CN107144581A - 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置 - Google Patents

基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置 Download PDF

Info

Publication number
CN107144581A
CN107144581A CN201710311854.5A CN201710311854A CN107144581A CN 107144581 A CN107144581 A CN 107144581A CN 201710311854 A CN201710311854 A CN 201710311854A CN 107144581 A CN107144581 A CN 107144581A
Authority
CN
China
Prior art keywords
mrow
grating
msubsup
ray
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710311854.5A
Other languages
English (en)
Other versions
CN107144581B (zh
Inventor
傅健
王景正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710311854.5A priority Critical patent/CN107144581B/zh
Publication of CN107144581A publication Critical patent/CN107144581A/zh
Application granted granted Critical
Publication of CN107144581B publication Critical patent/CN107144581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption

Abstract

本发明公开了一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法及装置。该方法包括:以本发明提出的新型横向错位吸收光栅布置Talbot‑Lau成像结构;以上述结构获取X射线穿过物体后的二维强度图像;以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像。相较于传统方法,本发明实施例不需要移动光栅,一次曝光即可获得三种衬度图像,大幅减小了成像时间,降低了成像剂量,提高了系统成像效率和稳定性。

Description

基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法 及装置
技术领域
本发明涉及X射线成像技术领域,尤其涉及一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法及装置。
背景技术
在X射线成像系统中,X射线源发出X射线,透照被检测物体的某一区域,放置于射线源对面的探测器将被物体衰减后的射线信号转换为数字信号送到计算机,从而形成物体的透照强度图像,可以无损表征物体在该区域内的介质密度、成分和结构形态等特征。
传统X射线成像仅能获得物体的吸收衬度成像,对低原子序数材料结构样品难以获得高对比度图像。近年,相位衬度成像技术被提出来提高这些低衰减样品的成像衬度。如,袁清习等,同步辐射硬X射线衍射增强峰位成像CT研究,Chinese Physics C,vol.29.No.10,pp:1023-1026,2005,实现了一种衍射增强相衬成像方法;Pfeiffer F等,Phase retrieval differential phase-contrast imaging with low-brilliance x-raysources,Nature Physics,vol.2,no.4,pp.258-261,2006,提出了一种基于光栅的差分相衬方法;Zanette I等,Speckle-based x-ray phase-contrast imaging using a gratinginterferometer,Physical review letter,vol.112,no.25,2014,提出了一种散斑相衬成像技术。这其中,基于光栅的差分相衬方法能采用普通X光管实现,具有重大工程应用前景,得到了广泛研究。
但现有基于光栅的差分相衬方法大都是基于吸收光栅平移步进的传统方法,成像时间长,剂量大,稳定性低,效率不高,制约了其进一步工程应用。
目前,尚未发现基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法及装置。
发明内容
本发明提供一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法及装置,以减少成像时间、降低辐射剂量、提高成像效率。
本发明实施例的一个方面是提供一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,包括:
步骤1、利用横向错位吸收光栅布置Talbot-Lau成像结构获取X射线穿过物体后的二维强度图像;
步骤2、以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像。
进一步地,所述的横向错位吸收光栅布置Talbot-Lau成像结构,包括:
所述Talbot-Lau成像结构光路一共包括六个部分:X射线源、源光栅G0、测试物体、相位光栅G1、吸收光栅G2、探测器;
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
kg1=2g2, (2)
g0=g2·L/2d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度;
所述横向错位吸收光栅,指的是所述Talbot-Lau成像结构光路中吸收光栅G2,其与探测器探元的相对位置出现横向周期性错位,使得横向多个相邻探测器探元获得的强度信号,能够等效于传统成像方法中一个探测器探元在多个不同位置时获得的强度信号;
对于4个横向相邻探测器探元,4个横向相邻探测器探元分别标记为p1、p2、p3、p4,每个探元px(x=1,2,3,4)宽度为W,在横向错位吸收光栅中,对应一段长为W的光栅gpx,每一段光栅gpx的光栅周期为g2,相邻探测器探元对应的光栅存在着距离为f的位置差,如相邻探测器探元p1和p2对应的光栅段gp1与gp2存在着f的位置差,其中f=g2/4,gpx光栅的位置相当于吸收光栅在移动到x时的位置,相邻4个探测器探元对应的各段吸收光栅的位置各不同,相互错开距离f,称之为横向错位光栅,探测器探元px获得的X射线强度信号值是其在传统方法下吸收光栅G2移动到位置x时采集到的强度值。
进一步地,以上述结构获取X射线穿过物体后的二维强度图像,包括:
在所述Talbot-Lau成像结构中,探测器采集未放置测试物体时的二维投影图像;
将测试物体放置于所述Talbot-Lau成像结构中,保证物体被测试区被X射线光束全部覆盖;
在所述Talbot-Lau成像结构中,探测器采集透过测试物体后的X射线强度二维图像。
进一步地,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像,包括:
依据公式(5)-(14)对所述的二维强度图像进行图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
phase(x,z)=φs(x,z)-φr(x,z), (13)
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
本发明实施例的另一个方面是提供一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置,包括:
获取模块,以本发明提出的新型横向错位吸收光栅布置Talbot-Lau成像结构,以上述结构获取X射线穿过物体后的二维强度图像。
计算模块,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像。
进一步地,横向错位吸收光栅布置Talbot-Lau成像结构,包括:
所述Talbot-Lau成像结构光路一共包括六个部分:X射线源、源光栅G0、测试物体、相位光栅G1、吸收光栅G2、探测器;
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
kg1=2g2, (2)
g0=g2·L/2d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度;
所述横向错位吸收光栅,指的是所述Talbot-Lau成像结构光路中吸收光栅G2,其与探测器探元的相对位置出现横向周期性错位,使得横向多个相邻探测器探元获得的强度信号,能够等效于一个探测器探元在多个不同位置时获得的强度信号;
对于4个横向相邻探测器探元,4个横向相邻探测器探元分别标记为p1、p2、p3、p4,每个探元px(x=1,2,3,4)宽度为W,在横向错位吸收光栅中,对应一段长为W的光栅gpx,每一段光栅gpx的光栅周期为g2,相邻探测器探元对应的光栅存在着距离为f的位置差,如相邻探测器探元p1和p2对应的光栅段gp1与gp2存在着f的位置差,其中f=g2/4,gpx光栅的位置相当于吸收光栅在移动到x时的位置,相邻4个探测器探元对应的各段吸收光栅的位置各不同,相互错开距离f,称之为横向错位光栅,探测器探元px获得的X射线强度信号值是其吸收光栅G2移动到位置x时采集到的强度值。
进一步地,以上述结构获取X射线穿过物体后的二维强度图像,包括:
在所述Talbot-Lau成像结构中,探测器采集未放置测试物体时的二维投影图像;
将测试物体放置于所述Talbot-Lau成像结构中,保证物体被测试区被X射线光束全部覆盖;
在所述Talbot-Lau成像结构中,探测器采集透过测试物体后的X射线强度二维图像。
进一步地,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像,包括:
依据公式(5)-(14)对所述的二维强度图像进行图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
phase(x,z)=φs(x,z)-φr(x,z), (13)
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
本发明与现有技术相比的优点在于:本发明能够解决目前成像过程中多次曝光问题,可以仅用一次曝光成像,提取出吸收衬度、差分相位衬度、散射衬度三种衬度图像;步骤简单,无需成像过程中光栅的高精度移动;显著减少了成像过程中的成像时间;极大降低了成像时的辐射剂量;提高了成像过程的效率。
附图说明
图1为本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法流程图;
图2为本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像系统原理图;
图3为本发明实施例提供的新型横向错位吸收光栅的结构原理图;
图4为基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法的二维投影图像;
图5为传统X射线光栅差分相位衬度成像方法的四幅二维投影图像;
图6为基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法得到的吸收衬度、差分相位衬度和散射衬度图像;
图7为传统X射线光栅差分相位衬度成像方法得到的吸收衬度、差分相位衬度和散射衬度图像;
图8为本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置的结构图。
具体实施方式
下面结合附图以及具体是实施方式进一步本发明。
图1为本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法流程图;本发明实施例针对现有光栅差分相位衬度成像过程中需要多次曝光、成像时间长、成像剂量大、成像效率低等问题,提供了基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,该方法具体步骤如下:
步骤S101、将所述的各器件按照Talbot-Lau成像光路参数要求进行放置。
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度。
图2为本发明实施例提供基于横向错位吸收光栅的X射线光栅差分相位衬度成像系统原理图;如图2所示,基于横向错位吸收光栅的X射线光栅差分相位衬度成像系统包括:X射线源20、X射线束21、源光栅G0 22、待测物体23、相位光栅G1 24、吸收光栅G2 25、探测器26、计算机27。其中,探测器24、X射线源20分别与计算机27连接。计算机27用于控制X射线源20产生X射线束21的强度与时间,并控制探测器26采集二维强度图像。X射线源20产成的X射线束21经过源光栅G0 22后对待测物体23进行透射,待测物体23成像区被X射线束21覆盖,X射线束21经过相位光栅G1 24和吸收光栅G2 25调制信号后被探测器26采集。当完成采集后,计算机27控制探测器26停止采样、控制X射线源20停止产生X射线,基于横向错位吸收光栅的X射线光栅差分相位衬度成像系统完成一次成像。探测器26将将二维强度图像传输给计算机27。图3为本发明实施例提供的新型横向错位吸收光栅的结构原理图。
其中,吸收光栅G2 25采用本发明设计的横向错位吸收光栅。所述横向错位吸收光栅,指的是所述Talbot-Lau成像结构光路中吸收光栅G2,其与探测器探元的相对位置出现横向周期性错位,使得横向多个相邻探测器探元获得的强度信号,能够等效于传统成像方法中一个探测器探元在多个不同位置时获得的强度信号。
这里,以4个横向相邻探测器探元为例,描述本发明提出的新型横向错位吸收光栅。如图3,4个横向相邻探测器探元分别标记为p1、p2、p3、p4,每个探元px(x=1,2,3,4)宽度为W,在本发明提出的新型横向错位吸收光栅中,对应一段长为W的光栅gpx。每一段光栅gpx的光栅周期为g2,相邻探测器探元对应的光栅存在着距离为f的位置差,如相邻探测器探元p1和p2对应的光栅段gp1与gp2存在着f的位置差,其中f=g2/4。gpx光栅的位置相当于传统方法中吸收光栅在移动到x时的位置。相邻4个探测器探元对应的各段吸收光栅的位置各不同,相互错开距离f,称之为横向错位光栅。探测器探元px获得的X射线强度信号值是其在传统方法下吸收光栅G2移动到位置x时采集到的强度值。
步骤S102、获取探测器采集到的二维投影图像。
在所述Talbot-Lau成像结构中,先不放置待测物体23,计算机27控制探测器26采集此时的二维强度图像;
再将待测物体23放置于所述Talbot-Lau成像光路中,保证物体被测试区被X射线束21全部覆盖;
在所述Talbot-Lau成像光路中,计算机27控制探测器26采集被待测物体23衰减后的X射线信二维强度图像。
步骤S103、以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像,包括:
依据公式(5)-(14)对所述的二维强度图像进行图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
phase(x,z)=φs(x,z)-φr(x,z), (13)
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,在本发明中M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
本发明实施例相比于现有的X射线光栅差分相位衬度成像技术,能够解决目前成像过程中多次曝光问题,可以仅用一次曝光成像,提取出吸收衬度、差分相位衬度、散射衬度三种衬度图像;步骤简单,无需成像过程中光栅的高精度移动;显著减少了成像过程中的成像时间;极大降低了成像时的辐射剂量;提高了成像过程的效率。
为了证明上述实施例的效果,本发明实施例进行了如下实验,实验步骤如下:
(1)设定实验条件。本实验的源光栅G0、相位光栅G1、吸收光栅G2是在X射线能量为28keV的条件下被设计的。源光栅G0的周期为14微米;相位光栅G1的周期为3.5微米;吸收光栅G2的周期为2.0微米。源光栅G0和相位光栅G1的距离是1400毫米,相位光栅G1和吸收光栅G2的距离为200毫米,对应于第5分数Talbot距离(m=5)。二维强度图像的大小为307*652。
(2)根据Talbot-Lau成像光路参数要求,布置Talbot-Lau成像结构。
(3)探测器采集放置待测物体前、后的二维强度图像。
(4)计算机依据上述公式(5)-(14)对所述物体的二维强度图像进行吸收衬度、差分相位衬度和散射衬度三种图像的分离。
图4为基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法得到的二维强度图像;图6为基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法得到的吸收衬度、差分相位衬度和散射衬度的图像。由图4和6可知,表明了本发明实施例方法的有效性,可以正确提取出待测物体的三种衬度图像。
图5为传统X射线光栅差分相位衬度成像方法的二维强度图像;图7为传统X射线光栅差分相位衬度成像方法得到的吸收衬度、差分相位衬度和散射衬度的图像。通过图5可以显著观察到传统X射线光栅差分相位衬度成像方法需要对物体进行4次曝光,极大的增加了成像时间和辐射剂量,显著降低了成像效率。
由图4、5、6和7可知,本发明实施例能快速正确地实现待测物体的吸收衬度、差分相位衬度和散射衬度的成像,对待测物体仅通过一次曝光即可实现成像过程,不需要传统方法的多次曝光,极大减少成像时间,显著降低成像时的辐射剂量,提升了差分成像过程的成像效率。成像过程简单易实现。
图8为本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置的结构图。如图8所示,针对基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置80包括获取模块81和计算模块82。其中,获取模块81基于横向错位吸收光栅Talbot-Lau型成像结构,用于获取二维强度图像;计算模块81基于吸收衬度、差分相位衬度、散射衬度三种图像信号的提取算法,用于对所述二维强度图像进行图像解析。
本发明实施例相比于现有的X射线光栅差分相位衬度成像技术,能够解决目前成像过程中多次曝光问题,可以仅用一次曝光成像,提取出吸收衬度、差分相位衬度、散射三种衬度图像;步骤简单,无需成像过程中光栅的高精度移动;显著减少了成像过程中的成像时间;极大降低了成像时的辐射剂量;提高了成像过程的效率。
获取模块81需要将所述的各器件按照Talbot-Lau成像光路参数要求进行布置,探测器对所述的待测物体进行二维强度图像的采集。
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度。
计算模块82依据公式(5)-(14)对所述物体的二维强度图像进行吸收衬度、相位衬度、散射衬度三种信号的图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
phase(x,z)=φs(x,z)-φr(x,z), (13)
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,在本发明中M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
本发明实施例提供的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置可以具体用于执行上述图1所提供的方法实施例,具体功能此处不再赘述。
本发明实施例能快速地实现待测物体的吸收衬度、差分相位衬度、散射衬度三种图像成像,仅需要一次曝光成像即可实现差分相位衬度的图像获取功能,而不需要传统成像方法的多次曝光,成像过程更简单,成像时间更少,成像剂量更低,成像效率更高。
综上所述,本发明实施例相比于现有的成像技术,能够解决目前成像过程中多次曝光问题,可以仅用一次曝光成像,提取出待测物体的吸收衬度、差分相位衬度、散射衬度三种衬度图像;步骤简单,无需成像过程中光栅的高精度移动;显著减少了成像过程中的成像时间;极大降低了成像时的辐射剂量;提高了成像过程的效率。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,其特征在于,包括如下步骤:
步骤1、利用横向错位吸收光栅布置Talbot-Lau成像结构获取X射线穿过物体后的二维强度图像;
步骤2、以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像。
2.根据权利要求1所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,其特征在于,所述的横向错位吸收光栅布置Talbot-Lau成像结构,包括:
所述Talbot-Lau成像结构光路一共包括六个部分:X射线源、源光栅G0、测试物体、相位光栅G1、吸收光栅G2、探测器;
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
<mrow> <mi>d</mi> <mo>=</mo> <msubsup> <mi>kmg</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>/</mo> <mn>8</mn> <mi>&amp;lambda;</mi> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度;
所述横向错位吸收光栅,指的是所述Talbot-Lau成像结构光路中吸收光栅G2,其与探测器探元的相对位置出现横向周期性错位,使得横向多个相邻探测器探元获得的强度信号,能够等效于传统成像方法中一个探测器探元在多个不同位置时获得的强度信号;
对于4个横向相邻探测器探元,分别标记为p1、p2、p3、p4,每个探元px(x=1,2,3,4)宽度为W,在横向错位吸收光栅中,对应一段长为W的光栅gpx,每一段光栅gpx的光栅周期为g2,相邻探测器探元对应的光栅存在着距离为f的位置差,如相邻探测器探元p1和p2对应的光栅段gp1与gp2存在着f的位置差,其中f=g2/4,gpx光栅的位置相当于吸收光栅在移动到x时的位置,相邻4个探测器探元对应的各段吸收光栅的位置各不同,相互错开距离f,称之为横向错位光栅,探测器探元px获得的X射线强度信号值是吸收光栅G2移动到位置x时采集到的强度值。
3.根据权利要求2所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,其特征在于,以上述结构获取X射线穿过物体后的二维强度图像,包括:
在所述Talbot-Lau成像结构中,探测器采集未放置测试物体时的二维投影图像;
将测试物体放置于所述Talbot-Lau成像结构中,保证物体被测试区被X射线光束全部覆盖;
在所述Talbot-Lau成像结构中,探测器采集透过测试物体后的X射线强度二维图像。
4.根据权利要求1所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像方法,其特征在于,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像,包括:
依据公式(5)-(14)对所述的二维强度图像进行图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
<mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>2</mn> <mi>M</mi> </mfrac> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> </mrow> <mi>M</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> </mrow> <mi>M</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>a</mi> <mi>b</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
phase(x,z)=φ5(x,z)-φr(x,z), (13)
<mrow> <mi>d</mi> <mi>a</mi> <mi>r</mi> <mi>k</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>a</mi> <mn>1</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>a</mi> <mn>1</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
5.一种基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置,其特征在于,包括:
获取模块,利用横向错位吸收光栅布置Talbot-Lau成像结构获取X射线穿过物体后的二维强度图像;
计算模块,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像。
6.根据权利要求5所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置,其特征在于,横向错位吸收光栅布置Talbot-Lau成像结构,包括:
所述Talbot-Lau成像结构光路一共包括六个部分:X射线源、源光栅G0、测试物体、相位光栅G1、吸收光栅G2、探测器;
所述Talbot-Lau成像结构光路参数应满足如下公式(1)-(4):
<mrow> <mi>d</mi> <mo>=</mo> <msubsup> <mi>kmg</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>/</mo> <mn>8</mn> <mi>&amp;lambda;</mi> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 2
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d表示相位光栅G1和吸收光栅G2之间的距离;k=(L+d)/L为放大比,L为源光栅G0与相位光栅G1直接的距离;m表示第m阶分数Talbot距离;g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,s为源光栅中在每个周期下允许X射线透过的宽度;
所述横向错位吸收光栅,指的是所述Talbot-Lau成像结构光路中吸收光栅G2,其与探测器探元的相对位置出现横向周期性错位,使得横向多个相邻探测器探元获得的强度信号,能够等效于一个探测器探元在多个不同位置时获得的强度信号;
对于4个横向相邻探测器探元,分别标记为p1、p2、p3、p4,每个探元px(x=1,2,3,4)宽度为W,在横向错位吸收光栅中,对应一段长为W的光栅gpx,每一段光栅gpx的光栅周期为g2,相邻探测器探元对应的光栅存在着距离为f的位置差,如相邻探测器探元p1和p2对应的光栅段gp1与gp2存在着f的位置差,其中f=g2/4,gpx光栅的位置相当于吸收光栅在移动到x时的位置,相邻4个探测器探元对应的各段吸收光栅的位置各不同,相互错开距离f,称之为横向错位光栅,探测器探元px获得的X射线强度信号值是其吸收光栅G2移动到位置x时采集到的强度值。
7.根据权利要求6所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置,其特征在于,以上述结构获取X射线穿过物体后的二维强度图像,包括:
在所述Talbot-Lau成像结构中,探测器采集未放置测试物体时的二维投影图像;
将测试物体放置于所述Talbot-Lau成像结构中,保证物体被测试区被X射线光束全部覆盖;
在所述Talbot-Lau成像结构中,探测器采集透过测试物体后的X射线强度二维图像。
8.根据权利要求5所述的基于横向错位吸收光栅的X射线光栅差分相位衬度成像装置,其特征在于,以傅里叶分析法从采集到的二维强度图像中分离出X射线吸收衬度、差分相位衬度及散射衬度三种图像,包括:
依据公式(5)-(14)对所述的二维强度图像进行图像解析:
I1(x,z)=I(x-1,z), (5)
I2(x,z)=I(x,z), (6)
I3(x,z)=I(x+1,z), (7)
I4(x,z)=I(x+2,z), (8)
<mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>2</mn> <mi>M</mi> </mfrac> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> </mrow> <mi>M</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> </mrow> <mi>M</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mi>k</mi> <mo>/</mo> <mi>M</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>a</mi> <mi>b</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> 3
phase(x,z)=φs(x,z)-φr(x,z), (13)
<mrow> <mi>d</mi> <mi>a</mi> <mi>r</mi> <mi>k</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>a</mi> <mn>1</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mi>r</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>a</mi> <mn>1</mn> <mi>s</mi> </msubsup> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中,x为二维投影图点的横坐标;Z为二维投影图点的纵坐标;I(x,z)为二维投影图中点(x,z)的强度值;I1(x,z)、I2(x,z)、I3(x,z)、I4(x,z)分别表示点(x,z)的4个不同的强度值,模拟传统光栅差分相位衬度图像中点(x,z)当吸收光栅在4个不同的步进位置时的强度值;M表示一个点(x,z)中不同的强度值的个数,M=4;a0(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的均值;a1(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的振幅大小;φ(x,z)为点(x,z)的4个不同的强度值拟合出的正弦曲线的相位值;表示不放测试物体时的a0(x,z)值,表示放置测试物体时的a0(x,z)值;表示不放测试物体时的a1(x,z)值,表示放置测试物体时的a1(x,z)值;φr(x,z)表示不放测试物体时的φ(x,z)值,φs(x,z)表示放置测试物体时的φ(x,z)值;abs(x,z)为点(x,z)吸收衬度的值;phase(x,z)为点(x,z)差分相位衬度的值;dark(x,z)为点(x,z)散射衬度成像的值。
CN201710311854.5A 2017-05-05 2017-05-05 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置 Active CN107144581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710311854.5A CN107144581B (zh) 2017-05-05 2017-05-05 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710311854.5A CN107144581B (zh) 2017-05-05 2017-05-05 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置

Publications (2)

Publication Number Publication Date
CN107144581A true CN107144581A (zh) 2017-09-08
CN107144581B CN107144581B (zh) 2019-09-27

Family

ID=59776771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710311854.5A Active CN107144581B (zh) 2017-05-05 2017-05-05 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置

Country Status (1)

Country Link
CN (1) CN107144581B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607560A (zh) * 2017-09-22 2018-01-19 上海联影医疗科技有限公司 一种光学相位衬度成像系统、方法及计算机可读媒质
CN108469443A (zh) * 2018-04-18 2018-08-31 北京航空航天大学 基于二维错位吸收光栅的x射线光栅差分相位衬度成像方法及装置
CN108680589A (zh) * 2018-05-31 2018-10-19 北京航空航天大学 基于横向错位光栅的x射线光栅差分相位衬度三维锥束计算机层析成像方法及装置
CN109975334A (zh) * 2019-04-25 2019-07-05 兰州大学 一种单次曝光的x射线二维相衬成像方法
CN110068584A (zh) * 2019-03-15 2019-07-30 中国工程物理研究院流体物理研究所 扫描式x射线光栅干涉成像系统及方法
CN110133011A (zh) * 2019-05-28 2019-08-16 中国科学院苏州生物医学工程技术研究所 免步进x射线光栅相衬成像方法
CN111595877A (zh) * 2020-05-27 2020-08-28 合肥工业大学 一种x射线衍射增强成像的多衬度图像提取方法
WO2020199194A1 (zh) * 2019-04-04 2020-10-08 中国科学技术大学 一种x射线相位衬度成像方法
CN112022178A (zh) * 2020-09-02 2020-12-04 上海联影医疗科技股份有限公司 X射线成像设备及系统
WO2023116582A1 (zh) * 2021-12-20 2023-06-29 中国科学院深圳先进技术研究院 X射线相位定量成像技术与测量方法
CN114018961B (zh) * 2021-11-03 2023-08-18 北京航空航天大学宁波创新研究院 基于深度学习的单步x射线光栅差分相位衬度成像方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164373A (ja) * 2009-01-14 2010-07-29 Konica Minolta Medical & Graphic Inc X線撮影装置、およびx線撮影方法
WO2012085401A1 (fr) * 2010-12-22 2012-06-28 Centre National De La Recherche Scientifique Dispositif de mesure d'un degre de desalignement et procede d'utilisation dudit dispositif
CN104132953A (zh) * 2014-08-01 2014-11-05 中国科学技术大学 一种双能x射线相位衬度成像装置及其实现方法
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
WO2015163307A1 (ja) * 2014-04-25 2015-10-29 株式会社日立ハイテクノロジーズ 計測システムおよび計測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164373A (ja) * 2009-01-14 2010-07-29 Konica Minolta Medical & Graphic Inc X線撮影装置、およびx線撮影方法
WO2012085401A1 (fr) * 2010-12-22 2012-06-28 Centre National De La Recherche Scientifique Dispositif de mesure d'un degre de desalignement et procede d'utilisation dudit dispositif
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
WO2015163307A1 (ja) * 2014-04-25 2015-10-29 株式会社日立ハイテクノロジーズ 計測システムおよび計測方法
CN104132953A (zh) * 2014-08-01 2014-11-05 中国科学技术大学 一种双能x射线相位衬度成像装置及其实现方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607560A (zh) * 2017-09-22 2018-01-19 上海联影医疗科技有限公司 一种光学相位衬度成像系统、方法及计算机可读媒质
CN107607560B (zh) * 2017-09-22 2021-06-25 上海联影医疗科技股份有限公司 一种光学相位衬度成像系统、方法及计算机可读媒质
CN108469443A (zh) * 2018-04-18 2018-08-31 北京航空航天大学 基于二维错位吸收光栅的x射线光栅差分相位衬度成像方法及装置
CN108680589A (zh) * 2018-05-31 2018-10-19 北京航空航天大学 基于横向错位光栅的x射线光栅差分相位衬度三维锥束计算机层析成像方法及装置
CN108680589B (zh) * 2018-05-31 2021-07-16 北京航空航天大学 基于横向错位光栅的三维锥束计算机层析成像方法及装置
CN110068584A (zh) * 2019-03-15 2019-07-30 中国工程物理研究院流体物理研究所 扫描式x射线光栅干涉成像系统及方法
WO2020199194A1 (zh) * 2019-04-04 2020-10-08 中国科学技术大学 一种x射线相位衬度成像方法
CN109975334B (zh) * 2019-04-25 2021-12-28 兰州大学 一种单次曝光的x射线二维相衬成像方法
CN109975334A (zh) * 2019-04-25 2019-07-05 兰州大学 一种单次曝光的x射线二维相衬成像方法
CN110133011A (zh) * 2019-05-28 2019-08-16 中国科学院苏州生物医学工程技术研究所 免步进x射线光栅相衬成像方法
CN110133011B (zh) * 2019-05-28 2022-04-15 中国科学院苏州生物医学工程技术研究所 免步进x射线光栅相衬成像方法
CN111595877B (zh) * 2020-05-27 2022-03-29 合肥工业大学 一种x射线衍射增强成像的多衬度图像提取方法
CN111595877A (zh) * 2020-05-27 2020-08-28 合肥工业大学 一种x射线衍射增强成像的多衬度图像提取方法
CN112022178A (zh) * 2020-09-02 2020-12-04 上海联影医疗科技股份有限公司 X射线成像设备及系统
CN114018961B (zh) * 2021-11-03 2023-08-18 北京航空航天大学宁波创新研究院 基于深度学习的单步x射线光栅差分相位衬度成像方法及装置
WO2023116582A1 (zh) * 2021-12-20 2023-06-29 中国科学院深圳先进技术研究院 X射线相位定量成像技术与测量方法

Also Published As

Publication number Publication date
CN107144581B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN107144581A (zh) 基于横向错位吸收光栅的x射线光栅差分相位衬度成像方法及装置
Maslowski et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter–Part I: Core algorithms and validation
CN108680589A (zh) 基于横向错位光栅的x射线光栅差分相位衬度三维锥束计算机层析成像方法及装置
CN103365067B (zh) 可实现三维动态观测的光栅剪切成像装置和方法
US8121249B2 (en) Multi-parameter X-ray computed tomography
Cho et al. Accurate technique for complete geometric calibration of cone‐beam computed tomography systems
CN106535769A (zh) X射线干涉成像系统
CN101536912B (zh) X射线成像设备及其控制方法
CN108469443A (zh) 基于二维错位吸收光栅的x射线光栅差分相位衬度成像方法及装置
Brombal et al. Monochromatic breast computed tomography with synchrotron radiation: phase-contrast and phase-retrieved image comparison and full-volume reconstruction
Morvidone et al. On the V-line Radon transform and its imaging applications
CN107076682A (zh) 用于测量、表征和分析周期性结构的x射线方法
Dunning et al. Sheet beam x‐ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles
Vernekohl et al. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans
Li et al. Fundamental relationship between the noise properties of grating‐based differential phase contrast CT and absorption CT: Theoretical framework using a cascaded system model and experimental validation
US11464470B2 (en) X-ray backscatter systems and methods for performing imaging tomosynthesis
CN101023448A (zh) 成像系统
Morvidone et al. A novel V-line Radon transform and its imaging applications
Feng et al. X-ray fluorescence microtomography based on polycapillary-focused X-rays from laboratory source
Mu et al. A novel three‐dimensional image reconstruction method for near‐field coded aperture single photon emission computerized tomography
Garnica‐Garza Directional scatter imaging for the stereoscopic tracking of fiducial markers in a single kV exposure
CN104207795B (zh) X光探测器的探测器模块对齐情况检测方法及系统
Seppi et al. Compressed sensing on multi-pinhole collimator spect camera for sentinel lymph node biopsy
Alfuraih et al. Investigation of SPECT/CT cardiac imaging using Geant4
Tarpau et al. On the design of a CST system and its extension to a bi-imaging modality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant