CN107145907A - 一种基于k均值样本预选的支持向量机主动学习方法 - Google Patents

一种基于k均值样本预选的支持向量机主动学习方法 Download PDF

Info

Publication number
CN107145907A
CN107145907A CN201710306162.1A CN201710306162A CN107145907A CN 107145907 A CN107145907 A CN 107145907A CN 201710306162 A CN201710306162 A CN 201710306162A CN 107145907 A CN107145907 A CN 107145907A
Authority
CN
China
Prior art keywords
svms
sample
active learning
preselected
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710306162.1A
Other languages
English (en)
Inventor
杨云
任皓
何臻力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201710306162.1A priority Critical patent/CN107145907A/zh
Publication of CN107145907A publication Critical patent/CN107145907A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明属于机器学习中的主动学习技术领域,公开了一种基于k均值样本预选的支持向量机主动学习方法,包括:利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练;依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回;得到未标记实例集中的部分“重要”实例并获取标记,来代替全部未标记实例;利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,进行模型训练,得到最终的学习模型。本发明保证了SVM模型分类精确度,大大降低了分类器对类标的需求;分类准确性高于同类SVM方法。

Description

一种基于k均值样本预选的支持向量机主动学习方法
技术领域
本发明属于机器学习中的主动学习技术领域,尤其涉及一种基于k均值样本预选的支持向量机主动学习方法。
背景技术
在很多复杂的监督学习任务中,标记实例的获得是困难的、耗时的;比如在语音识别中,获得对语音表达的正确标注需要花费经验丰富的语言学家大量的时间和精力;对于词级的标注所耗费的时间通常是音频时长的10倍,而音素标注的时间耗费是音频时长的400倍;在信息提取中,好的信息提取系统必须依赖具有标签的文本和详细的相关说明,这也需要耗费大量的时间,并要求领域专家参与以保证信息的准确;此外,诸如邮件的分类和过滤、计算机辅助医学影像分析等领域,标记实例都是昂贵的、不易获取的。因此,如何通过对大量未标记数据进行利用来提升学习性能这一理论上重要、现实中能够发挥效用的问题,受到了机器学习界的高度重视;主动学习和半监督学习是利用未标记实例提升学习性能的两个重要方法,其中,主动学习也被称作“查询学习”(query learning),作为机器学习的一个分支领域,其重要思想是:如果本发明允许学习算法去选择它所学习的数据,变得更为“富有好奇心”,那么算法将会需要更少的训练并且表现得更好;主动学习的几个常用方法有:整合成员信息查询(membership query synthesis)、基于流的选择抽样(stream-based selective sampling)、基于池的抽样(pool-based sampling)等;半监督学习作为机器学习的另一分支,它让学习器自动地对大量未标记数据进行利用,辅助少量标记数据进行学习。在概念上两者也存在许多共性的地方值得思考。举例半监督学习中的自训练方法(self-training),它首先利用少量的标记实例进行学习,然后将最有把握的未标记实例及其预测标记加入学习器进行迭代;而主动学习中的不确定性抽样方法(uncertaintysampling),提出选择学习器最没把握的未标记实例进行标记查询。由此可见,主动学习和半监督学习分别着重问题的两个方面,前者探索未标记实例的未知信息,而后者着重已知的方面。正因为如此,许多学者自然地提出了将主动学习与半监督学习相结合的方法。现有利用未标记实例提高分类器学习性能的方法主要有两种,其具体缺点如下:(1)主动学习实例选取的缺点主动学习的思想为:如何选择需要的数据,主动学习并没有给出完善的解决方案。多数时候,只能应用主动学习的思想而并没有解决特定问题的具体办法,需要做到“具体问题,具体分析”。这一方面使得相关技术人员在考虑采用主动学习的思想时,因为得不到规范具体的执行步骤、佐证而畏首畏尾,导致项目设计周期长、效率低。另一方面,主动学习基于经验的决策方式使得相关决策缺乏完善的理论支持,可信度较低,而为了提升决策可信度,雇佣足够多的领域专家又会导致决策成本的大幅提高。(2)半监督SVM方法的缺点,半监督SVM(S3VM)是支持向量机在半监督学习上的推广,在不考虑未标记样本时,支持向量机试图找到最大间隔划分超平面,而在考虑未标记样本后,S3VM试图找到能将两类样本分开的,且穿过数据低密度区域的划分超平面。S3VM方法的问题是计算复杂,具有较多的待定参数,使得该方法的复杂度很高且难以使用,在如今日益增长的数据规模下,算法复杂度高的算法无法应对庞大的数据量及特殊应用所要求的响应速度,具体表现在:半监督SVM算法难以迁移到大数据量的应用问题上;对于实时处理、要求响应时间的应用上也难以应用这类复杂度高的算法等。因此,需要更为高效的优化求解策略;同时,传统的S3VM具有未标记实例降低分类准确率的风险。
综上所述,现有技术存在的问题是:现有利用未标记实例提高分类器学习性能的方法存在只能应用主动学习的思想而并没有解决特定问题的具体办法,需要做到“具体问题,具体分析”;算法计算复杂度高,导致算法难以应用在时效性需求较高的应用上。
发明内容
针对现有技术存在的问题,本发明提供了一种基于k均值样本预选的支持向量机主动学习方法。
本发明是这样实现的,一种基于k均值样本预选的支持向量机主动学习方法,所述基于k均值样本预选的支持向量机主动学习方法包括以下步骤:
步骤一,利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练;
步骤二,依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回;得到未标记实例集中的部分“重要”实例并获取标记,来代替全部未标记实例;
步骤三,利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,结合传统的SVM方法进行模型训练,得到最终的学习模型。
进一步,所述K均值聚类算法包括:
给定样本集D={x1,x2,;;;,xm},“k均值”算法针对聚类所得簇划分C={c1,c2,;;;,ck}最小化平方误差:
其中,x是簇ci的均值向量;生成的聚类个数K=2。
进一步,所述学习模型验证的方法包括:
算法1;Active SVM;
输入:样本集U、GroundTrue
输出:最佳分类超平面(ω,b)
得到当前p下的L*
利用L*训练支持向量机模型M*
本发明的另一目的在于提供一种所述基于k均值样本预选的支持向量机主动学习方法的基于k均值样本预选的支持向量机主动学习系统,所述基于k均值样本预选的支持向量机主动学习系统包括:
样本预选模块,用于利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练;
标记查询模块,用于依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回;
SVM模型生成模块,用于利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,结合传统的SVM方法进行模型训练,得到最终的学习模型。
本发明的另一目的在于提供一种利用所述基于k均值样本预选的支持向量机主动学习方法的基于距离聚类的样本预选方法,所述基于距离聚类的样本预选方法利用基于距离的聚类算法获得整合成员变量的主动学习方法所需的假设空间,得到重要样本集进行类标查询、SVM模型生成。
本发明的另一目的在于提供一种利用所述基于k均值样本预选的支持向量机主动学习方法的基于密度聚类的样本预选方法,所述基于密度聚类的样本预选方法邻近区域的密度、对象或数据点的数目超过某个阈值,继续聚类;对给定类中的每个数据点,在一个给定范围的区域内必须至少包含某个数目的点。
本发明的另一目的在于提供一种利用所述基于k均值样本预选的支持向量机主动学习方法的基于网格聚类的样本预选方法,所述基于网格聚类的样本预选方法把对象空间量化为有限数目的单元,形成一个网格结构;所有的聚类操作都在这个网格结构上进行。
本发明的另一目的在于提供一种利用所述基于k均值样本预选的支持向量机主动学习方法的基于约束聚类的样本预选方法,所述基于约束聚类的样本预选方法对个体对象的约束或对聚类参数的约束,均来自相关领域的经验知识;结合特定实例及特定领域,定制出适合特定问题的聚类方法进行样本预选。
本发明的优点及积极效果为:解决传统分类问题,保证算法精确度及效率的基础上,降低分类器对于标记实例的需求,从而降低成本。属于机器学习中的主动学习领域,利用k均值聚类算法进行样本预选,选择出少部分较为“重要”的样本来代替整个样本集进行常规支持向量机(Support Vector Machine)的训练。在很多复杂的监督学习任务中,标记实例的获得是困难的、耗时的。与传统的SVM方法相比,本发明在保证分类正确率的前提下,降低了分类器对于标记实例的需求,降低了解决分类问题的成本;与半监督SVM方法相比,本发明具有较强的抗噪能力,并且拥有更好的分类稳定性与精确度;与传统的主动学习方法相比,本发明提出了一种适用范围广的实例选取范式。
传统的主动学习方法对如何选择需要的数据,并没有给出完善的解决方案。而本发明公布的基于聚类的样本预选技术,利用整合成员变量的方法,为主动学习方法提供了一套基于聚类假设的解决方案范式;使得主动学习中的样本类标查询有据可依,且适用范围广。
本发明公布的基于样本预选的SVM模型生成技术,在保证了SVM模型分类精确度的基础上,大大降低了分类器对类标的需求。实验证明了本发明的可行性,其分类准确性高于同类SVM方法,高精确性、稳定性,也是现有SVM模型生成方法所不具备的。
附图说明
图1是本发明实施例提供的基于k均值样本预选的支持向量机主动学习方法的流程示意图。
图2是本发明实施例提供的人造数据集算法特点说明示意图。
图3是本发明实施例提供的实验对比情况(2)示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的基于k均值样本预选的支持向量机主动学习方法包括以下步骤:
S101:未标记实例集;
S102:采用K均值聚类和整合成员变量进行样本预选;
S103:标记查询;
S104:SVM模型生成;
S105:得到最终结果。
本发明采用整合成员信息查询的主动学习方法,提出了基于k均值样本预选的支持向量机主动学习算法:即同一聚类中的样本点可能具有同样的类别标记,要求决策边界所穿过的应当是数据点较为稀疏的区域。而在基于距离的聚类算法中,越是靠近聚类的中心,样本越是相对密集,越是可能反映了该聚类的标记分布信息。由三个模块组成,包括数据预选模块、标记查询模块及SVM模型生成模块,技术流程如图1所示。每一个模块的具体描述如下:
样本预选模块,利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练,这种方法剔除了部分噪声点,在保证分类准确率的基础上,能够大量降低分类器对于标记实例的需求。
K均值聚类算法
给定样本集D={x1,x2,;;;,xm},“k均值”(k-means)算法针对聚类所得簇划分C={c1,c2,;;;,ck}最小化平方误差:
其中,x是簇ci的均值向量。
可以看出,E越小时,簇内相似度越高。但求E的最小化是NP难问题,不易解决。因此,k均值算法采用了贪心策略,通过不断对均值向量x进行迭代更新,不断优化近似的求解E的最小化。
整合成员变量方法
成员信息查询是主动学习的使用场景之一。主动学习基于一个未知的集合L*进行查询,L*不是基于某种自然分布,而是来自于一系列有限可计算的假设空间L1,L2,…,他们是样本集U的子集;基于学习系统的外部环境,对未标记样本x依据其是否在集合L*内部,决定是否进行查询,如果x在集合L*内部,则查询之,反之不查询;而本发明中组成L*的假设空间,即是聚类假设中的“重要”样本所组成的样本空间;
样本预选基于一种聚类假设:即同一聚类中的样本点可能具有同样的类别标记;而在k均值聚类中,越是靠近聚类的中心,样本越是相对密集,越是可能反映了该聚类的标记分布信息,本发明将这一部分样本称为“重要”样本。这时,支持向量机的决策边界所穿过的应当是数据点较为稀疏的区域。也正是这种聚类假设,整合成员变量查询的主动学习方法提供了假设空间L(聚类所形成的簇),利用假设空间L,结合L中“重要”占比p进行整合,即可在样本集U中预选出L*,称为“重要”样本集;
由于解决的是二分类问题,算法中令k均值的参数,生成的聚类个数K=2;L中“重要”占比p并没有固定的取值范围,其取值原则是在SVM模型生成时,在保证模型准确率的前提下,“重要”占比p越低,模型的效果越好。
(2)标记查询模块
依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回。这一部分旨在得到未标记实例集中的部分“重要”实例并获取标记,来代替全部未标记实例。从而在保证分类器精度的基础上,降低分类器对标记实例的需求。
(3)SVM模型生成模块
利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,结合传统的SVM方法进行模型训练,得到最终的学习模型,该方法结束。为证实该方法的有效性,将生成模型采用如下算法进行验证:
算法1;Active SVM;
输入:样本集U、GroundTrue
输出:最佳分类超平面(ω,b)
图2直观的体现了本发明提出的算法具有以下特点:
对于平衡样本的二分类问题(如图2a),基于k均值样本预选的支持向量机主动学习方法能够同软间隔支持向量机算法一样,忽略部分离群点,从而保证分类准确性。此时,用少量的“重要”数据即可代替整个样本集;
对于非平衡样本的二分类问题,决策边界可能穿过预选数据(如图2b),算法依旧可以基于“重要”数据进行有效学习。此时,需要用较多的“重要”数据方可代替整个样本集;
对于平衡样本集下的多分类问题(如图2c),该方法并不稳定;此时,需要用较多的“重要”数据方可代替整个样本集;
非平衡样本集下的多分类问题(如图2d),由于生成的聚类不确定,因此算法的学习结果是不可预知的;
在UCI提供的多个基准数据集上,本发明的基于k均值样本预选的支持向量机主动学习方法(KA-SVM),与C-SVC、S4VM进行了对比分析,并采用交叉验证的方法验证算法性能;表1和表2分别提供了实验使用的数据集的特征及算法的初始参数;
表1
Instance iris tae glass
count 150 151 163
dimension 4 5 14
classification 3 3 3
Instance seeds heart tracks
count 210 270 164
dimension 7 13 7
classification 3 3 2
表2
algorithm parameter
KA-SVM k=2;p∈(0,1]
C-SVC null
S4VM kernel=′RBF′;Cl=100;C2=0.1;
表3实验对比情况(1)显示在绝大多数二分类及多分类数据集中,KA-SVM比C-SVC算法具有更好的分类准确率;在KA-SVM算法中,减小p值会显著的增加分类准确率的方差,使得算法变得不稳定。
表3
Algorithm iris tae glass
KA-SVM(p=0.6) 0.855±0.029 0.7800±0.025 0.5172±0.045
KA-SVM(p=0.5) 0.86±0.021 0.8133±0.022 0.5342±0.033
KA-SVM(p=0.4) 0.8665±0.038 0.7967±0.019 0.5086±0.031
KA-SVM(P=0.3) 0.8525±0.017 0.8083±0.031 0.4758±0.019
C-SVC 0.8375±0.029 0.8083±0.013 0.5172±0.008
Algorithm seeds heart tracks
KA-SVM(p=0.6) 0.8535±0.017 0.6231±0.023 0.6186±0.011
KA-SVM(p=0.5) 0.8488±0.022 0.5851±0.026 0.6376±0.031
KA-SVM(p=0.4) 0.8000±0.019 0.6120±0.033 0.6263±0.028
KA-SVM(p=0.3) 0.6750±0.016 0.6064±0.025 0.5782±0.032
C-SVC 0.8367±0.021 0.6120±0.011 0.6372±0.033
图3展示了KA-SVM与S4VM分别在heart_scale和tracks两个二分类数据集上随着标记数据占比变大时的分类准确率走势,C-SVC算法将全局样本集U作为标记数据。
实验对比情况(2)显示在解决二分类问题、标记数据占比在50%以上时,KA-SVM算法的分类准确率高于S4VM,而当标记数据占比小于50%时,KA-SVM的表现逊色于S4VM,这很可能是因为当标记数据占比少时,聚类保留的信息大量减少而难以得到最优的分类超平面。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于k均值样本预选的支持向量机主动学习方法,其特征在于,所述基于k均值样本预选的支持向量机主动学习方法包括以下步骤:
步骤一,利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练;
步骤二,依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回;得到未标记实例集中的部分“重要”实例并获取标记,来代替全部未标记实例;
步骤三,利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,结合传统的SVM方法进行模型训练,得到最终的学习模型。
2.如权利要求1所述的基于k均值样本预选的支持向量机主动学习方法,其特征在于,所述K均值聚类算法包括:
给定样本集D={x1,x2,;;;,xm},“k均值”算法针对聚类所得簇划分C={c1,c2,;;;,ck}最小化平方误差:
<mrow> <mi>E</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>x</mi> <mo>&amp;Element;</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> </mrow> </munder> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> </mfrac> <mi>&amp;Sigma;</mi> <mi>x</mi> <mo>&amp;Element;</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>;</mo> </mrow>
其中,x是簇ci的均值向量;生成的聚类个数K=2。
3.如权利要求1所述的基于k均值样本预选的支持向量机主动学习方法,其特征在于,所述学习模型验证的方法包括:
算法1;Active SVM;
4.一种如权利要求1所述基于k均值样本预选的支持向量机主动学习方法的基于k均值样本预选的支持向量机主动学习系统,其特征在于,所述基于k均值样本预选的支持向量机主动学习系统包括:
样本预选模块,用于利用k均值聚类算法进行样本预选,基于距离选择出少部分靠近聚类中心、较为密集、“重要”的样本来代替整个样本集进行常规支持向量机的训练;
标记查询模块,用于依据数据预选的结果,在未标记实例集中对重要样本集L*中的每个实例进行查询,将查询得到的类标返回;
SVM模型生成模块,用于利用样本预选结果,重要样本集L*作为支持向量机主动学习的训练集,结合传统的SVM方法进行模型训练,得到最终的学习模型。
5.一种利用权利要求1~3任意一项所述基于k均值样本预选的支持向量机主动学习方法的基于距离聚类的样本预选方法,其特征在于,所述基于距离聚类的样本预选方法利用基于距离的聚类算法获得整合成员变量的主动学习方法所需的假设空间,得到重要样本集进行类标查询、SVM模型生成。
6.一种利用权利要求1~3任意一项所述基于k均值样本预选的支持向量机主动学习方法的基于密度聚类的样本预选方法,其特征在于,所述基于密度聚类的样本预选方法邻近区域的密度、对象或数据点的数目超过某个阈值,继续聚类;对给定类中的每个数据点,在一个给定范围的区域内必须至少包含某个数目的点。
7.一种利用权利要求1~3任意一项所述基于k均值样本预选的支持向量机主动学习方法的基于网格聚类的样本预选方法,其特征在于,所述基于网格聚类的样本预选方法把对象空间量化为有限数目的单元,形成一个网格结构;所有的聚类操作都在这个网格结构上进行。
8.一种利用权利要求1~3任意一项所述基于k均值样本预选的支持向量机主动学习方法的基于约束聚类的样本预选方法,其特征在于,所述基于约束聚类的样本预选方法对个体对象的约束或对聚类参数的约束,均来自相关领域的经验知识;结合特定实例及特定领域,定制出适合特定问题的聚类方法进行样本预选。
CN201710306162.1A 2017-05-04 2017-05-04 一种基于k均值样本预选的支持向量机主动学习方法 Pending CN107145907A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710306162.1A CN107145907A (zh) 2017-05-04 2017-05-04 一种基于k均值样本预选的支持向量机主动学习方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710306162.1A CN107145907A (zh) 2017-05-04 2017-05-04 一种基于k均值样本预选的支持向量机主动学习方法

Publications (1)

Publication Number Publication Date
CN107145907A true CN107145907A (zh) 2017-09-08

Family

ID=59774000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710306162.1A Pending CN107145907A (zh) 2017-05-04 2017-05-04 一种基于k均值样本预选的支持向量机主动学习方法

Country Status (1)

Country Link
CN (1) CN107145907A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729540A (zh) * 2017-10-31 2018-02-23 努比亚技术有限公司 照片分类的方法、设备及计算机可存储介质
CN108536648A (zh) * 2018-03-30 2018-09-14 武汉大学 基于多超声波传感器的局部放电非线性模型转换求解与优化方法
TWI696124B (zh) * 2017-12-15 2020-06-11 香港商阿里巴巴集團服務有限公司 模型整合方法及裝置
CN111695612A (zh) * 2020-05-26 2020-09-22 东南大学 一种基于聚类的半监督识别方法
CN111814851A (zh) * 2020-06-24 2020-10-23 重庆邮电大学 一种基于单类支持向量机的煤矿瓦斯数据标记方法
US11720649B2 (en) 2019-04-02 2023-08-08 Edgeverve Systems Limited System and method for classification of data in a machine learning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729540A (zh) * 2017-10-31 2018-02-23 努比亚技术有限公司 照片分类的方法、设备及计算机可存储介质
CN107729540B (zh) * 2017-10-31 2021-04-16 努比亚技术有限公司 照片分类的方法、设备及计算机可存储介质
TWI696124B (zh) * 2017-12-15 2020-06-11 香港商阿里巴巴集團服務有限公司 模型整合方法及裝置
CN108536648A (zh) * 2018-03-30 2018-09-14 武汉大学 基于多超声波传感器的局部放电非线性模型转换求解与优化方法
CN108536648B (zh) * 2018-03-30 2021-07-06 武汉大学 基于多超声波传感器的局部放电非线性模型转换求解与优化方法
US11720649B2 (en) 2019-04-02 2023-08-08 Edgeverve Systems Limited System and method for classification of data in a machine learning system
CN111695612A (zh) * 2020-05-26 2020-09-22 东南大学 一种基于聚类的半监督识别方法
CN111814851A (zh) * 2020-06-24 2020-10-23 重庆邮电大学 一种基于单类支持向量机的煤矿瓦斯数据标记方法

Similar Documents

Publication Publication Date Title
CN107145907A (zh) 一种基于k均值样本预选的支持向量机主动学习方法
Ji et al. Spatio-temporal self-supervised learning for traffic flow prediction
CN109992673A (zh) 一种知识图谱生成方法、装置、设备及可读存储介质
CN102231151B (zh) 一种农业领域本体自适应学习建模方法
CN106202395A (zh) 文本聚类方法和装置
CN116579417A (zh) 边缘计算网络中的分层个性化联邦学习方法、装置及介质
CN105868773A (zh) 一种基于层次随机森林的多标签分类方法
Lin et al. Deep structured scene parsing by learning with image descriptions
CN101609672B (zh) 一种语音识别语义置信特征提取的方法和装置
CN107662617A (zh) 基于深度学习的车载交互控制算法
CN103412878B (zh) 基于领域知识地图社区结构的文档主题划分方法
CN106529732A (zh) 基于神经网络与随机前沿分析的碳排放效率预测方法
Gu et al. Application of fuzzy decision tree algorithm based on mobile computing in sports fitness member management
WO2024007476A1 (zh) 设计概念生成网络构建方法及概念方案自动生成方法
CN110347821B (zh) 一种文本类别标注的方法、电子设备和可读存储介质
CN114564586A (zh) 一种非结构化敏感数据识别方法及系统
Wang et al. GA-based membrane evolutionary algorithm for ensemble clustering
Nasir et al. Harmony search algorithm and fuzzy logic theory: an extensive review from theory to applications
Shao et al. Research on a new automatic generation algorithm of concept map based on text clustering and association rules mining
Zhao et al. Evaluation of teachers’ educational technology ability based on fuzzy clustering generalized regression neural network
CN116386895B (zh) 基于异构图神经网络的流行病舆情实体识别方法与装置
CN112560490A (zh) 知识图谱关系抽取方法、装置、电子设备及存储介质
CN116304064A (zh) 一种基于抽取式的文本分类方法
Rau et al. A novel traffic prediction method using machine learning for energy efficiency in service provider networks
CN106156192A (zh) 舆情数据聚类方法和舆情数据聚类系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170908