CN107147472A - Physical-layer network coding method and device - Google Patents

Physical-layer network coding method and device Download PDF

Info

Publication number
CN107147472A
CN107147472A CN201710221409.XA CN201710221409A CN107147472A CN 107147472 A CN107147472 A CN 107147472A CN 201710221409 A CN201710221409 A CN 201710221409A CN 107147472 A CN107147472 A CN 107147472A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
mtd
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710221409.XA
Other languages
Chinese (zh)
Other versions
CN107147472B (en
Inventor
陈巍
于志江
郭欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710221409.XA priority Critical patent/CN107147472B/en
Publication of CN107147472A publication Critical patent/CN107147472A/en
Application granted granted Critical
Publication of CN107147472B publication Critical patent/CN107147472B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The present invention provides a kind of physical-layer network coding method and device, including sets the first source node, the second source node and via node;In the aliasing planisphere that via node is received, Euclidean distance is mapped to the same constellation point of new planisphere less than the point of predetermined threshold value;Control the decoding reliability of the first source node, the second source node respectively using two Euclidean distance constrained parameters;Set up optimization relation;Optimization relation is solved, to obtain the approximate optimal solution of the new planisphere of bilateral relay network and network code mapping mode under physical-layer network coding mechanism.Constellation G- Design under line can be achieved, on line the phase that source node (the first source node and the second source node) sends out planisphere is corrected according to channel coefficients, the computing load of via node can be reduced, the requirement to via node operational capability is reduced, time delay is reduced.

Description

Physical-layer network coding method and device
Technical field
The present invention relates to communication technical field, more particularly to a kind of physical-layer network coding method and device.
Background technology
Using the bidirectional relay system of physical-layer network coding mechanism compared with traditional relay system, imitated with higher spectrum And effect, the rate of information throughput of bilateral relay network can be improved 100% by it, so either educational circles or work in recent years Industry has carried out numerous studies to it.Want to come into operation the system, one is his star the problem of solving substantially The design of seat G- Design and network code mapping mode.
The network code mapping mode and planisphere design method gone out given in existing literature is carried out independently of one another, first Planned network coding mapping mode, designs planisphere afterwards.And network code mapping mode has been selected in source node planisphere In the case of carry out, planisphere used in its source node is QPSK, the common planisphere such as 16QAM, on this basis based on making in After planisphere points few principle as far as possible used in node, reflecting for network code is given by the way of nearest-neighbor first polymerize Mode is penetrated, and the network code mapping mode that only discuss using planisphere during for QPSK and 16QAM is designed.
Shape of the above method due to directly defining planisphere used in source node, equivalent to having added very strong hypothesis bar Part, so the network code mapping mode and planisphere designed by can not ensureing are to use double under physical-layer network coding mechanism To the optimal design mode of system.
The content of the invention
The present invention provides a kind of physical-layer network coding method and device, is compiled to solve the network designed by prior art The bilateral system of code mapping mode and planisphere in the case where using physical-layer network coding mechanism can not ensure as optimal design mode Defect.
One aspect of the present invention provides a kind of physical-layer network coding method, including:
Step 1, the first source node, the second source node and via node are set;
Step 2, in the aliasing planisphere via node received, the point that Euclidean distance is less than predetermined threshold value maps To the same constellation point of new planisphere, make satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, M and N represent described first respectively The exponent number of the planisphere of the exponent number of the planisphere of source node and second source node, h1And h2Represent channel coefficients, εRIt is default Threshold value, for adjusting the reliability that network code maps at via node;sij=C (ai,bj) represent to work as first source node Transmission signal ai, the second source node transmission signal bjWhen, the via node transmission signal sij, C represents that network code reflects Penetrate mode:
Step 3, two Euclidean distance constrained parameters ε are utilizedABTo control first source node, second source respectively The decoding reliability of node, makes satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Step 4, withFor object function, optimization relation is set up:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q
Wherein, ()HThe conjugate transposition of representing matrix;
Step 5, the optimization relation is solved, to obtain bilateral relay network under physical-layer network coding mechanism The approximate optimal solution of new planisphere and network code mapping mode.
Further, step 5 is specifically included:
Step 51, linear transformation and the first substitution of variable are carried out to the optimization relation, to obtain the first intermediate optima pass It is formula,
Wherein, n1、n2And n3The quantity accordingly constrained, n are represented respectively1、n2And n3It is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
Step 52, the first intermediate optima relational expression is converted to two suboptimums of quadratic constraints using the second substitution of variable Change problem, the double optimization problem expression formula of the quadratic constraints is:
z3 TFjz3>=0 ,=1,2 ..., n3
Wherein,cjRepresent coefficient vector;
Second substitution of variable is:
Wherein, pj,qjFor intermediate variable;
Step 53, the double optimization problem is solved, to obtain bi-directional relaying under physical-layer network coding mechanism The new planisphere of network and the approximate optimal solution of network code mapping mode.
Further, step 53 is specifically included:
Step 531, the double optimization problem is solved using semidefinite decoding algorithm, to obtain optimal solution X*
Step 532, stochastic approximation structured approach is carried out using Gaussian vectors method, from the optimal solution X*It is middle to extract described secondary The suboptimal solution of optimization problem, the suboptimal solution is approximate optimal solution.
Further, step 531 is specifically included:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH)
Wherein, Δ represents Arbitrary Coefficient matrix, xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, second optimization is converted to The expression formula of relational expression is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isBy described second Optimal relation relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
Using convex optimized algorithm, first Semidefinite Programming is solved, to obtain optimal solution X*
Further, step 53 is specifically included:
Step 533, using the 4th substitution of variable, the 5th substitution of variable and the 6th substitution of variable, the double optimization is asked Topic is converted to the 3rd optimal relation, wherein the 3rd optimal relation is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
5th substitution of variable is:
6th substitution of variable is:
Step 534, the order constraint rank (Z in the 3rd optimal relation are fallen in relaxation1)=1, rank (Z2)=1, rank (Z3The He of)=1To obtain relaxation problem, the relaxation problem expression formula is
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Step 535, the solution of the relaxation problem is converted into the solution of the second Semidefinite Programming, second semidefinite Planning problem is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Step 536, two suboptimum is extracted from the optimal solution of second Semidefinite Programming using Gaussian approximation The suboptimal solution of change problem, the suboptimal solution is approximate optimal solution.
Another aspect of the present invention provides a kind of physical-layer network coding device, including:
Setup module, for setting the first source node, the second source node and via node;
Mapping block, in the aliasing planisphere that receives the via node, Euclidean distance to be less than predetermined threshold value Point be mapped to the same constellation point of new planisphere, make satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, M and N represent described first respectively The exponent number of the planisphere of the exponent number of the planisphere of source node and second source node, h1And h2Represent channel coefficients, εRIt is default Threshold value, for adjusting the reliability that network code maps at via node;sij=C (ai,bj) represent to work as first source node Transmission signal ai, the second source node transmission signal bjWhen, the via node transmission signal sij, C represents that network code reflects Penetrate mode:
Control module, for utilizing two Euclidean distance constrained parameters εABTo control first source node, institute respectively The decoding reliability of the second source node is stated, makes satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Optimization relation sets up module, forFor object function, set up Following optimization relation:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q
Wherein, ()HThe conjugate transposition of representing matrix;
Solve module, for being solved to the optimization relation, with obtain under physical-layer network coding mechanism it is two-way in After the new planisphere and the approximate optimal solution of network code mapping mode of network.
Further, module is solved to specifically include:
First intermediate optima relational expression acquisition submodule, for carrying out linear transformation and the first variable to the optimization relation Replacement, to obtain the first intermediate optima relational expression,
Wherein, n1、n2And n3The quantity accordingly constrained, n are represented respectively1、n2And n3It is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
Double optimization problem expression formula acquisition submodule, using the second substitution of variable by the first intermediate optima relational expression The double optimization problem of quadratic constraints is converted to, the double optimization problem expression formula of the quadratic constraints is:
z3 TFjz3>=0 ,=1,2 ..., n3
Wherein,cjRepresent coefficient vector;
Second substitution of variable is:
Wherein, pj,qjFor intermediate variable;
Submodule is solved, for being solved to the double optimization problem, to obtain under physical-layer network coding mechanism The new planisphere of bilateral relay network and the approximate optimal solution of network code mapping mode.
Further, submodule is solved to specifically include:
Optimal solution acquisition submodule, for being solved using semidefinite decoding algorithm to the double optimization problem, to obtain Obtain optimal solution X*
First suboptimal solution acquisition submodule, for carrying out stochastic approximation structured approach using Gaussian vectors method, from described optimal Solve X*The middle suboptimal solution for extracting the double optimization problem, the suboptimal solution is approximate optimal solution.
Further, optimal solution acquisition submodule specifically for:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH)
Wherein, Δ represents Arbitrary Coefficient matrix, xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, second optimization is converted to The expression formula of relational expression is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isBy described second Optimal relation relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
Using convex optimized algorithm, first Semidefinite Programming is solved, to obtain optimal solution X*
Further, submodule is solved to specifically include:
3rd optimal relation acquisition submodule, for utilizing the 4th substitution of variable, the 5th substitution of variable and the 6th variable Replacement, is converted to the 3rd optimal relation, wherein the 3rd optimal relation is by the double optimization problem:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
5th substitution of variable is:
6th substitution of variable is:
Relaxation problem expression formula acquisition submodule, the order constraint rank in the 3rd optimal relation is fallen for relaxation (Z1)=1, rank (Z2)=1, rank (Z3The He of)=1To obtain relaxation problem, the relaxation problem expression formula is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Second Semidefinite Programming acquisition submodule, for the solution of the relaxation problem to be converted into the second Semidefinite Programming The solution of problem, second Semidefinite Programming is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Second suboptimal solution acquisition submodule, for utilizing optimal solution of the Gaussian approximation from second Semidefinite Programming The middle suboptimal solution for extracting the double optimization problem, the suboptimal solution is approximate optimal solution.
The physical-layer network coding method and device that the present invention is provided, can be achieved on constellation G- Design under line, line according to letter Road coefficient correction source node (the first source node and the second source node) sends out the phase of planisphere, can reduce the fortune of via node Load is calculated, the requirement to via node operational capability is reduced, time delay is reduced.In addition, in the case of designing planisphere under online Channel self-adapting can be realized, in power limited, selection meets the planisphere with maximum M and N of power limit.In constraint In the case of minimum European code distance, M and N are bigger, the rate of information throughput may be bigger.
Brief description of the drawings
The invention will be described in more detail below based on embodiments and refering to the accompanying drawings.Wherein:
Fig. 1 is the physical-layer network coding method flow schematic diagram that the embodiment of the present invention one is provided;
Fig. 2 is the nodal analysis method figure that the embodiment of the present invention one is provided;
Fig. 3 is the analog domain mapping rule schematic diagram that the embodiment of the present invention one is provided;
Fig. 4 is the physical-layer network coding method flow schematic diagram that the embodiment of the present invention two is provided;
Fig. 5 is that the embodiment of the present invention two provides planisphere and network code mapping mode schematic diagram;
Fig. 6 is the physical-layer network coding method flow schematic diagram that the embodiment of the present invention three is provided;
Fig. 7 is that the embodiment of the present invention three provides planisphere and network code mapping mode schematic diagram;
Fig. 8 is the physical-layer network coding apparatus structure schematic diagram that the embodiment of the present invention four is provided;
Fig. 9 is the physical-layer network coding apparatus structure schematic diagram that the embodiment of the present invention five is provided;
Figure 10 is the physical-layer network coding apparatus structure schematic diagram that the embodiment of the present invention six is provided.
In the accompanying drawings, identical part uses identical reference.Accompanying drawing is not drawn according to actual ratio.
Embodiment
Below in conjunction with accompanying drawing, the invention will be further described.
Embodiment one
Fig. 1 is refer to, the present invention provides a kind of physical-layer network coding method, including:
Step 1, the first source node, the second source node and via node are set.
As shown in Fig. 2 the present embodiment uses physical-layer network coding mechanism, when completion primary information interaction needs two Gap, first the first source node S of time slot N1(DN1) and the second source node S N2(DN1) while sending signal to via node RN.This When, to via node RN send two paths of signals can at via node RN aliasing, the first source node S N1(DN1) and the second source section Point SN2(DN1) signal of the aliasing received is mapped on its planisphere.In second time slot, via node RN is simultaneously to two Individual destination node (the first source node S N1With the second source node S N2) broadcasted, destination node can according to existing prior information To be successfully decoded.
Step 2, in the aliasing planisphere via node received, the point that Euclidean distance is less than predetermined threshold value maps To same constellation point, make satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0.
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, apFor the element in A, bqFor in B Element, spqFor the element in S, M and N represent the exponent number and the planisphere of the second source node of the planisphere of the first source node respectively Exponent number, h1And h2Represent channel coefficients, εRFor predetermined threshold value, the reliability for adjusting network code mapping at via node; sij=C (ai,bj) represent to work as the first source node transmission signal ai, the second source node transmission signal bjWhen, the relaying Node transmission signal sij, C represents network code mapping mode:
akFor the element in A, bkFor the element in B, k is subscript.
As shown in figure 3, Fig. 3 left figure represents the aliasing planisphere that via node (RN) is received, right figure is via node RN is used for the planisphere broadcasted, that is, the new planisphere being mapped to.According to analog domain mapping rule, received in via node RN Aliasing planisphere in, Euclidean distance be less than predetermined threshold value point will be mapped to that a constellation point.Above and below the criterion has been unified Capable constellation G- Design, and ensure that the reliability that network code maps at via node.
Step 3, two Euclidean distance constrained parameters ε are utilizedABTo control first source node, second source respectively The decoding reliability of node, makes satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S。
Specifically, wanting in destination node (the first source node S N1With the second source node S N2) place successfully realizes decoding, one Necessary condition is that network code mapping mode C need to meet following rule (Exclusive Law):
Planisphere S={ s i.e. used in via node RNij| i=1 ..., M, j=1 ..., N } it must is fulfilled for following condition:
By using two Euclidean distance constrained parameters εABTo control the first source node S N respectively1With the second source node SN2Decoding reliability (error sign ratio), so above rule can be converted into following expression:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Step 4, withFor object function, following optimization relation is set up:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q.
Wherein, ()HThe conjugate transposition of representing matrix.
Specifically, for a communication system, in the case where error sign ratio and the rate of information throughput are certain, hair used Penetrate power lower, system is more excellent.So the average emitted power of the system of definition is:
And using it as object function, set up following optimization relation:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q.
The optimal constellation figure of bilateral relay network under physical-layer network coding mechanism can be obtained by solving problem above With the layout strategy of network code mapping mode.
Step 5, the optimization relation is solved, to obtain bilateral relay network under physical-layer network coding mechanism The approximate optimal solution of new planisphere and network code mapping mode.
Specifically, as carried out using Enhanced-SDR algorithms and Fast-relaxation algorithms to the optimization relation Solve, Enhanced-SDR algorithms and the planisphere and network code mapping mode designed by Fast-relaxation algorithms, with BPSK, QPSK, 8QAM is respectively adopted and compares using one-to-one mapping and three nodes in the prior art, there is larger erratum number Rate performance gain.
The physical-layer network coding method that the present embodiment is provided, can be achieved on constellation G- Design under line, line according to channel system Number correction source node (the first source node S N1With the second source node S N2) phase of planisphere is sent out, via node can be reduced Computing load, reduces the requirement to via node operational capability, reduces time delay.In addition, designing the situation of planisphere under online Under can realize channel self-adapting, in power limited, selection meets the planisphere with maximum M and N of power limit.About In the case of the minimum European code distance of beam, M and N are bigger, the rate of information throughput may be bigger.
Embodiment two
As shown in figure 4, the present embodiment provides a kind of physical-layer network coding method, wherein, step 5 is specifically included:
Step 51, linear transformation and the first substitution of variable are carried out to the optimization relation, to obtain the first intermediate optima pass It is formula,
Wherein, n1、n2And n3The quantity accordingly constrained, n are represented respectively1、n2And n3It is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
Step 52, the first intermediate optima relational expression is converted to two suboptimums of quadratic constraints using the second substitution of variable Change problem, the double optimization problem expression formula of the quadratic constraints is:
z3 TFjz3>=0 ,=1,2 ..., n3.
Wherein,
Second substitution of variable is:
Wherein, pj,qjFor intermediate variable;
Step 53, the double optimization problem is solved, to obtain bi-directional relaying under physical-layer network coding mechanism The new planisphere of network and the approximate optimal solution of network code mapping mode.
Further, the solution procedure of step 53 is carried out specifically using Enhanced-SDR algorithms in the present embodiment Bright, step 53 is specifically included:
Step 531, the double optimization problem is solved using semidefinite decoding algorithm, to obtain optimal solution X*
Specifically, step 531 is specifically included:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH).
xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, second optimization is converted to The expression formula of relational expression is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isBy described second Optimal relation relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
Using convex optimized algorithm, first Semidefinite Programming (SDP) is solved, to obtain optimal solution X*.Using convex excellent Change related algorithm, such as Newton method, interior point method can solve this SDP problem in polynomial complexity.
Step 532, stochastic approximation structured approach is carried out using Gaussian vectors method, from the optimal solution X*It is middle to extract described secondary The suboptimal solution of optimization problem, the suboptimal solution is approximate optimal solution.
The flow of stochastic approximation structured approach is as follows:
The first step:Generation
Second step:Construction(Interior element is descending constellation point)
3rd step:On the premise of without prejudice to Exclusive Law, merge as much as possibleIn point (points it is fewer, European code distance is bigger under same transmission power;Other 2 points of fusions, which at least have a kind of mode, can reduce target function value, i.e., Average emitted power).Exclusive Law are the necessary conditions for ensureing to be successfully decoded, and content is as follows:
Wherein C (aj,bi) etc. be the constellation point to be mapped to, i.e.,In point.
4th step:Generation
5th step:ConstructionAll H are included in wherein M1iWith withCorresponding Part Di,Mean not merge.
6th step:According to circumstances repeat the first to the 5th step NrandIt is secondary, ask for:
ChooseIt is used as output result.
In the case of constellation order M=2, N=4, Nrand=107When its designed by planisphere and network code reflect Penetrate mode as shown in Figure 5.
Embodiment three
When computing resource is limited, algorithm for design needs have lower complexity, in order to realize communication performance With the compromise of computing resource, Fast-relaxation algorithms can be used, this algorithm can be with compared with Enhanced-SDR algorithms Further greatly reduce computation complexity.
The basic thought of Fast-relaxation algorithms is still first loose, then stochastic approximation.Calculated with Enhanced-SDR Unlike method, this algorithm does not introduce new variable, and takes full advantage of the relation in constraint between each coefficient, by institute Some redundant constaints obtained in relaxation problem are simplified, so as to greatly reduce the solving complexity of relaxation problem.
The present embodiment is carried out specific using Fast-relaxation algorithms to the solution procedure of the step 53 in embodiment two Illustrate, as shown in fig. 6, the present embodiment provides a kind of physical-layer network coding method, wherein, step 53 is specifically included:
Step 533, using the 4th substitution of variable, the 5th substitution of variable and the 6th substitution of variable, the double optimization is asked Topic is converted to the 3rd optimal relation, wherein the 3rd optimal relation is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
5th substitution of variable is:
6th substitution of variable is:
Step 534, the order constraint rank (Z in the 3rd optimal relation are fallen in relaxation1)=1, rank (Z2)=1, rank (Z3The He of)=1To obtain relaxation problem, the relaxation problem expression formula is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Step 535, the solution of the relaxation problem is converted into the solution of the second Semidefinite Programming, second semidefinite Planning problem is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Specifically, because the presence of a large amount of non-convex quadratic constraints, gained problem is still non-convex.But by each Relation between constraint function coefficient is understood, works as Z4When=0, it is possible to use the 4th group of constraint, i.e., the 4th group are released in first three groups constraint Constraint is redundancy.It follows that the solution of above relaxation problem, can be converted into asking for the 2nd SDP (Semidefinite Programming) problems Solution.
Step 536, two suboptimum is extracted from the optimal solution of second Semidefinite Programming using Gaussian approximation The suboptimal solution of change problem, the suboptimal solution is approximate optimal solution.
Specifically, similar to Enhanced-SDR algorithms, proposing a kind of Gauss for Fast-relaxation algorithms near Like method with the solution of the former problem of extraction from the optimal solution of relaxation problem, i.e., new planisphere.With Enhanced-SDR Algorithm for Solving mistakes Unlike journey, the constellation point for going to merge descending planisphere as much as possible is not selected, so as to ensure that gained solution is realized The possibility of global optimum.
Gaussian approximation flow is as follows:
The first step:Generation
Second step:Construction(Interior element is descending constellation point);
3rd step:, will on the premise of without prejudice to Exclusive LawThe close point fusion of middle-range.(do not have herein There is selection to go fusion as much as possible, remain the possibility for asking for global optimum;2 points of fusions at least have a kind of mode can To reduce target function value, i.e. average emitted power).
4th step:GenerationWherein,
5th step:ConstructionAll coefficient matrix F are included in wherein Mi,GjDimension mend 0 expand Exhibition, Yi JiyuCorresponding part Mean corresponding constellation Point is not merged.
6th step:According to circumstances repeat the first to the 5th step NrandIt is secondary, ask for:
ChooseIt is used as output result.
Finally, the performance to Fast-relaxation algorithms carries out theory analysis, and obtained this algorithm in detail Approximation ratio:
Wherein,Represent the average emitted power of designed planisphere, voptThe transmission power of representation theory optimal constellation figure, m1,m2,m3It is the number accordingly constrained in optimization problem, it is planisphere order of modulation M, N function.
According to Fast-relaxation algorithms, in M=2, N=4, Nrand=107In the case of designed planisphere and Network code mapping mode is as shown in Figure 7.
Example IV
As shown in figure 8, the present embodiment provides a kind of physical-layer network coding device, including setup module 201, mapping block 202nd, control module 203, optimization relation set up module 204 and solve module 205.
Wherein, setup module 201, for setting the first source node, the second source node and via node;
Mapping block 202, in the aliasing planisphere that receives the via node, Euclidean distance to be less than default threshold The point of value is mapped to the same constellation point of new planisphere, makes satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0.
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, M and N represent that the first source is saved respectively The exponent number of the exponent number of the planisphere of point and the planisphere of the second source node, h1And h2Represent channel coefficients, εRFor predetermined threshold value, use The reliability of network code mapping at adjustment via node;sij=C (ai,bj) represent to work as the first source node transmission signal ai, the second source node transmission signal bjWhen, the via node transmission signal sij, C represents network code mapping mode:
Control module 203, for utilizing two Euclidean distance constrained parameters εABCome control respectively first source node, The decoding reliability of second source node, makes satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Optimization relation sets up module 204, forFor object function, Set up following optimization relation:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q.
Module 205 is solved, it is two-way under physical-layer network coding mechanism to obtain for being solved to the optimization relation The new planisphere of junction network and the approximate optimal solution of network code mapping mode.
Example IV be with the corresponding device embodiment of embodiment one, for details, reference can be made to the record in embodiment one, herein Repeat no more.
Embodiment five
As shown in figure 9, the present embodiment provides a kind of physical-layer network coding device, wherein, solve module 205 and specifically wrap Include:
First intermediate optima relational expression acquisition submodule 2051, for carrying out linear transformation and first to the optimization relation Substitution of variable, to obtain the first intermediate optima relational expression,
Wherein, n1、n2And n3The quantity accordingly constrained is represented respectively, is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
Double optimization problem expression formula acquisition submodule 2052, is closed first intermediate optima using the second substitution of variable It is the double optimization problem that formula is converted to quadratic constraints, the double optimization problem expression formula of the quadratic constraints is:
z3 TFjz3>=0 ,=1,2 ..., n3.
Wherein,
Second substitution of variable is:
Wherein, pj,qjFor intermediate variable;
Submodule 2053 is solved, for being solved to the double optimization problem, to obtain physical-layer network coding machine The new planisphere and the approximate optimal solution of network code mapping mode of the lower bilateral relay network of system.
Further, submodule 2053 is solved to specifically include:
Optimal solution acquisition submodule 2053a, for being solved using semidefinite decoding algorithm to the double optimization problem, To obtain optimal solution X*
Further, optimal solution acquisition submodule 2053a specifically for:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH).
xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, second optimization is converted to The expression formula of relational expression is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isBy described second Optimal relation relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
s.t.tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
Using convex optimized algorithm, first Semidefinite Programming is solved, to obtain optimal solution X*
First suboptimal solution acquisition submodule 2053b, for carrying out stochastic approximation structured approach using Gaussian vectors method, from described Optimal solution X*The middle suboptimal solution for extracting the double optimization problem, the suboptimal solution is approximate optimal solution.
Embodiment five be with the corresponding device embodiment of embodiment two, for details, reference can be made to the record in embodiment two, herein Repeat no more.
Embodiment six
As shown in Figure 10, the present embodiment provides a kind of physical-layer network coding device, wherein, solve submodule 2053 specific Including:
3rd optimal relation acquisition submodule 2054a, for utilizing the 4th substitution of variable, the 5th substitution of variable and the 6th Substitution of variable, the 3rd optimal relation is converted to by the double optimization problem, wherein the 3rd optimal relation is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
5th substitution of variable is:
6th substitution of variable is:
Relaxation problem expression formula acquisition submodule 2054b, the order constraint in the 3rd optimal relation is fallen for relaxation rank(Z1)=1, rank (Z2)=1, rank (Z3The He of)=1To obtain relaxation problem, the relaxation problem expression Formula is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Second Semidefinite Programming acquisition submodule 2054c, for the solution of the relaxation problem to be converted into the second half Determine the solution of planning problem, second Semidefinite Programming is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t.tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Second suboptimal solution acquisition submodule 2054d, for utilizing Gaussian approximation from second Semidefinite Programming The suboptimal solution of the double optimization problem is extracted in optimal solution, the suboptimal solution is approximate optimal solution.
Embodiment six be with the corresponding device embodiment of embodiment three, for details, reference can be made to the record in embodiment three, herein Repeat no more.
Although by reference to preferred embodiment, invention has been described, is not departing from the situation of the scope of the present invention Under, various improvement can be carried out to it and part therein can be replaced with equivalent.Especially, as long as in the absence of structure punching Prominent, the every technical characteristic being previously mentioned in each embodiment can combine in any way.The invention is not limited in text Disclosed in specific embodiment, but all technical schemes including falling within the scope of the appended claims.

Claims (10)

1. a kind of physical-layer network coding method, it is characterised in that including:
Step 1, the first source node, the second source node and via node are set;
Step 2, in the aliasing planisphere via node received, the point that Euclidean distance is less than predetermined threshold value is mapped to newly The same constellation point of planisphere, makes satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, M and N represent described first respectively The exponent number of the planisphere of the exponent number of the planisphere of source node and second source node, h1And h2Represent channel coefficients, εRIt is default Threshold value, for adjusting the reliability that network code maps at via node;sij=C (ai,bj) represent to work as first source node Transmission signal ai, the second source node transmission signal bjWhen, the via node transmission signal sij, C represents that network code reflects Penetrate mode:
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;NotEqual;</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>&amp;NotEqual;</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> <mo>,</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow>
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;NotEqual;</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>&amp;NotEqual;</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow>
Step 3, two Euclidean distance constrained parameters ε are utilizedABTo control first source node, second source node respectively Decoding reliability, make satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Step 4, withFor object function, optimization relation is set up:
<mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>S</mi> </mrow> </munder> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <msup> <mi>A</mi> <mi>H</mi> </msup> <mi>A</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <mi>B</mi> <mi>H</mi> </msup> <mi>B</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <msup> <mrow> <mo>|</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>A</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>B</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>S</mi> </mrow>
<mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>R</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow>
<mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>R</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow>
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q
Wherein, ()HThe conjugate transposition of representing matrix;
Step 5, the optimization relation is solved, to obtain the nova of bilateral relay network under physical-layer network coding mechanism The approximate optimal solution of seat figure and network code mapping mode.
2. physical-layer network coding method according to claim 1, it is characterised in that step 5 is specifically included:
Step 51, linear transformation and the first substitution of variable are carried out to the optimization relation, to obtain the first intermediate optima relational expression,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> 1
<mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>(</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>n</mi> <mn>3</mn> </msub> </mrow>
Wherein, n1、n2And n3The quantity accordingly constrained, n are represented respectively1、n2And n3It is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
<mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <msqrt> <mi>M</mi> </msqrt> </mfrac> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <msqrt> <mi>N</mi> </msqrt> </mfrac> <msup> <mi>B</mi> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mi>M</mi> <mo>+</mo> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msqrt> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mn>11</mn> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>...</mo> <msub> <mi>s</mi> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mn>1</mn> <mo>&amp;times;</mo> <mi>M</mi> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
Step 52, the double optimization that the first intermediate optima relational expression is converted to quadratic constraints is asked using the second substitution of variable Inscribe, the double optimization problem expression formula of the quadratic constraints is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msubsup> <mi>c</mi> <mi>j</mi> <mi>T</mi> </msubsup> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>d</mi> <mi>j</mi> <mi>T</mi> </msubsup> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msup> <msub> <mi>z</mi> <mn>3</mn> </msub> <mi>T</mi> </msup> <msub> <mi>F</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>3</mn> </msub> </mrow>
Wherein,cjRepresent coefficient vector;
Second substitution of variable is:
<mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow>
<mrow> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow>
Wherein, pj,qjFor intermediate variable;
Step 53, the double optimization problem is solved, to obtain bilateral relay network under physical-layer network coding mechanism New planisphere and network code mapping mode approximate optimal solution.
3. physical-layer network coding method according to claim 2, it is characterised in that step 53 is specifically included:
Step 531, the double optimization problem is solved using semidefinite decoding algorithm, to obtain optimal solution X*
Step 532, stochastic approximation structured approach is carried out using Gaussian vectors method, from the optimal solution X*It is middle to extract the double optimization The suboptimal solution of problem, the suboptimal solution is approximate optimal solution.
4. physical-layer network coding method according to claim 3, it is characterised in that step 531 is specifically included:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH)
Wherein, Δ represents Arbitrary Coefficient matrix, xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, the second optimization relation is converted to The expression formula of formula is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t. tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
<mrow> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <msubsup> <mi>z</mi> <mn>3</mn> <mi>H</mi> </msubsup> </mrow>
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isDescribed second is optimized Relational expression relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t. tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>z</mi> <mn>3</mn> <mi>H</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;PlusMinus;</mo> <mn>0</mn> </mrow>
Using convex optimized algorithm, first Semidefinite Programming is solved, to obtain optimal solution X*
5. physical-layer network coding method according to claim 3, it is characterised in that step 53 is specifically included:
Step 533, using the 4th substitution of variable, the 5th substitution of variable and the 6th substitution of variable, the double optimization problem is turned The 3rd optimal relation is changed to, wherein the 3rd optimal relation is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
<mrow> <mo>&amp;lsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;PlusMinus;</mo> <mn>2</mn> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow>
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
<mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> </mrow>
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
<mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>M</mi> </msqrt> </mfrac> <mi>A</mi> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mi>M</mi> </msup> <mo>;</mo> </mrow>
<mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>N</mi> </msqrt> </mfrac> <mi>B</mi> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mi>N</mi> </msup> <mo>;</mo> </mrow> 3
<mrow> <msubsup> <mi>z</mi> <mn>3</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msqrt> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mn>11</mn> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>...</mo> <msub> <mi>s</mi> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mn>1</mn> <mo>&amp;times;</mo> <mi>M</mi> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
5th substitution of variable is:
<msubsup> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>f</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> </msubsup>
<msubsup> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>g</mi> <mi>j</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> </msubsup>
<msubsup> <mrow> <mo>{</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <msubsup> <mi>h</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>3</mn> </msub> </msubsup>
<mrow> <msubsup> <mrow> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <msubsup> <mi>d</mi> <mi>k</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>;</mo> </mrow>
6th substitution of variable is:
<mrow> <msubsup> <mrow> <mo>{</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <msubsup> <mi>z</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <mo>;</mo> </mrow>
Step 534, the order constraint rank (Z in the 3rd optimal relation are fallen in relaxation1)=1, rank (Z2)=1, rank (Z3) =1 HeTo obtain relaxation problem, the relaxation problem expression formula is
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
<mrow> <mo>&amp;lsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;PlusMinus;</mo> <mn>2</mn> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow>
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Step 535, the solution of the relaxation problem is converted into the solution of the second Semidefinite Programming, second Semidefinite Programming Problem is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Step 536, the double optimization is extracted from the optimal solution of second Semidefinite Programming using Gaussian approximation to ask The suboptimal solution of topic, the suboptimal solution is approximate optimal solution.
6. a kind of physical-layer network coding device, it is characterised in that including:
Setup module, for setting the first source node, the second source node and via node;
Mapping block, in the aliasing planisphere that receives the via node, Euclidean distance to be less than the point of predetermined threshold value The same constellation point of new planisphere is mapped to, makes satisfaction:
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
Wherein, the planisphere used in first source node, second source node and the via node is respectively A= {a1,...,aM, B={ b1,...,bN, S={ sij| i=1 ..., M, j=1 ..., N }, M and N represent described first respectively The exponent number of the planisphere of the exponent number of the planisphere of source node and second source node, h1And h2Represent channel coefficients, εRIt is default Threshold value, for adjusting the reliability that network code maps at via node;sij=C (ai,bj) represent to work as first source node Transmission signal ai, the second source node transmission signal bjWhen, the via node transmission signal sij, C represents that network code reflects Penetrate mode:
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;NotEqual;</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>&amp;NotEqual;</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> <mo>,</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow>
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;NotEqual;</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>&amp;NotEqual;</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow>
Control module, for utilizing two Euclidean distance constrained parameters εABTo control first source node, described respectively The decoding reliability of two source nodes, makes satisfaction:
|sij-sik|2≥εA,sij≠sik∈S
|sji-ski|2≥εB,sji≠ski∈S
Optimization relation sets up module, forFor object function, set up as follows Optimization relation:
<mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>S</mi> </mrow> </munder> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <msup> <mi>A</mi> <mi>H</mi> </msup> <mi>A</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <msup> <mi>B</mi> <mi>H</mi> </msup> <mi>B</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <msup> <mrow> <mo>|</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>A</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>B</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>s</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>S</mi> </mrow>
<mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>R</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow>
<mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>R</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow>
[|(h1ai+h2bj)-(h1ap+h2bq)|2R]|sij-spq|2≥0
ai,ap∈A,bj,bq∈B,sij,spq∈S,i≠p,j≠q
Wherein, ()HThe conjugate transposition of representing matrix;
Module is solved, for being solved to the optimization relation, to obtain bi-directional relaying net under physical-layer network coding mechanism The new planisphere of network and the approximate optimal solution of network code mapping mode.
7. physical-layer network coding device according to claim 6, it is characterised in that solve module and specifically include:
First intermediate optima relational expression acquisition submodule, for carrying out linear transformation and the first variable generation to the optimization relation Change, to obtain the first intermediate optima relational expression,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow>
<mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>(</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>n</mi> <mn>3</mn> </msub> </mrow>
Wherein, n1、n2And n3The quantity accordingly constrained, n are represented respectively1、n2And n3It is exponent number M and N function,Represent corresponding coefficient matrix;z1And z2The up planisphere of design is respectively needed with Planetary figure;
First substitution of variable is specially:
<mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <msqrt> <mi>M</mi> </msqrt> </mfrac> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <msqrt> <mi>N</mi> </msqrt> </mfrac> <msup> <mi>B</mi> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mi>M</mi> <mo>+</mo> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msqrt> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mn>11</mn> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>...</mo> <msub> <mi>s</mi> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mn>1</mn> <mo>&amp;times;</mo> <mi>M</mi> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
Double optimization problem expression formula acquisition submodule, is changed the first intermediate optima relational expression using the second substitution of variable For the double optimization problem of quadratic constraints, the double optimization problem expression formula of the quadratic constraints is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>H</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msubsup> <mi>c</mi> <mi>j</mi> <mi>T</mi> </msubsup> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>d</mi> <mi>j</mi> <mi>T</mi> </msubsup> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow>
z3 TFjz3>=0 ,=1,2 ..., n3
Wherein,cjRepresent coefficient vector;
Second substitution of variable is:
<mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <msub> <mi>D</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow>
<mrow> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>z</mi> <mn>2</mn> <mi>H</mi> </msubsup> <msub> <mi>E</mi> <mi>j</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow>
Wherein, pj,qjFor intermediate variable;
Submodule is solved, it is two-way under physical-layer network coding mechanism to obtain for being solved to the double optimization problem The new planisphere of junction network and the approximate optimal solution of network code mapping mode.
8. physical-layer network coding device according to claim 7, it is characterised in that solve submodule and specifically include:
Optimal solution acquisition submodule, for being solved using semidefinite decoding algorithm to the double optimization problem, to obtain most Excellent solution X*
First suboptimal solution acquisition submodule, for carrying out stochastic approximation structured approach using Gaussian vectors method, from the optimal solution X*In The suboptimal solution of the double optimization problem is extracted, the suboptimal solution is approximate optimal solution.
9. physical-layer network coding device according to claim 8, it is characterised in that optimal solution acquisition submodule is specifically used In:
According to the property of the mark of matrix product, following variable replacement is carried out to the double optimization problem:
xHΔ x=tr (xHΔ x)=tr (Δ xxH)
Wherein, Δ represents Arbitrary Coefficient matrix, xxTIt is equivalent for 1 positive semidefinite matrix X with order;
The double optimization problem is replaced by ternary, the second optimal relation, the second optimization relation is converted to The expression formula of formula is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t. tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
<mrow> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <msubsup> <mi>z</mi> <mn>3</mn> <mi>H</mi> </msubsup> </mrow>
rank(Z1)=1, rank (Z2)=1
Wherein,Rank () is seeks rank of matrix, and tr () operates for the mark of matrix;
Rank (Z are fallen by relaxation1)=1, rank (Z2)=1, and willRelaxation isDescribed second is optimized Relational expression relaxation is the first Semidefinite Programming, wherein first Semidefinite Programming is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t. tr(H1iZ1) >=1, i=1,2 ..., n1
tr(H2iZ2) >=1, i=1,2 ..., n2
tr(DjZ1)-cjz3=1, tr (EjZ2)-djz3=0
tr(FjZ3) >=0, j=1,2 ..., n3
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>z</mi> <mn>3</mn> <mi>H</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;PlusMinus;</mo> <mn>0</mn> </mrow>
Using convex optimized algorithm, first Semidefinite Programming is solved, to obtain optimal solution X*
10. physical-layer network coding device according to claim 8, it is characterised in that solve submodule and specifically include:
3rd optimal relation acquisition submodule, for utilizing the 4th substitution of variable, the 5th substitution of variable and the 6th substitution of variable, The double optimization problem is converted into the 3rd optimal relation, wherein the 3rd optimal relation is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
<mrow> <mo>&amp;lsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;PlusMinus;</mo> <mn>2</mn> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow>
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
rank(Z1)=1, rank (Z2)=1, rank (Z3)=1
<mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> </mrow>
Wherein, Fi,Gj,Hi,Dk,fi,gj,hi,dkFor correspondingly coefficient matrix and coefficient vector;
4th substitution of variable is:
<mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>M</mi> </msqrt> </mfrac> <mi>A</mi> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mi>M</mi> </msup> <mo>;</mo> </mrow>
<mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mi>N</mi> </msqrt> </mfrac> <mi>B</mi> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mi>N</mi> </msup> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>3</mn> <mi>T</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msqrt> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mn>11</mn> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>...</mo> <msub> <mi>s</mi> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;Element;</mo> <msup> <mi>C</mi> <mrow> <mn>1</mn> <mo>&amp;times;</mo> <mi>M</mi> <mi>N</mi> </mrow> </msup> <mo>;</mo> </mrow>
5th substitution of variable is:
<msubsup> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>f</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> </msubsup> 7
<msubsup> <mrow> <mo>{</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>g</mi> <mi>j</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> </msubsup>
<msubsup> <mrow> <mo>{</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <msubsup> <mi>h</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mn>3</mn> </msub> </msubsup>
<mrow> <msubsup> <mrow> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <msubsup> <mi>d</mi> <mi>k</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>;</mo> </mrow>
6th substitution of variable is:
<mrow> <msubsup> <mrow> <mo>{</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <msubsup> <mi>z</mi> <mi>i</mi> <mi>H</mi> </msubsup> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>:</mo> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <msubsup> <mi>z</mi> <mn>1</mn> <mi>H</mi> </msubsup> <mo>;</mo> </mrow>
Relaxation problem expression formula acquisition submodule, the order constraint rank (Z in the 3rd optimal relation are fallen for relaxation1)= 1,rank(Z2)=1, rank (Z3The He of)=1To obtain relaxation problem, the relaxation problem expression formula is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
<mrow> <mo>&amp;lsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;PlusMinus;</mo> <mn>2</mn> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <msubsup> <mi>g</mi> <mi>j</mi> <mi>H</mi> </msubsup> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>j</mi> </msub> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow>
I=1,2 ..., m1, j=1,2 ..., m2, k=1,2 ..., 2m1m2
Second Semidefinite Programming acquisition submodule, for the solution of the relaxation problem to be converted into the second Semidefinite Programming Solution, second Semidefinite Programming is:
min tr(Z1)+tr(Z2)+tr(Z3)
s.t. tr(FiZ1) >=1, i=1,2 ..., m1
tr(GjZ2) >=1, j=1,2 ..., m2
tr(HiZ3) >=1, i=1,2 ..., m3
Second suboptimal solution acquisition submodule, for being carried using Gaussian approximation from the optimal solution of second Semidefinite Programming The suboptimal solution of the double optimization problem is taken, the suboptimal solution is approximate optimal solution.
CN201710221409.XA 2017-04-06 2017-04-06 Physical layer network coding method and device Expired - Fee Related CN107147472B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710221409.XA CN107147472B (en) 2017-04-06 2017-04-06 Physical layer network coding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710221409.XA CN107147472B (en) 2017-04-06 2017-04-06 Physical layer network coding method and device

Publications (2)

Publication Number Publication Date
CN107147472A true CN107147472A (en) 2017-09-08
CN107147472B CN107147472B (en) 2020-01-17

Family

ID=59774880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710221409.XA Expired - Fee Related CN107147472B (en) 2017-04-06 2017-04-06 Physical layer network coding method and device

Country Status (1)

Country Link
CN (1) CN107147472B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768588A (en) * 2018-05-14 2018-11-06 中国人民解放军军事科学院系统工程研究院 Based on the distributed network coding method and system for merging request

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572653A (en) * 2008-04-30 2009-11-04 株式会社Ntt都科摩 Both-way relay method, base station, mobile terminal and relay station
CN101800626A (en) * 2009-02-11 2010-08-11 株式会社Ntt都科摩 Be used to provide the device of combined digital signal
CN102299893A (en) * 2011-09-29 2011-12-28 中国人民解放军理工大学 Joint channel network coding method for bidirectional OFDM (Orthogonal Frequency Division Multiplexing) system with frequency offset
CN102547581A (en) * 2010-12-17 2012-07-04 北京创毅视讯科技有限公司 Intra-network data interaction method and system of Internet of things
CN103220089A (en) * 2013-05-07 2013-07-24 西安电子科技大学 Distributed loop overlap space time code transmission method based on bidirectional multi-relay network
CN103248458A (en) * 2013-05-11 2013-08-14 哈尔滨工业大学深圳研究生院 Physical layer network coding system and method based on FQPSK modulation
CN103634072A (en) * 2012-08-28 2014-03-12 华为技术有限公司 Information transmission method and apparatus
CN106302299A (en) * 2015-05-20 2017-01-04 中兴通讯股份有限公司 A kind of multiple-user access method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572653A (en) * 2008-04-30 2009-11-04 株式会社Ntt都科摩 Both-way relay method, base station, mobile terminal and relay station
CN101800626A (en) * 2009-02-11 2010-08-11 株式会社Ntt都科摩 Be used to provide the device of combined digital signal
CN102547581A (en) * 2010-12-17 2012-07-04 北京创毅视讯科技有限公司 Intra-network data interaction method and system of Internet of things
CN102299893A (en) * 2011-09-29 2011-12-28 中国人民解放军理工大学 Joint channel network coding method for bidirectional OFDM (Orthogonal Frequency Division Multiplexing) system with frequency offset
CN103634072A (en) * 2012-08-28 2014-03-12 华为技术有限公司 Information transmission method and apparatus
CN103220089A (en) * 2013-05-07 2013-07-24 西安电子科技大学 Distributed loop overlap space time code transmission method based on bidirectional multi-relay network
CN103248458A (en) * 2013-05-11 2013-08-14 哈尔滨工业大学深圳研究生院 Physical layer network coding system and method based on FQPSK modulation
CN106302299A (en) * 2015-05-20 2017-01-04 中兴通讯股份有限公司 A kind of multiple-user access method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768588A (en) * 2018-05-14 2018-11-06 中国人民解放军军事科学院系统工程研究院 Based on the distributed network coding method and system for merging request

Also Published As

Publication number Publication date
CN107147472B (en) 2020-01-17

Similar Documents

Publication Publication Date Title
CN101427507B (en) Method and apparatus for use of space time trellis codes based on channel phase feedback
CN110140330A (en) Device and method for the distribution of shape data sequence probability
CN105634712B (en) The simple codebook design methods of SCMA under Gaussian channel
CN101141226B (en) Modulation coding state regulation means, self-adaptive coding modulation method and system
CN101547182B (en) Method for mapping and demapping QAM constellation diagrams
CN105930232B (en) A kind of simple regeneration code restorative procedure using network topological information
CN102684828A (en) Multidimensional constellations for coded transmission
CN103023618A (en) Random code length polar encoding method
CN105897379A (en) Polarization code cascade space-time code system and cascade polarization code coding method thereof
CN105450741B (en) Provisioning server selection and repair data transmission method in distributed memory system
CN110298507B (en) High-speed railway train operation diagram and motor train unit application integrated optimization method
CN104934964A (en) Power distribution network reconstruction and island division method containing distributed power supply
CN107147472A (en) Physical-layer network coding method and device
CN106209187A (en) A kind of self-adapting generalized modulating method using combined optimization
CN102790639A (en) Cooperative communication method based on double relays and differential evolution
Levitin Optimal series–parallel topology of multi-state system with two failure modes
CN101409602B (en) Method for distributing ascent type encode vector in multicast network
CN101431358B (en) Vertical layered space-time signal detection method based on M-elite evolution algorithm
CN104009824A (en) Pilot assisted data fusion method based on differential evolution in base station coordination uplink system
CN106209717A (en) A kind of adaptive polarization QAM combined modulation method of hoisting work exoergic effect
CN101621363B (en) Bit reordering method between multiple symbols and system using same
CN102325009A (en) Forward error correction-based method for reliably transmitting network coding multicast data stream
CN107181680A (en) A kind of method for realizing SDO functions, system and SDON systems
DE19748880C1 (en) Method and circuit arrangement for improved data transmission
Yu et al. Analog network-coded modulation with maximum Euclidean distance: Mapping criterion and constellation design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117

CF01 Termination of patent right due to non-payment of annual fee