CN107145541A - 基于超图结构的社交网络推荐模型构建方法 - Google Patents
基于超图结构的社交网络推荐模型构建方法 Download PDFInfo
- Publication number
- CN107145541A CN107145541A CN201710271141.0A CN201710271141A CN107145541A CN 107145541 A CN107145541 A CN 107145541A CN 201710271141 A CN201710271141 A CN 201710271141A CN 107145541 A CN107145541 A CN 107145541A
- Authority
- CN
- China
- Prior art keywords
- user
- mrow
- msub
- similarity
- project
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010276 construction Methods 0.000 title claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 4
- 238000011156 evaluation Methods 0.000 claims description 19
- 238000009795 derivation Methods 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Economics (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明适用于个性化推荐领域,提供了一种基于超图结构的社交网络推荐模型构建方法,该方法包括如下步骤:基于社交网络中的用户‑项目评分矩阵构建以项目为中心的超图及以用户为中心的超图;计算用户评价相似度,项目特征相似度及用户特征相似度;在矩阵因子分解模型的基础上,融入用户评价相似度、用户特征相似度和项目特征相似度,获取目标函数;对目标函数采用随机梯度下降算法,迭代求出用户潜在因子矩阵及项目潜在因子矩阵;基于用户潜在因子矩阵及项目潜在因子矩阵预测用户对项目的评分,向用户推荐预测评分最高的项目。本发明实施例在矩阵因子分解模型的基础上,融入用户特征、项目特征、用户评分,推荐模型描述更为全面,提高推荐准确率。
Description
技术领域
本发明属于个性化推荐技术领域,尤其涉及一种基于超图结构的社交网络推荐模型构建方法。
背景技术
随着网络信息以指数级增长,如何提高信息利用效率,缓解信息过载问题一直是一个重要的研究领域。其中推荐系统是解决上述问题的重要途径,目前推荐系统在电子商务、信息检索、智慧旅游、网络广告、移动应用、舆情预测等领域有着重要作用,自2006年Netflix宣布推荐系统竞赛以来,激起了很多科研工作者的兴趣,其中推荐准确性成了各个推荐系统最重要的衡量指标。
传统的KNN协同过滤推荐,由于只利用邻居用户评分信息对推荐项目进行预测,因而造成推荐准确度较低的问题。
发明内容
本发明实施例提供一种基于超图结构的社交网络推荐模型构建方法,旨在解决传统的KNN协同过滤推荐,由于只利用邻居用户评分信息对推荐项目进行预测,因而造成推荐准确度较低的问题。
本发明实施例提供了一种基于超图结构的社交网络推荐模型构建方法,该方法包括如下步骤:
S1、基于社交网络中的用户-项目评分矩阵构建以项目为中心的超图及以用户为中心的超图;
S2、基于所述项目为中心的超图及所述以用户为中心的超图确定用户的邻居用户和项目的邻接项目,计算用户评价相似度,项目特征相似度及用户特征相似度;
S3、在矩阵因子分解模型的基础上,融入用户评价相似度、用户特征相似度和项目特征相似度,获取目标函数;
S4、对目标函数采用随机梯度下降算法,可迭代求出用户潜在因子矩阵Pi及项目潜在因子矩阵Qj;
S5、基于用户潜在因子矩阵Pi及项目潜在因子矩阵Qj预测用户对项目的评分,向用户推荐预测评分最高的项目。
本发明实施例在矩阵因子分解模型的基础上,融入社交网络中存在多种社交信息,包括用户特征、项目特征、用户评分,因而使得推荐模型描述得更为全面,从而提高推荐系统的准确率。
附图说明
图1为本发明实施例提供的基于超图结构的社交网络推荐模型构建方法的流程图;
图2为本发明实施例提供的用户对电影的评价表;
图3为本发明实施例提供的基于用户对电影的评价表构建的以用户为中心的超图;
图4为本发明实施例提供的基于用户对电影的评价表构建的以项目为中心的超图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为本发明实施例提供的基于超图结构的社交网络推荐模型构建方法的流程图,该方法包括如下步骤:
S1、基于社交网络中的用户-项目评分矩阵构建以项目为中心的超图及以用户为中心的超图;
在本发明实施例中,假设某社交网络有m个项目,有n个用户,基于该社交网络构建m×n的评分矩阵,例如,社交网络有四个电影资源,分别是S={s1,s2,s3,s4},有8个用户分别是U={u1,u2,u3,u4,u5,u6,u7,u8},假设用户对电影的评价表如图2所示,构建以用户为中心的超图如图3所示,构建的以项目为中心的超图如图4所示,若该网络是一个以项目为中心的超图,其中该网络表示为H=(S,ES),其中S={s1,s2,…,sm}代表项目节点集合,ES={es1,es2,…,esm}表示超边结合,其满足条件其中U={u1,u2,…,un}为用户集合;社交网络的超图H的对偶图定义为H*=(U,EU),其中EU={eu1,eu2,…,eun}并满足该对偶图是一个以用户为中心的超图,显然有H=(H*)*。
S2、基于项目为中心的超图及以用户为中心的超图确定用户的邻居用户和项目的邻接项目,计算用户评价相似度,项目特征相似度及用户特征相似度;
在本发明实施例中,用户ui和用户uj共同评价过的项目集合为Is={s1,s2,…,sn},即满足H*=(U,EU),eui∈EU且euv∈EU,则称用户ui和用户uv是在项目sj上的邻居,若评价过项目sj的用户集合记为则被用户集合中用户评价过的所有项目称为项目sj的邻接项目,记为
用户ui和用户uj共同评价过的项目集合为Is={s1,s2,…,sn},则用户ui和用户uj的评价相似度定义为:
其中,Sim_C(ui,uj)简记为SCij,即为用户评价相似度,其中Ic是用户ui评价过的项目集合,若则将赋值为0,而dik为用户ui对项目sk的评价贡献,dik的定义为:
其中,Rik=Rank(ui,sk)为用户ui对项目sk的评价,即为用户对项目提供的服务进行等级评定。
在本发明实施例中,项目si和项目sj的特征相似度,用特征向量的余弦相似度表示,即:
将Sim_S(si,sj)简记为SSij,即为项目特征相似度,及为项目sj和项目si的特征向量,k表示项目特征的维度。
在本发明实施例中,用户ui和用户uj的特征相似度,用特征向量的余弦相似度表示,即:
将Sim_U(ui,uj)简记为SUij,即为用户特征相似度,其中,及为用户ui及用户uj的特征向量,k表示用户特征的维度。
S3、在矩阵因子分解模型的基础上,融入用户评价相似度、用户特征相似度和项目特征相似度,获取目标函数;
在本发明实施例中,矩阵因子分解模型是在户潜在因子的概率分布及项目潜在因子的概率分布满足零均值高斯先验基础之上建立的模型。
步骤S3具体包括如下步骤:
S31、设定用户潜在因子的概率分布及项目潜在因子的概率分布满足零均值高斯先验,构建矩阵因子分解模型;
在本发明实施例中,用户潜在因子的概率分布及项目潜在因子的概率分布满足零均值高斯先验,所以用户潜在因子的概率分布及项目潜在因子的概率分布表达式如下:
其中,表示用户潜在因子的概率分布,表示项目潜在因子的概率分布,和是方差,Pi是用户ui的潜在因子,Qj是项目sj的潜在因子。
S32、在用户潜在因子的概率分布基础上融入用户评价相似度,基于给定的定邻居用户潜在因子得到第一目标用户潜在因子条件概率分布;
在本发明实施例中,用户倾向于购买朋友推荐的商品,因此使用朋友圈或邻居用户的信息可以提高推荐准确度,即用户的兴趣受邻居用户的潜在因子影响,即在公式(5)的基础上融入用户评价相似度,在给定邻居用户潜在因子条件下可以得到第一目标用户潜在因子条件概率分布,具体如下:
其中,p(P|SC,Ω)表示第一目标用户潜在因子条件概率分布,Ω表示零均值球面高斯先验,Nui表示用户ui的邻居用户,SCiv表示用户ui和其邻居用户uv之间的评价相似度,Pv表示邻居用户uv的潜在因子特征矩阵,在本发明实施例中,邻居用户是指用户ui和用户uv对共同评价过项目sj,即满足H*=(U,EU),eui∈EU且euv∈EU,则称用户ui和用户uv是在项目sj上的邻居。
S33、在用户潜在因子的概率分布基础上融入用户特征相似度,基于给定的邻居用户特征得到第二目标用户潜在因子条件概率分布;
在本发明实施例中,具有相同特征的用户往往具有较类似的用户兴趣,因此邻居用户特征对目标用户潜在因子产生影响,即可在公式(5)的基础上融入用户特征相似度,基于给定的邻居用户特征得到第二目标用户潜在因子条件概率分布,具体如下:
其中,p(P|SU,Ω)为第二目标用户潜在因子条件概率分布,Ω表示零均值球面高斯先验,Nui表示用户ui的邻居用户,SUiv表示用户ui和其邻居用户uv的特征相似度,Pv表示邻居用户uv的潜在因子特征矩阵。
S34、在项目潜在因子的概率分布基础上融入项目特征相似度,基于给定的邻接项目特征得到目标项目潜在因子条件概率分布;
在本发明实施例中,具有相同特征的项目在某个时间段类会比较流行,因此邻接项目特征对目标项目潜在因子产生影响,即可在公式(6)的基础上融入项目特征相似度,基于给定的邻接项目特征得到目标项目潜在因子条件概率分布,具体如下:
其中,p(Q|SS,Ω)为目标项目潜在因子条件概率分布,Ω表示零均值球面高斯先验,表示项目sj的邻接项目,SSjv表示项目sj与项目sv的特征相似度,Qv表示邻接项目sv的潜在因子特征矩阵。
在本发明实施例中,上述步骤S32、步骤S33及步骤S34在顺序上并无先后之分。
S35、在以矩阵因子分解模型的基础上,结合第一目标用户潜在因子条件概率分布、第二目标用户潜在因子条件概率分布及目标项目潜在因子条件概率分布,通过贝叶斯定理推理获取推导公式;
通过贝叶斯定理推理,结合公式(7)、(8)和(9),得到下列推导公式:
其中,Iij为指示变量,若用户ui对项目sj存在评分,则取值1,否则取值0。
S36、利用凸优化理论对推导进行求对数,即可以得到目标函数。
在本发明实施例中,目标函数的表达式如下:
其中,Rij为用户ui对项目sj的评分,是推荐模型预测评分,和分别表示矩阵Q和P的Frobenius范式、T表示矩阵转置。
S4、对目标函数采用随机梯度下降算法,可迭代求出用户潜在因子矩阵Pi及项目潜在因子矩阵Qj;
在本发明实施例中,按照式迭代公式(12)和(13)进行迭代,即可求出用户潜在因子矩阵Pi及项目潜在因子Qj,其中迭代公式(12)、(13)表示如下:
其中t是迭代次数,l是步长,本发明是实施例中默认值取为0.0005,可以根据精度需要自行设置,其一般取值范围是[0.0001,0.1],及的表达式如(14)及(15)所示:
S5、基于用户潜在因子矩阵Pi及项目潜在因子矩阵Qj测用户对项目的评分,向用户推荐预测评分最高的项目。
在本发明实施例中,用户对项目评分的预测可以采取公式如下:
其中,为所有用户评分平均值,是根据用户-项目评分矩阵R计算出来的均值,是推荐模型预测评分,Pi为用户潜在因子矩阵,Qj为项目潜在因子矩阵,T表示矩阵转置。
本发明实施例在矩阵因子分解模型的基础上,融入社交网络中存在多种社交信息,包括用户特征、项目特征、用户评分,因而使得推荐模型描述得更为全面,从而提高推荐系统的准确率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.一种基于超图结构的社交网络推荐模型构建方法,其特征在于,所述方法包括如下步骤:
S1、基于社交网络中的用户-项目评分矩阵构建以项目为中心的超图及以用户为中心的超图;
S2、基于所述项目为中心的超图及所述以用户为中心的超图确定用户的邻居用户和项目的邻接项目,计算用户评价相似度,项目特征相似度及用户特征相似度;
S3、在矩阵因子分解模型的基础上,融入所述用户评价相似度、所述用户特征相似度和所述项目特征相似度,获取目标函数;
S4、对所述目标函数采用随机梯度下降算法,可迭代求出用户潜在因子矩阵及项目潜在因子矩阵;
S5、基于所述用户潜在因子矩阵及所述项目潜在因子矩阵预测用户对项目的评分,向用户推荐预测评分最高的项目。
2.如权利要求1所述的基于超图结构的社交网络推荐模型构建方法,其特征在于,所述S3具体包括如下步骤:
S31、设定用户潜在因子的概率分布及项目潜在因子的概率分布满足零均值高斯先验,构建所述矩阵因子分解模型;
S32、在所述用户潜在因子的概率分布基础上融入所述用户评价相似度,基于给定的定邻居用户潜在因子得到第一目标用户潜在因子条件概率分布;
S33、在所述用户潜在因子的概率分布基础上融入所述用户特征相似度,基于给定的邻居用户特征得到第二目标用户潜在因子条件概率分布;
S34、在所述项目潜在因子的概率分布基础上融入所述项目特征相似度,基于给定的邻接项目特征得到目标项目潜在因子条件概率分布;
35、在所述矩阵因子分解模型的基础上,结合所述第一目标用户潜在因子条件概率分布、所述第二目标用户潜在因子条件概率分布及所述目标项目潜在因子条件概率分布,通过贝叶斯定理推理获取推导公式;
S36、利用凸优化理论对所述推导进行求对数,即可以得到所述目标函数。
3.如权利要求1所述的基于超图结构的社交网络推荐模型构建方法,其特征在于,采用公式预测所述用户对项目的评分,其中为所有用户评分平均值,是根据用户-项目评分矩阵R计算出来的均值,是推荐模型预测评分,T为矩阵转置,Pi为用户潜在因子矩阵,Qj为项目潜在因子矩阵。
4.如权利要求1所述的基于超图结构的社交网络推荐模型构建方法,其特征在于,所述用户评价相似度的计算公式如下:
<mrow>
<mi>S</mi>
<mi>i</mi>
<mi>m</mi>
<mo>_</mo>
<mi>C</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>u</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>n</mi>
</munderover>
<mrow>
<mo>(</mo>
<msub>
<mi>d</mi>
<mrow>
<mi>i</mi>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>d</mi>
<mi>i</mi>
</msub>
<mo>&OverBar;</mo>
</mover>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<msub>
<mi>d</mi>
<mrow>
<mi>j</mi>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>d</mi>
<mi>j</mi>
</msub>
<mo>&OverBar;</mo>
</mover>
<mo>)</mo>
</mrow>
</mrow>
<msqrt>
<mrow>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>n</mi>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>d</mi>
<mrow>
<mi>i</mi>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>d</mi>
<mi>i</mi>
</msub>
<mo>&OverBar;</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>n</mi>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>d</mi>
<mrow>
<mi>j</mi>
<mi>k</mi>
</mrow>
</msub>
<mo>-</mo>
<mover>
<msub>
<mi>d</mi>
<mi>j</mi>
</msub>
<mo>&OverBar;</mo>
</mover>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
其中,Sim_C(ui,uj)简记为SCij,即为用户评价相似度,其中Ic是用户ui评价过的项目集合,若则将赋值为0,而dik为用户ui对项目sk的评价贡献,dik的定义为:
<mrow>
<msub>
<mi>d</mi>
<mrow>
<mi>i</mi>
<mi>k</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>C</mi>
<mi>o</mi>
<mi>n</mi>
<mi>t</mi>
<mi>r</mi>
<mi>i</mi>
<mi>b</mi>
<mi>u</mi>
<mi>t</mi>
<mi>i</mi>
<mi>o</mi>
<mi>n</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>s</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>R</mi>
<mi>a</mi>
<mi>n</mi>
<mi>k</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>s</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
<msqrt>
<mrow>
<munderover>
<mi>&Sigma;</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>m</mi>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mi>R</mi>
<mi>a</mi>
<mi>n</mi>
<mi>k</mi>
<mo>(</mo>
<msub>
<mi>u</mi>
<mi>i</mi>
</msub>
<mo>,</mo>
<msub>
<mi>s</mi>
<mi>k</mi>
</msub>
<mo>)</mo>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
其中,Rik=Rank(ui,sk)为用户ui对项目sk的评价,即为用户对项目提供的服务进行等级评定。
5.如权利要求1所述的基于超图结构的社交网络推荐模型构建方法,其特征在于,所述项目评价相似度用特征向量的余弦相似度表示,所述项目评价相似度的计算公式如下:
将Sim_S(si,sj)简记为SSij,即为项目特征相似度,及为项目sj和项目si的特征向量,k表示项目特征的维度。
6.如权利要求1所述的基于超图结构的社交网络推荐模型构建方法,其特征在于,所述项目评价相似度用特征向量的余弦相似度表示,所述项目评价相似度计算公式如下:
将Sim_U(ui,uj)简记为SUij,即为用户特征相似度,其中,及为用户ui及用户uj的特征向量,k表示用户特征的维度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710271141.0A CN107145541B (zh) | 2017-04-24 | 2017-04-24 | 基于超图结构的社交网络推荐模型构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710271141.0A CN107145541B (zh) | 2017-04-24 | 2017-04-24 | 基于超图结构的社交网络推荐模型构建方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107145541A true CN107145541A (zh) | 2017-09-08 |
CN107145541B CN107145541B (zh) | 2020-07-28 |
Family
ID=59773754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710271141.0A Active CN107145541B (zh) | 2017-04-24 | 2017-04-24 | 基于超图结构的社交网络推荐模型构建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107145541B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109783769A (zh) * | 2017-11-15 | 2019-05-21 | 中国移动通信集团上海有限公司 | 一种基于用户项目评分的矩阵分解方法和装置 |
CN110555161A (zh) * | 2018-05-30 | 2019-12-10 | 河南理工大学 | 一种基于用户信任和卷积神经网络的个性化推荐方法 |
CN111815468A (zh) * | 2020-06-04 | 2020-10-23 | 哈尔滨工程大学 | 一种基于用户身份关联的多源社交网络构建方法 |
CN111881350A (zh) * | 2020-07-23 | 2020-11-03 | 清华大学 | 一种基于混合图结构化建模的推荐方法与系统 |
CN115422453A (zh) * | 2022-08-31 | 2022-12-02 | 哈尔滨工业大学(深圳) | 项目推荐方法及项目推荐装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986299A (zh) * | 2010-10-28 | 2011-03-16 | 浙江大学 | 基于超图的多任务个性化网络服务方法 |
CN103164463A (zh) * | 2011-12-16 | 2013-06-19 | 国际商业机器公司 | 推荐标签的方法和装置 |
CN103955524A (zh) * | 2014-05-09 | 2014-07-30 | 合肥工业大学 | 一种基于超图模型的与事件相关的社会化图像查找算法 |
CN103995823A (zh) * | 2014-03-25 | 2014-08-20 | 南京邮电大学 | 一种基于社交网络的信息推荐方法 |
CN104090936A (zh) * | 2014-06-27 | 2014-10-08 | 华南理工大学 | 一种基于超图排序的新闻推荐方法 |
US20150193854A1 (en) * | 2014-01-06 | 2015-07-09 | Palo Alto Research Center Incorporated | Automated compilation of graph input for the hipergraph solver |
CN104951956A (zh) * | 2014-03-31 | 2015-09-30 | Tcl集团股份有限公司 | 一种电影排名方法和装置 |
-
2017
- 2017-04-24 CN CN201710271141.0A patent/CN107145541B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986299A (zh) * | 2010-10-28 | 2011-03-16 | 浙江大学 | 基于超图的多任务个性化网络服务方法 |
CN103164463A (zh) * | 2011-12-16 | 2013-06-19 | 国际商业机器公司 | 推荐标签的方法和装置 |
US20150193854A1 (en) * | 2014-01-06 | 2015-07-09 | Palo Alto Research Center Incorporated | Automated compilation of graph input for the hipergraph solver |
CN103995823A (zh) * | 2014-03-25 | 2014-08-20 | 南京邮电大学 | 一种基于社交网络的信息推荐方法 |
CN104951956A (zh) * | 2014-03-31 | 2015-09-30 | Tcl集团股份有限公司 | 一种电影排名方法和装置 |
CN103955524A (zh) * | 2014-05-09 | 2014-07-30 | 合肥工业大学 | 一种基于超图模型的与事件相关的社会化图像查找算法 |
CN104090936A (zh) * | 2014-06-27 | 2014-10-08 | 华南理工大学 | 一种基于超图排序的新闻推荐方法 |
Non-Patent Citations (1)
Title |
---|
唐晓波等: "基于混合图的在线社交网络个性化推荐系统研究", 《情报理论与实践》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109783769A (zh) * | 2017-11-15 | 2019-05-21 | 中国移动通信集团上海有限公司 | 一种基于用户项目评分的矩阵分解方法和装置 |
CN109783769B (zh) * | 2017-11-15 | 2023-02-28 | 中国移动通信集团上海有限公司 | 一种基于用户项目评分的矩阵分解方法和装置 |
CN110555161A (zh) * | 2018-05-30 | 2019-12-10 | 河南理工大学 | 一种基于用户信任和卷积神经网络的个性化推荐方法 |
CN111815468A (zh) * | 2020-06-04 | 2020-10-23 | 哈尔滨工程大学 | 一种基于用户身份关联的多源社交网络构建方法 |
CN111815468B (zh) * | 2020-06-04 | 2023-05-09 | 哈尔滨工程大学 | 一种基于用户身份关联的多源社交网络构建方法 |
CN111881350A (zh) * | 2020-07-23 | 2020-11-03 | 清华大学 | 一种基于混合图结构化建模的推荐方法与系统 |
CN111881350B (zh) * | 2020-07-23 | 2022-09-02 | 清华大学 | 一种基于混合图结构化建模的推荐方法与系统 |
CN115422453A (zh) * | 2022-08-31 | 2022-12-02 | 哈尔滨工业大学(深圳) | 项目推荐方法及项目推荐装置 |
CN115422453B (zh) * | 2022-08-31 | 2023-09-29 | 哈尔滨工业大学(深圳) | 项目推荐方法及项目推荐装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107145541B (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | A link prediction approach for item recommendation with complex number | |
CN107145541B (zh) | 基于超图结构的社交网络推荐模型构建方法 | |
Torfi et al. | Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives | |
CN107590243B (zh) | 基于随机游走和多样性图排序的个性化服务推荐方法 | |
CN102789462B (zh) | 一种项目推荐方法及系统 | |
Bai | An interval‐valued intuitionistic fuzzy TOPSIS method based on an improved score function | |
Qi et al. | Structural balance theory-based e-commerce recommendation over big rating data | |
CN104899763A (zh) | 基于二分网络双向扩散的个性化推荐方法 | |
CN106682121A (zh) | 一种基于用户兴趣变化的时效推荐方法 | |
Bin et al. | Collaborative filtering recommendation algorithm based on multi-relationship social network | |
CN108446297B (zh) | 一种推荐方法及装置,电子设备 | |
Dakhel et al. | A social recommender system using item asymmetric correlation | |
Yildirim et al. | Using random walks to generate associations between objects | |
Ye | Multiple attribute group decision-making methods with unknown weights in intuitionistic fuzzy setting and interval-valued intuitionistic fuzzy setting | |
Nie et al. | Information filtering via balanced diffusion on bipartite networks | |
US20150039539A1 (en) | Method and Apparatus For Propagating User Preference Information in a Communications Network | |
CN107895038A (zh) | 一种链路预测关系推荐方法及装置 | |
Liu et al. | Trust-aware recommendation for improving aggregate diversity | |
Li et al. | Social recommendation based on trust and influence in SNS environments | |
Liang et al. | Collaborative filtering based on information-theoretic co-clustering | |
CN109190040A (zh) | 基于协同演化的个性化推荐方法及装置 | |
Yu et al. | NGPR: A comprehensive personalized point-of-interest recommendation method based on heterogeneous graphs | |
CN106156113A (zh) | 一种视频推荐的方法、系统及电子设备 | |
CN107274247A (zh) | 基于云计算的智慧感知推荐方法 | |
CN106649733A (zh) | 一种基于无线接入点情境分类与感知的在线视频推荐方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |