CN107144850A - 一种高精度、宽量程的测距方法及系统 - Google Patents

一种高精度、宽量程的测距方法及系统 Download PDF

Info

Publication number
CN107144850A
CN107144850A CN201710176700.XA CN201710176700A CN107144850A CN 107144850 A CN107144850 A CN 107144850A CN 201710176700 A CN201710176700 A CN 201710176700A CN 107144850 A CN107144850 A CN 107144850A
Authority
CN
China
Prior art keywords
distance
phase
ranging
rough grade
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710176700.XA
Other languages
English (en)
Inventor
朱杨飞
张耀辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Chulian Electronic Technology Co Ltd
Original Assignee
Suzhou Chulian Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Chulian Electronic Technology Co Ltd filed Critical Suzhou Chulian Electronic Technology Co Ltd
Priority to CN201710176700.XA priority Critical patent/CN107144850A/zh
Publication of CN107144850A publication Critical patent/CN107144850A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本发明公开了一种高精度、宽量程的测距方法,其特征在于,所述测距方法通过将一种粗精度测距方法与相位测距方法相结合,利用粗精度测距方法调制光源获得粗精度距离值,利用相位测距方法调制光源获得一个相位周期内的高精度距离值,然后根据所述粗精度距离值和所述高精度距离值得出测距目标的距离位于相位测距的第几个相位周期,最后计算出高精度的实际距离值。本发明还提出一种高精度、宽量程的测距系统,能够同时兼顾高精度和宽量程,既可以应用在近距离测距,也可以应用在远距离测距,另外还可以应用于场景深度测量与3D成像、机器人视觉、手势识别等应用中。

Description

一种高精度、宽量程的测距方法及系统
技术领域
本发明涉及一种高精度、宽量程的测距方法及系统,属于测距技术领域。
背景技术
目前市面上常用的测距产品包括3D摄像头(ToF)等使用的测距方法主要有直接脉冲测距法、随机脉冲相关测距法、相位测距法等。
其中,直接脉冲测距法的测距原理是通过测量脉冲从发射端发出,经过被测目标返回至探测器之间的飞行时间,来计算距离信息,该方法一般用于远程测距,不适合近距离测距,且精度较低。
随机脉冲相关测距法的测距原理是通过计算发出的随机脉冲信号与返回的随机脉冲信号的互相关函数,来计算距离信息,该方法抗干扰能力强,一般适用于远程测距,其测距精度受随机信号的调制频率限制,精度较低。
相位测距法的测距原理是通过检测周期信号从发射端发出,经过被测目标返回至探测器之间的相位位移,来计算距离信息,该方法测量精度高,但由于是周期信号,其最大测量距离受最大相位位移2π的限制,后来提出的多频相位测距法使用2个或多个频率的周期信号来扩展测距量程,但依然受周期信号的周期限制,因此相位测距法一般用于短距离、高精度的测量场合。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种高精度、宽量程的测距方法及系统。本发明能够同时兼顾高精度和宽量程,既可以应用在近距离测距,也可以应用在远距离测距,另外还可以应用于场景深度测量与3D成像、机器人视觉、手势识别等应用中。
为解决上述技术问题,本发明提供一种高精度、宽量程的测距方法,其特征在于,所述测距方法通过将一种粗精度测距方法与相位测距方法相结合,利用粗精度测距方法调制光源获得粗精度距离值,利用相位测距方法调制光源获得一个相位周期内的高精度距离值,然后根据所述粗精度距离值和所述高精度距离值得出测距目标的距离位于相位测距的第几个相位周期,最后计算出高精度的实际距离值。
作为一种较佳的实施例,具体包括如下步骤:
步骤SS1:配置相关参数,包括相位测距方法的周期信号频率fP、粗精度测距方法的测距精度RR,转入步骤SS2;
步骤SS2:根据相位测距方法和粗精度测距方法,同时发出相位测距方法的周期信号与粗精度测距方法的测距信号,转入步骤SS3;
步骤SS3:将步骤SS2中的周期信号和测距信号叠加成混合信号,并用叠加后的混合信号驱动光源对测距目标发射出混合光信号,转入步骤SS4;
步骤SS4:探测器接收到返回的步骤SS3中的混合光信号,将混合光信号转化为混合电信号,然后分别转入步骤SS5和步骤SS6;
步骤SS5:将步骤SS4中的混合电信号中的周期信号分离出来,进行相位测距计算,根据相位差求出一个相位周期内的高精度距离值LP,转入步骤SS7;
步骤SS6:将步骤SS4中的混合电信号中的测距信号分离出来,根据粗精度测距方法求出粗精度距离值LR,转入步骤SS7;
步骤SS7:根据步骤SS6中的粗精度距离值LR和步骤SS5中的高精度距离值LP计算出当前测距目标的距离处于相位测距的第几个相位周期,然后计算出高精度的实际距离。
作为一种较佳的实施例,步骤SS7具体包括:相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
相位测距方法的相位周期为TP,粗精度测距方法的测距精度为RR,为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,调整相位测距方法的相位周期为TP和粗精度测距方法的测距精度RR以满足:
也就是说,粗精度测距方法的精度要小于相位测距方法的相位周期的一半。
作为一种较佳的实施例,所述光源可以是激光光源,但不限于激光光源,也可以是其他可调制的光源。
作为一种较佳的实施例,所述粗精度测距方法可以采用直接脉冲测距方法或者随即调制测距方法,但不限于这两种方法,也可以是其他宽量程的测距方法。
作为一种较佳的实施例,所述的粗精度测距方法得出粗精度距离值LR,所述的相位测距方法得出一个相位周期内的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
其中,相位测距方法的相位周期为TP,粗精度测距方法的测距精度为RR,的粗精度测距方法得出粗精度距离值LR,的相位测距方法得出一个相位周期内的高精度距离值LP
本发明还提出一种高精度、宽量程的测距系统,其特征在于,包括中央控制器、周期信号发射模块、粗精度测距发射模块、混合信号发射模块、可调制光源、探测器、带通滤波器、ADC1、ADC2、粗精度测距接收模块、周期信号接收模块、实际距离计算模块,中央控制器分别与周期信号发射模块、粗精度测距发射模块、混合信号发射模块、带通滤波器、ADC1、ADC2、粗精度测距接收模块、周期信号接收模块、实际距离计算模块相连接,周期信号发射模块的输出端、粗精度测距发射模块的输出端分别与混合信号发射模块的输入端相连接,混合信号发射模块的输出端与可调制光源的输入端相连接,可调制光源的输出端与探测器的输入端相连接,探测器的输出端分别与带通滤波器的输入端、ADC1的输入端相连接;带通滤波器的输出端与ADC2的输入端相连接,ADC2的输出端与周期信号接收模块的输入端相连接,周期信号接收模块的输出端与实际距离计算模块的输入端相连接;ADC1的输出端与粗精度测距接收模块的输入端相连接,粗精度测距接收模块的输出端与实际距离计算模块12的输入端相连接。
作为一种较佳的实施例,中央控制器1配置相位测距方法的周期信号频率fP、粗精度测距方法的测距精度RR、带通滤波器的带宽、ADC1与ADC2的采样频率;周期信号发射模块与粗精度测距发射模块分别发出相位测距方法的周期信号与粗精度测距方法的测距信号输送给混合信号发射模块;混合信号发射模块将周期信号和测距信号叠加,并将叠加后的混合光信号驱动可调制光源对测距目标发射出光线;探测器接收到返回的混合光信号,并将混合光信号转化为混合电信号,分两路分别输出给带通滤波器和ADC1;带通滤波器过滤掉混合电信号中的其他频率信号,只允许周期信号对应频率的信号通过,并输出给ADC2;ADC2将周期信号对应频率的电信号转化为数字信号后,输出给周期信号接收模块;周期信号接收模块提取出周期信号,根据相位差求出一个相位周期内的高精度距离值;ADC1将混合电信号转化为数字信号后,输出给粗精度测距接收模块,粗精度测距接收模块根据其测距原理,求出粗精度的距离值;实际距离计算模块根据粗精度距离值和高精度距离值计算出当前所测的距离处于相位测距的第几个相位周期,并计算出高精度的实际距离。
作为一种较佳的实施例,相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,需要调整相位测距方法的相位周期TP和粗精度测距方法的测距精度RR以满足:
也就是说,粗精度测距方法的测距精度小于相位测距方法的相位周期的一半。
作为一种较佳的实施例,的实际距离计算模块分别得到由粗精度测距接收模块计算出的粗精度距离值LR与由周期信号接收模块计算出的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
作为一种较佳的实施例,所述光源可以是激光光源,但不限于激光光源,也可以是其他可调制的光源。
作为一种较佳的实施例,所述粗精度测距方法可以采用直接脉冲测距方法或者随即调制测距方法,但不限于这两种方法,也可以是其他宽量程的测距方法。
本发明所达到的有益效果:本发明能够同时兼顾高精度和宽量程,既可以应用在近距离测距,也可以应用在远距离测距;本发明还可以应用于场景深度测量与3D成像、机器人视觉、手势识别等应用中;本发明能够准确的定位测距目标的距离位于相位测距的第几个相位周期,从而获得高精度的实际距离。
附图说明
图1是当时本发明的粗精度测距方法的测距目标距离与相位测距方法的相位周期的映射线形图。
图2是当时本发明的粗精度测距方法的测距目标距离与相位测距方法的相位周期的映射线形图。
图3是当时本发明的粗精度测距方法的测距目标距离与相位测距方法的相位周期的映射线形图。
图4是本发明的一种高精度、宽量程的测距系统的一个实施例的结构框图。
图中标记的含义:1-中央控制器,2-周期信号发射模块,3-粗精度测距发射模块,4-混合信号发射模块,5-1-激光光源,6-1-激光探测器,7-带通滤波器,8-ADC1,9-ADC2,10-粗精度测距接收模块,11-周期信号接收模块,12-实际距离计算模块。
图5是本发明的一种高精度、宽量程的测距系统的另一个实施例的结构框图。
图中标记的含义:1-中央控制器,2-周期信号发射模块,3-粗精度测距发射模块,4-混合信号发射模块,5-2-LED光源,6-2-LED探测器,7-带通滤波器,8-ADC1,9-ADC2,10-粗精度测距接收模块,11-周期信号接收模块,12-实际距离计算模块。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种高精度、宽量程的测距方法,其特征在于,测距方法通过将一种粗精度测距方法与相位测距方法相结合,利用粗精度测距方法调制光源获得粗精度距离值,利用相位测距方法调制光源获得一个相位周期内的高精度距离值,然后根据粗精度距离值和高精度距离值得出测距目标的距离位于相位测距的第几个相位周期,最后计算出高精度的实际距离值。
作为一种较佳的实施例,具体包括如下步骤:
步骤SS1:配置相关参数,包括相位测距方法的周期信号频率fP、粗精度测距方法的测距精度RR,转入步骤SS2;
步骤SS2:根据相位测距方法和粗精度测距方法,同时发出相位测距方法的周期信号与粗精度测距方法的测距信号,转入步骤SS3;
步骤SS3:将步骤SS2中的周期信号和测距信号叠加成混合信号,并用叠加后的混合信号驱动光源对测距目标发射出混合光信号,转入步骤SS4;
步骤SS4:探测器接收到返回的步骤SS3中的混合光信号,将混合光信号转化为混合电信号,然后分别转入步骤SS5和步骤SS6;
步骤SS5:将步骤SS4中的混合电信号中的周期信号分离出来,进行相位测距计算,根据相位差求出一个相位周期内的高精度距离值LP,转入步骤SS7;
步骤SS6:将步骤SS4中的混合电信号中的测距信号分离出来,根据粗精度测距方法求出粗精度距离值LR,转入步骤SS7;
步骤SS7:根据步骤SS6中的粗精度距离值LR和步骤SS5中的高精度距离值LP计算出当前测距目标的距离处于相位测距的第几个相位周期,然后计算出高精度的实际距离。
作为一种较佳的实施例,所述光源可以是激光光源,但不限于激光光源,也可以是其他可调制的光源。
作为一种较佳的实施例,所述粗精度测距方法可以采用直接脉冲测距方法或者随即调制测距方法,但不限于这两种方法,也可以是其他宽量程的测距方法。
作为一种较佳的实施例,步骤SS7具体包括:相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
相位测距方法的相位周期为TP,粗精度测距方法的测距精度为RR,为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,调整相位测距方法的相位周期为TP和粗精度测距方法的测距精度RR以满足:
也就是说,粗精度测距方法的精度要小于相位测距方法的相位周期的一半。
作为一种较佳的实施例,粗精度测距方法得出粗精度距离值LR,相位测距方法得出一个相位周期内的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
其中,相位测距方法的相位周期为TP,粗精度测距方法的测距精度为RR,的粗精度测距方法得出粗精度距离值LR,的相位测距方法得出一个相位周期内的高精度距离值LP
作为一种较佳的实施例,所述光源可以是激光光源,但不限于激光光源,也可以是其他可调制的光源。
作为一种较佳的实施例,粗精度测距方法采用直接脉冲测距方法或者随机调制测距方法,但不限于这两种方法,也可以是其他宽量程的测距方法。
图4和图5是本发明的一种高精度、宽量程的测距系统的两个实施例的结构框图。本发明还提出一种高精度、宽量程的测距系统,其特征在于,包括中央控制器1、周期信号发射模块2、粗精度测距发射模块3、混合信号发射模块4、可调制光源、探测器、带通滤波器7、ADC18、ADC29、粗精度测距接收模块10、周期信号接收模块11、实际距离计算模块12,中央控制器1分别与周期信号发射模块2、粗精度测距发射模块3、混合信号发射模块4、带通滤波器7、ADC18、ADC29、粗精度测距接收模块10、周期信号接收模块11、实际距离计算模块12相连接,周期信号发射模块2的输出端、粗精度测距发射模块3的输出端分别与混合信号发射模块4的输入端相连接,混合信号发射模块4的输出端与可调制光源的输入端相连接,可调制光源的输出端与探测器的输入端相连接,探测器的输出端分别与带通滤波器7的输入端、ADC18的输入端相连接;带通滤波器7的输出端与ADC29的输入端相连接,ADC29的输出端与周期信号接收模块11的输入端相连接,周期信号接收模块11的输出端与实际距离计算模块12的输入端相连接;ADC18的输出端与粗精度测距接收模块10的输入端相连接,粗精度测距接收模块10的输出端与实际距离计算模块12的输入端相连接。
作为一种较佳的实施例,中央控制器1配置相位测距方法的周期信号频率fP、粗精度测距方法的测距精度RR、带通滤波器7的带宽、ADC18与ADC29的采样频率;周期信号发射模块2与粗精度测距发射模块3分别发出相位测距方法的周期信号与粗精度测距方法的测距信号输送给混合信号发射模块4;混合信号发射模块4将周期信号和测距信号叠加,并将叠加后的混合光信号驱动可调制光源对测距目标发射出光线;探测器接收到返回的混合光信号,并将混合光信号转化为混合电信号,分两路分别输出给带通滤波器7和ADC18;带通滤波器7过滤掉混合电信号中的其他频率信号,只允许周期信号对应频率的信号通过,并输出给ADC29;ADC29将周期信号对应频率的电信号转化为数字信号后,输出给周期信号接收模块11;周期信号接收模块11提取出周期信号,根据相位差求出一个相位周期内的高精度距离值;ADC18将混合电信号转化为数字信号后,输出给粗精度测距接收模块10,粗精度测距接收模块10根据其测距原理,求出粗精度距离值;实际距离计算模块12根据粗精度距离值和高精度距离值计算出当前所测的距离处于相位测距的第几个相位周期,并计算出高精度的实际距离。
作为一种较佳的实施例,所述相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
所述的粗精度测距方法的测距精度为RR,所述的粗精度测距方法得出粗精度距离值为LR,所述的相位测距方法得出一个相位周期内的高精度距离值为LP,那么根据粗精度测距方法可以知道测距目标距离的范围在LR-RR到LR+RR之间,令:
Lmin=LR-RR
Lmax=LR-RR
时,由粗精度测距方法得到的测距目标距离的范围[Lmin,Lmax]必然会横跨两个或两个以上相位测距的相位周期,如图1所示,横轴为相位测距的相位周期数,LR在相位测距的第N+1个相位周期内,Lmin在第N个相位周期内,Lmax在第N+1个相位周期内,P1为第N个相位周期内的相位测距值,P2为第N+1个相位周期内的相位测距值,当Lmin-(N-1)TP<LP<Lmax-NTP时,P1和P2均有可能是测距目标的实际距离,无法确定测距目标的准确值。
时,由粗精度测距方法得到的测距目标距离的范围[Lmin,Lmax]必然会横跨两个或三个相位测距的相位周期,如图2所示,横轴为相位测距的相位周期数,LR在相位测距的第N+1个相位周期内,Lmin在第N个相位周期内,Lmax在第N+1个相位周期内,P1为第N个相位周期内的相位测距值,P2为第N+1个相位周期内的相位测距值,当LP=Lmin-(N-1)TP=Lmax-NTP时,P1和P2均有可能是测距目标的实际距离,也无法确定测距目标的准确值。
时,由粗精度测距方法得到的测距目标距离的范围[Lmin,Lmax]最多横跨两个相位测距的相位周期,如图3所示,横轴为相位测距的相位周期数,LR在相位测距的第N+1个相位周期内,Lmin在第N个相位周期内,Lmax在第N+1个相位周期内,P1为第N个相位周期内的相位测距值,P2为第N+1个相位周期内的相位测距值,此时,P1与P2不可能同时落在[Lmin,Lmax]区间内,从而可以得到测距目标的准确值。
为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,需要调整所述相位测距方法的相位周期TP和粗精度测距方法的测距精度RR以满足:
也就是说,所述粗精度测距方法的测距精度小于所述相位测距方法的相位周期的一半。
作为一种较佳的实施例,的实际距离计算模块12分别得到由粗精度测距接收模块10计算出的粗精度距离值LR与由周期信号接收模块11计算出的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
作为一种较佳的实施例,所述粗精度测距方法可以采用直接脉冲测距方法或者随即调制测距方法,但不限于这两种方法,也可以是其他宽量程的测距方法。
作为一种较佳的实施例,可调制光源为激光光源5-1或者LED光源5-2,探测器为激光探测器6-1或者LED探测器6-2。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种高精度、宽量程的测距方法,其特征在于,所述测距方法通过将一种粗精度测距方法与相位测距方法相结合,利用粗精度测距方法调制光源获得粗精度距离值,利用相位测距方法调制光源获得一个相位周期内的高精度距离值,然后根据所述粗精度距离值和所述高精度距离值得出测距目标的距离位于相位测距的第几个相位周期,最后计算出高精度的实际距离值。
2.根据权利要求1所述的一种高精度、宽量程的测距方法,其特征在于,具体包括如下步骤:
步骤SS1:配置相关参数,包括所述相位测距方法的周期信号频率fP、所述粗精度测距方法的测距精度RR,转入步骤SS2;
步骤SS2:根据所述相位测距方法和所述粗精度测距方法,同时发出所述相位测距方法的周期信号与所述粗精度测距方法的测距信号,转入步骤SS3;
步骤SS3:将步骤SS2中的所述周期信号和所述测距信号叠加成混合信号,并用叠加后的所述混合信号驱动光源对测距目标发射出混合光信号,转入步骤SS4;
步骤SS4:探测器接收到返回的所述步骤SS3中的所述混合光信号,将所述混合光信号转化为混合电信号,然后分别转入步骤SS5和步骤SS6;
步骤SS5:将所述步骤SS4中的所述混合电信号中的周期信号分离出来,进行相位测距计算,根据相位差求出一个相位周期内的高精度距离值LP,转入步骤SS7;
步骤SS6:将所述步骤SS4中的所述混合电信号中的测距信号分离出来,根据粗精度测距方法求出粗精度距离值LR,转入步骤SS7;
步骤SS7:根据所述步骤SS6中的所述粗精度距离值LR和所述步骤SS5中的所述高精度距离值LP计算出当前测距目标的距离处于相位测距的第几个相位周期,然后计算出高精度的实际距离。
3.根据权利要求2所述的一种高精度、宽量程的测距方法,其特征在于,所述步骤SS7具体包括:所述相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
所述相位测距方法的相位周期为TP,所述粗精度测距方法的测距精度为RR,为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,调整所述相位测距方法的相位周期为TP和粗精度测距方法的测距精度RR以满足:
也就是说,粗精度测距方法的精度要小于相位测距方法的相位周期的一半。
4.根据权利要求3所述的一种高精度、宽量程的测距方法,其特征在于,所述的粗精度测距方法得出粗精度距离值LR,所述的相位测距方法得出一个相位周期内的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
其中,所述相位测距方法的相位周期为TP,所述粗精度测距方法的测距精度为RR,所述的粗精度测距方法得出粗精度距离值LR,所述的相位测距方法得出一个相位周期内的高精度距离值LP
5.根据权利要求1所述的一种高精度、宽量程的测距方法,其特征在于,所述粗精度测距方法采用直接脉冲测距方法或者随机调制测距方法;所述调制光源采用激光光源或者LED光源。
6.一种基于权利要求1所述的高精度、宽量程的测距方法的测距系统,其特征在于,包括中央控制器(1)、周期信号发射模块(2)、粗精度测距发射模块(3)、混合信号发射模块(4)、可调制光源、探测器、带通滤波器(7)、ADC1(8)、ADC2(9)、粗精度测距接收模块(10)、周期信号接收模块(11)、实际距离计算模块(12),所述中央控制器(1)分别与所述周期信号发射模块(2)、所述粗精度测距发射模块(3)、所述混合信号发射模块(4)、所述带通滤波器(7)、所述ADC1(8)、所述ADC2(9)、所述粗精度测距接收模块(10)、所述周期信号接收模块(11)、所述实际距离计算模块(12)相连接,所述周期信号发射模块(2)的输出端、所述粗精度测距发射模块(3)的输出端分别与所述混合信号发射模块(4)的输入端相连接,所述混合信号发射模块(4)的输出端与所述可调制光源的输入端相连接,所述可调制光源的输出端与所述探测器的输入端相连接,所述探测器的输出端分别与所述带通滤波器(7)的输入端、所述ADC1(8)的输入端相连接;所述带通滤波器(7)的输出端与所述ADC2(9)的输入端相连接,所述ADC2(9)的输出端与所述周期信号接收模块(11)的输入端相连接,所述周期信号接收模块(11)的输出端与所述实际距离计算模块(12)的输入端相连接;所述ADC1(8)的输出端与所述粗精度测距接收模块(10)的输入端相连接,所述粗精度测距接收模块(10)的输出端与所述实际距离计算模块(12)的输入端相连接。
7.根据权利要求6所述的一种高精度、宽量程的测距系统,其特征在于,所述中央控制器(1)配置相位测距方法的周期信号频率fP、粗精度测距方法的测距精度RR、所述带通滤波器(7)的带宽、所述ADC1(8)与所述ADC2(9)的采样频率;所述周期信号发射模块(2)与所述粗精度测距发射模块(3)分别发出相位测距方法的周期信号与粗精度测距方法的测距信号输送给所述混合信号发射模块(4);所述混合信号发射模块(4)将周期信号和测距信号叠加,并将叠加后的混合光信号驱动可调制光源对测距目标发射出光线;所述探测器接收到返回的混合光信号,并将混合光信号转化为混合电信号,分两路分别输出给所述带通滤波器(7)和所述ADC1(8);所述带通滤波器(7)过滤掉混合电信号中的其他频率信号,只允许周期信号对应频率的信号通过,并输出给所述ADC2(9);所述ADC2(9)将周期信号对应频率的电信号转化为数字信号后,输出给所述周期信号接收模块(11);所述周期信号接收模块(11)提取出周期信号,根据相位差求出一个相位周期内的高精度距离值;所述ADC1(8)将混合电信号转化为数字信号后,输出给所述粗精度测距接收模块(10),所述粗精度测距接收模块(10)根据其测距原理,求出粗精度距离值;所述实际距离计算模块(12)根据粗精度距离值和高精度距离值计算出当前所测的距离处于相位测距的第几个相位周期,并计算出高精度的实际距离。
8.根据权利要求6所述的一种高精度、宽量程的测距系统,其特征在于,所述周期信号接收模块(11)中的相位测距方法的周期信号频率为fP,根据该频率信号的相位测距的最大距离即一个相位周期TP为:
为保证能够准确的定位测距目标的距离位于相位测距的第几个相位周期,需要调整所述相位测距方法的相位周期TP和粗精度测距方法的测距精度RR以满足:
也就是说,所述粗精度测距方法的测距精度小于所述相位测距方法的相位周期的一半。
9.根据权利要求8所述的一种高精度、宽量程的测距系统,其特征在于,所述的实际距离计算模块(12)分别得到由所述粗精度测距接收模块(10)计算出的粗精度距离值LR与由所述周期信号接收模块(11)计算出的高精度距离值LP,若当前测距目标的距离处于相位测距的第N+1个相位周期,那么可以求出N为:
然后,可以求出高精度的实际距离L为:
L=N·TP+LP
10.根据权利要求6所述的一种高精度、宽量程的测距系统,其特征在于,所述粗精度测距方法采用直接脉冲测距方法或者随机调制测距方法,所述可调制光源采用激光光源(5-1)或者LED光源(5-2),所述探测器采用激光探测器(6-1)或者LED探测器(6-2)。
CN201710176700.XA 2017-03-23 2017-03-23 一种高精度、宽量程的测距方法及系统 Pending CN107144850A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710176700.XA CN107144850A (zh) 2017-03-23 2017-03-23 一种高精度、宽量程的测距方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710176700.XA CN107144850A (zh) 2017-03-23 2017-03-23 一种高精度、宽量程的测距方法及系统

Publications (1)

Publication Number Publication Date
CN107144850A true CN107144850A (zh) 2017-09-08

Family

ID=59784016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710176700.XA Pending CN107144850A (zh) 2017-03-23 2017-03-23 一种高精度、宽量程的测距方法及系统

Country Status (1)

Country Link
CN (1) CN107144850A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333591A (zh) * 2018-01-18 2018-07-27 中国科学院苏州纳米技术与纳米仿生研究所 一种测距方法及其系统
CN108594254A (zh) * 2018-03-08 2018-09-28 北京理工大学 一种提高tof激光成像雷达测距精度的方法
CN110596726A (zh) * 2019-11-18 2019-12-20 深圳市迈测科技股份有限公司 一种通过激光测量待测目标距离的方法和装置
CN111427025A (zh) * 2020-01-14 2020-07-17 深圳市镭神智能系统有限公司 激光雷达和激光雷达的测距方法
CN113227828A (zh) * 2018-12-26 2021-08-06 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法
US11747474B2 (en) 2019-11-18 2023-09-05 Shenzhen Mileseey Technology Co., Ltd. Systems and methods for laser distance measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742379A (en) * 1995-11-29 1998-04-21 Reifer; Michael H. Device and method for electronically measuring distances
US20090128798A1 (en) * 2006-12-13 2009-05-21 Rafael Advanced Defense Systems Ltd. Coherent optical range finder
CN201876545U (zh) * 2010-09-02 2011-06-22 淄博职业学院 脉冲相位式激光测距仪
CN203502587U (zh) * 2013-09-25 2014-03-26 北京航天计量测试技术研究所 脉冲/相位一体式激光测距仪
CN106054204A (zh) * 2016-07-26 2016-10-26 北京邮电大学 一种面向长距离高精度的复合式激光测距方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742379A (en) * 1995-11-29 1998-04-21 Reifer; Michael H. Device and method for electronically measuring distances
US20090128798A1 (en) * 2006-12-13 2009-05-21 Rafael Advanced Defense Systems Ltd. Coherent optical range finder
CN201876545U (zh) * 2010-09-02 2011-06-22 淄博职业学院 脉冲相位式激光测距仪
CN203502587U (zh) * 2013-09-25 2014-03-26 北京航天计量测试技术研究所 脉冲/相位一体式激光测距仪
CN106054204A (zh) * 2016-07-26 2016-10-26 北京邮电大学 一种面向长距离高精度的复合式激光测距方法及系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333591A (zh) * 2018-01-18 2018-07-27 中国科学院苏州纳米技术与纳米仿生研究所 一种测距方法及其系统
CN108594254A (zh) * 2018-03-08 2018-09-28 北京理工大学 一种提高tof激光成像雷达测距精度的方法
CN108594254B (zh) * 2018-03-08 2021-07-09 北京理工大学 一种提高tof激光成像雷达测距精度的方法
CN113227828A (zh) * 2018-12-26 2021-08-06 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法
CN113227828B (zh) * 2018-12-26 2024-04-16 韩商未来股份有限公司 利用脉冲相移的三维距离测量照相机的非线性距离误差校正方法
CN110596726A (zh) * 2019-11-18 2019-12-20 深圳市迈测科技股份有限公司 一种通过激光测量待测目标距离的方法和装置
CN110596726B (zh) * 2019-11-18 2020-03-03 深圳市迈测科技股份有限公司 一种通过激光测量待测目标距离的方法和装置
US11747474B2 (en) 2019-11-18 2023-09-05 Shenzhen Mileseey Technology Co., Ltd. Systems and methods for laser distance measurement
CN111427025A (zh) * 2020-01-14 2020-07-17 深圳市镭神智能系统有限公司 激光雷达和激光雷达的测距方法
CN111427025B (zh) * 2020-01-14 2021-09-17 深圳市镭神智能系统有限公司 激光雷达和激光雷达的测距方法

Similar Documents

Publication Publication Date Title
CN107144850A (zh) 一种高精度、宽量程的测距方法及系统
CN109343069B (zh) 可实现组合脉冲测距的光子计数激光雷达及其测距方法
EP1913420B1 (de) Verfahren zur lichtlaufzeitmessung
US11971487B2 (en) Feature data structure, control device, storage device, control method, program and storage medium
CN205175364U (zh) 一种用于数据采集的激光轮廓扫描装置
CN108957470B (zh) 飞行时间测距传感器及其测距方法
CN109889809A (zh) 深度相机模组、深度相机、深度图获取方法以及深度相机模组形成方法
CN108594254A (zh) 一种提高tof激光成像雷达测距精度的方法
CN209375823U (zh) 3d相机
EP3187823B1 (en) Rangefinder and ranging method
CN106772404A (zh) 激光雷达测距装置及方法
CN110456376A (zh) Tof测距方法及设备
CN105164550A (zh) 测距装置以及测距方法
CN106773802B (zh) 多台激光雷达同步扫描控制系统及方法
CN105005051A (zh) 单光路激光测距系统
WO2014101408A1 (zh) 基于多次积分的三维成像雷达系统及方法
CN111031278A (zh) 一种基于结构光和tof的监控方法和系统
CN110619617A (zh) 三维成像方法、装置、设备及计算机可读存储介质
US11867811B2 (en) LiDAR device and method of operating the same
CN209928281U (zh) 自动驾驶仪
WO2017089552A1 (de) Verfahren und vorrichtung zum normieren von ultraschallechosignaldaten
CN104199043B (zh) 一种交通标识的检测方法
DE102004019361A1 (de) Abstandsmessverfahren, Abstandsmessvorrichtung, die dieses verwendet, und Abstandsmessaufbau, der dieses verwendet
CN108919286A (zh) 激光测距系统及其测距方法
CN113504532B (zh) 基于直接飞行时间法的光信号发射方法及测距系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170908