CN107141833A - 一种木塑材料注塑方法 - Google Patents

一种木塑材料注塑方法 Download PDF

Info

Publication number
CN107141833A
CN107141833A CN201710412826.2A CN201710412826A CN107141833A CN 107141833 A CN107141833 A CN 107141833A CN 201710412826 A CN201710412826 A CN 201710412826A CN 107141833 A CN107141833 A CN 107141833A
Authority
CN
China
Prior art keywords
wood
wood powder
plastic material
moulding process
injection moulding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710412826.2A
Other languages
English (en)
Inventor
查国东
储振亚
储亮
李云雷
查卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuexi County Tongxing Nylon Rubber Products Co Ltd
Original Assignee
Yuexi County Tongxing Nylon Rubber Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuexi County Tongxing Nylon Rubber Products Co Ltd filed Critical Yuexi County Tongxing Nylon Rubber Products Co Ltd
Priority to CN201710412826.2A priority Critical patent/CN107141833A/zh
Publication of CN107141833A publication Critical patent/CN107141833A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

本发明提供一种木塑材料注塑方法,本发明将木粉用纳米二氧化硅溶液进行浸泡,用硅烷偶联剂进行处理,木粉内部和表面粘附了纳米二氧化硅,提高了木粉的分散性、抗老化性、耐腐性,从而提高了复合材料的弯曲强度,抗裂性能,耐水性,大大延长了材料的使用寿命,而且分散润滑性好,注塑所用压力减小,复杂的结构也不易形成孔隙。本发明的脱模剂加入了纳米二氧化硅,提高了脱模性,提高了木塑材料表面的抗老化性、耐磨性。

Description

一种木塑材料注塑方法
技术领域
本发明涉及注塑技术领域,尤其涉及一种木塑材料注塑方法。
背景技术
由于作为有机化工初始原料的石油、煤炭等资源储量有限,以及开发相应石化产品所带来的环境污染等一系列问题,高效开发利用可再生的生物质资源成为当今研究的重要热点之一。木质纤维类生物质因其储量丰富且可再生的特点而受到世界各国的关注。木质纤维类生物质主要由纤维素、半纤维素和木质素3种天然高聚物组成,这些组分中均含有大量的羟基,易通过酯化、醚化、苄基化、氰乙基化、烯丙基化等方式进行化学改性,以获得有塑化倾向的材料。早在20世纪就有学者提出,通过酯化和醚化手段对木质纤维全组分进行塑化改性。Hassan等在非溶剂条件下研究了丁二酸酐对甘蔗渣的塑化改性,酯化产物的质量增加率达到48%,并且能够在室温条件下被压成薄片。Timar等采用二步法对杨木锯末进行塑化改性,得到的酯化木粉在80℃即开始软化,经热压成型制得了高强度的板材。Zhang等在二甲亚砜/N-甲基咪唑(DMSO/NMI)溶剂体系下对蔗渣进行了丁二酰化改性研究,产物的质量增加率为70.8%~144.7%。其他二元羧酸酐如邻苯二甲酸酐(PA)、马来酸酐(MA)也已被用于酯化木质纤维,以制备热压成型的产品。研究发现二元羧酸酐中,琥珀酸酐具有最高的反应活性,经琥珀酸酐酯化的木粉具有比马来酸酐和邻苯二甲酸酐酯化更好的流动性能。但由于木质纤维化学组分的复杂性,所报道的塑化改性产物至今仍限于热压成型,仅以质量增加率作为改性评判指标,并没有成功制备出具有良好热塑性可以注塑成型的生物基塑料。
《酯化改性木粉制备生物基塑料研究》在DMSO体系中研究发现,当木粉与PA质量比为1∶2时,改性产物具有较佳的力学性能。因此,《酯化改性木粉制备生物基塑料研究》以丁二酸酐和邻苯二甲酸酐混合酸酐为酯化剂,将混合酸酐的总物质的量固定在0.081mol(即12gPA),在DMSO体系下对胡桑枝条木粉进行酯化改性,采用响应面法探索分析两种酸酐配比、反应温度和反应时间对改性产物力学性能的影响,确定最佳工艺参数,制备具有较好力学性能的生物基塑料,以期为木质纤维类生物质全组分高效利用开拓一条新途径。
由于容易老化降解吸水,影响材料的稳定性和使用寿命,需要改进。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种木塑材料注塑方法。
本发明是通过以下技术方案实现的:
一种木塑材料注塑方法,步骤为:
(1)制作模具,在模具空腔内部涂覆一层脱模剂;
(2)将木粉进行球磨,将木粉在纳米二氧化硅溶液中浸渍11-12h后,纳米二氧化硅溶液的质量百分数为20-25%,再向溶液中加入4-5wt%的硅烷偶联剂Si-69,反应11-12h后取出,用乙醇和水清洗3-4次,50-60℃烘干,得到改性木粉;
(3)将改性木粉与丁二酸酐、邻苯二甲酸酐、催化剂混合,加入二甲亚砜中,置于油浴锅中反应3-3.5小时,用丙酮析出产物,并用丙酮洗涤、抽滤至滤液物色透明,干燥,得到反应产物;
(4)将干燥后的反应产物粉碎,注塑成型,即得。
所述木粉进行球磨至粒径为1-600微米。
注塑条件为: 注塑压力750-780bar,保护压力450-470bar,注塑温度175-180℃,磨具温度75-78℃,保压时间11-12s。
改性木粉:丁二酸酐:邻苯二甲酸酐:催化剂:二甲亚砜的质量比为6-7:1-1.3:5-5.5:0.7-0.9:20-25。
所述脱模剂由以下重量百分比的物质组成:
大豆乳化蜜6-8%;
聚二甲基硅氧烷 0.5-0.7% ;
明胶1-1.5%;
纳米二氧化硅3-3.5%
石油醚余量。
本发明的优点是:本发明将木粉用纳米二氧化硅溶液进行浸泡,用硅烷偶联剂进行处理,木粉内部和表面粘附了纳米二氧化硅,提高了木粉的分散性、抗老化性、耐腐性,从而提高了复合材料的弯曲强度,抗裂性能,耐水性,大大延长了材料的使用寿命,而且分散润滑性好,注塑所用压力减小,复杂的结构也不易形成孔隙。本发明的脱模剂加入了纳米二氧化硅,提高了脱模性,提高了木塑材料表面的抗老化性、耐磨性。
具体实施方式
一种木塑材料注塑方法,步骤为:
(1)制作模具,在模具空腔内部涂覆一层脱模剂;
(2)将木粉进行球磨,将木粉在纳米二氧化硅溶液中浸渍11h后,纳米二氧化硅溶液的质量百分数为23%,再向溶液中加入4.2wt%的硅烷偶联剂Si-69,反应11h后取出,用乙醇和水清洗3次,55℃烘干,得到改性木粉;
(3)将改性木粉与丁二酸酐、邻苯二甲酸酐、催化剂混合,加入二甲亚砜中,置于油浴锅中反应3小时,用丙酮析出产物,并用丙酮洗涤、抽滤至滤液物色透明,干燥,得到反应产物;
(4)将干燥后的反应产物粉碎,注塑成型,即得。
所述木粉进行球磨至粒径为100-800微米。
注塑条件为: 注塑压力750bar,保护压力450bar,注塑温度175℃,磨具温度75℃,保压时间11s。
改性木粉:丁二酸酐:邻苯二甲酸酐:催化剂:二甲亚砜的质量比为6:1:5:0.7:20。
所述脱模剂由以下重量百分比的物质组成:
大豆乳化蜜7%;
聚二甲基硅氧烷 0.6% ;
明胶1.2%;
纳米二氧化硅.2%
石油醚余量。

Claims (5)

1.一种木塑材料注塑方法,其特征在于,步骤为:
(1)制作模具,在模具空腔内部涂覆一层脱模剂;
(2)将木粉进行球磨,将木粉在纳米二氧化硅溶液中浸渍11-12h后,纳米二氧化硅溶液的质量百分数为20-25%,再向溶液中加入4-5wt%的硅烷偶联剂Si-69,反应11-12h后取出,用乙醇和水清洗3-4次,50-60℃烘干,得到改性木粉;
(3)将改性木粉与丁二酸酐、邻苯二甲酸酐、催化剂混合,加入二甲亚砜中,置于油浴锅中反应3-3.5小时,用丙酮析出产物,并用丙酮洗涤、抽滤至滤液物色透明,干燥,得到反应产物;
(4)将干燥后的反应产物粉碎,注塑成型,即得。
2.如权利要求1所述木塑材料注塑方法,其特征在于,所述木粉进行球磨至粒径为1-600微米。
3.如权利要求1所述木塑材料注塑方法,其特征在于,注塑条件为: 注塑压力750-780bar,保护压力450-470bar,注塑温度175-180℃,磨具温度75-78℃,保压时间11-12s。
4.如权利要求1所述木塑材料注塑方法,其特征在于,改性木粉:丁二酸酐:邻苯二甲酸酐:催化剂:二甲亚砜的质量比为6-7:1-1.3:5-5.5:0.7-0.9:20-25。
5.如权利要求1所述木塑材料注塑方法,其特征在于,所述脱模剂由以下重量百分比的物质组成:
大豆乳化蜜6-8%;
聚二甲基硅氧烷 0.5-0.7% ;
明胶1-1.5%;
纳米二氧化硅3-3.5%
石油醚余量。
CN201710412826.2A 2017-06-05 2017-06-05 一种木塑材料注塑方法 Pending CN107141833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710412826.2A CN107141833A (zh) 2017-06-05 2017-06-05 一种木塑材料注塑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710412826.2A CN107141833A (zh) 2017-06-05 2017-06-05 一种木塑材料注塑方法

Publications (1)

Publication Number Publication Date
CN107141833A true CN107141833A (zh) 2017-09-08

Family

ID=59779393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710412826.2A Pending CN107141833A (zh) 2017-06-05 2017-06-05 一种木塑材料注塑方法

Country Status (1)

Country Link
CN (1) CN107141833A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107825654A (zh) * 2017-11-10 2018-03-23 扬州市维拉园艺有限公司 一种木塑花盆的生产方法及木塑花盆
CN108972977A (zh) * 2018-07-05 2018-12-11 何治伟 一种木塑复合材料用脱模剂
CN115160814A (zh) * 2022-08-09 2022-10-11 中国天楹股份有限公司 一种基于力化学改性木粉的木塑复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173107A (zh) * 2007-10-23 2008-05-07 福州大学 木质素-无机纳米复合材料的原料配方及制备方法
CN102942798A (zh) * 2012-10-31 2013-02-27 游瑞生 一种纳米木塑复合材料的制备原料及制备方法
CN104647660A (zh) * 2015-02-09 2015-05-27 上海应用技术学院 一种注塑工业用的干性脱模剂及其制备方法
CN105670075A (zh) * 2016-01-19 2016-06-15 华南理工大学 利用预处理农作物秸秆制备聚烯烃木塑复合材料的方法
CN106833858A (zh) * 2017-01-21 2017-06-13 上海新平精细化学品有限公司 一种多用途中性脱模剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173107A (zh) * 2007-10-23 2008-05-07 福州大学 木质素-无机纳米复合材料的原料配方及制备方法
CN102942798A (zh) * 2012-10-31 2013-02-27 游瑞生 一种纳米木塑复合材料的制备原料及制备方法
CN104647660A (zh) * 2015-02-09 2015-05-27 上海应用技术学院 一种注塑工业用的干性脱模剂及其制备方法
CN105670075A (zh) * 2016-01-19 2016-06-15 华南理工大学 利用预处理农作物秸秆制备聚烯烃木塑复合材料的方法
CN106833858A (zh) * 2017-01-21 2017-06-13 上海新平精细化学品有限公司 一种多用途中性脱模剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨春柏: "《塑料成型基础》", 31 July 1999, 中国轻工业出版社 *
魏单单 等: "酯化改性木粉制备生物基塑料研究", 《林业工程学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107825654A (zh) * 2017-11-10 2018-03-23 扬州市维拉园艺有限公司 一种木塑花盆的生产方法及木塑花盆
CN108972977A (zh) * 2018-07-05 2018-12-11 何治伟 一种木塑复合材料用脱模剂
CN115160814A (zh) * 2022-08-09 2022-10-11 中国天楹股份有限公司 一种基于力化学改性木粉的木塑复合材料的制备方法

Similar Documents

Publication Publication Date Title
Huang et al. Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene
Liu et al. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments
Barbosa Jr et al. Biobased composites from tannin–phenolic polymers reinforced with coir fibers
Moubarik et al. Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene
Trindade et al. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers: attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol
Ramires et al. Valorization of an industrial organosolv–sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers
CN107141833A (zh) 一种木塑材料注塑方法
Chen et al. Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins
WO2017217677A1 (ko) 바이오매스로부터 리그닌을 정제하는 방법 및 이에 따라 수득된 리그닌을 포함하는 고강도 친환경적인 플라스틱 소재
Tran et al. Effect of coupling agents on the properties of bamboo fiber-reinforced unsaturated polyester resin composites
US20160215143A1 (en) Resin composition, molded body, and production method
Chen et al. All‐straw‐fiber composites: Benzylated straw as matrix and additional straw fiber reinforced composites
Narkchamnan et al. Thermo-molded biocomposite from cassava starch, natural fibers and lignin associated by laccase-mediator system
Yang et al. Transformation of Buxus sinica into high-quality biocomposites via an innovative and environmentally-friendly physical approach
Lepetit et al. Effect of acetylation on the properties of microfibrillated cellulose‐LDPE composites
Kariuki et al. Characterization of prototype formulated particleboards from agroindustrial lignocellulose biomass bonded with chemically modified cassava peel starch
Suzuki et al. Green conversion of total lignocellulosic components of sugarcane bagasse to thermoplastics through transesterification using ionic liquid
Guo et al. Bio-based plastics with highly efficient esterification of lignocellulosic biomass in 1-methylimidazole under mild conditions
CN108359157B (zh) 一种聚乙烯/碳酸钙/剑麻纤维微晶复合材料的制备方法
CN101967295B (zh) 一种木塑淀粉复合材料及其制备方法
Tadimeti et al. A two-stage C5 selective hydrolysis on soybean hulls for xylose separation and value-added cellulose applications
Liu et al. Sol-gel silica modified recovered lignin particles and its application as blend with HDPE
Qi et al. In-situ lignin regeneration strategy to improve the interfacial combination, mechanical properties and stabilities of wood-plastic composites
Punyamurthy et al. Study of the effect of chemical treatments on the tensile behaviour of abaca fiber reinforced polypropylene composites
Manenti et al. Comparison of some biocomposite board properties fabricated from lignocellulosic biomass before and after Ionic liquid pretreatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170908