378A (en) | Crucible for growing bendable flexible rare earth single crystal optical fiber and method for growing bendable flexible rare earth single crystal optical fiber by micro-pulling-down method | |
CN215668286U (en) | Sapphire crystal growth crucible capable of adjusting temperature difference change | |
CN114318495B (en) | A large-size VGF method germanium single crystal growth device and method | |
CN221254774U (en) | Crucible for Czochralski silicon single crystal furnace | |
CN103553327B (en) | A kind of when making photonic crystal fiber by the device and method of hydraulic pressure automatic voltage regulation | |
WO2021087714A1 (en) | Thermal field device for synchronous preparation of crystal fiber and cladding, and preparation method therefor | |
TW201814091A (en) | Crystal seed growth furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |