CN107134805A - 一种光储联合发电系统最大功率系数预测方法 - Google Patents
一种光储联合发电系统最大功率系数预测方法 Download PDFInfo
- Publication number
- CN107134805A CN107134805A CN201710304746.5A CN201710304746A CN107134805A CN 107134805 A CN107134805 A CN 107134805A CN 201710304746 A CN201710304746 A CN 201710304746A CN 107134805 A CN107134805 A CN 107134805A
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- ant
- cogeneration system
- storing cogeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000013528 artificial neural network Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 4
- 230000005611 electricity Effects 0.000 claims description 14
- 239000003016 pheromone Substances 0.000 claims description 12
- 230000007935 neutral effect Effects 0.000 claims description 7
- 241000257303 Hymenoptera Species 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000010248 power generation Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H02J3/383—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明提供了一种光储联合发电系统最大功率系数预测方法,通过建立光储联合发电系统最大功率系数演化系统的时间序列,对时间序列测量数据进行蚁群神经网络处理,对光储联合发电系统最大功率系数预测计算,得到光储联合发电系统最大功率系数预测值。该方法能够根据监测参数对光储联合发电系统最大功率系数进行预测计算,根据计算结果实时地对光储联合发电系统及配电网进行控制,能够有效避免配电网系统因光储接入带来的电压等问题,显著提高配电网电力系统在光储联合系统接入后的可靠性与经济性。
Description
技术领域
本发明属于光伏发电技术领域,特别涉及一种光储联合发电系统最大功率系数预测方法。
背景技术
电力系统中分布式光伏发电设备和储能设备组成了一个复杂的系统,如何根据分布式光储系统及配电网运行特点进行光储联合发电系统最大功率系数预测评估,使每个光储联合发电系统能够安全、稳定、高效运行,以往光储联合发电系统最大功率系数计算方法的特点是忽略分布式光伏及光伏储能与配电网间的相互作用关系,由区域电网或光储联合发电系统内各个系统独立进行功率性分析,不能有效利用电网和分布式光伏发电运行数据资源,评估准确度和光伏利用效率不高。
有鉴于此,本发明提供一种光储联合发电系统最大功率系数预测方法,以满足实际应用需要。
发明内容
本发明的目的是:为克服现有技术的不足,本发明提供一种光储联合发电系统最大功率系数预测方法,从而获得光储联合发电系统最大功率系数。
本发明所采用的技术方案是:一种光储联合发电系统最大功率系数预测方法,其特征在于,包括如下步骤:
步骤1:建立光储联合发电系统最大功率系数演化系统的时间序列:
在固定时间间隔对发电系统有功、发电系统无功、PM2.5、温度、辐照强度进行测量,光储输出功率最大值与输出功率测量值之差除以光储系统总容量作为光储联合发电系统最大功率系数,即:
则,在一系列时刻tpcp1,tpcp2,...,tpcpn,n为自然数,n=1,2,…,得到发电系统有功ppcp、发电系统无功qpcp、PM2.5pmp、辐照强度spcp、温度Tpcp测量数据序列:
步骤2:测量数据的蚁群神经网络处理:
步骤2.1:建立带有惩罚因子和约束函数目标函数:
ypcp=minfmb(pcpxi)+gcf(pcpxi)+rys(pcpxi) (2)
其中,式中pcpxi为优化变量,i=1,2,...,w5n),fmb(pcpxi)为目标函数,gcf(pcpxi)为目标函数的惩罚因子,rys(pcpxi)为目标函数的约束项,ypcp为待求的光储联合发电系统最大功率系数预测值;
步骤2.2蚁群神经网络参数初始化:
将神经网络参数θi排序,并将所有参数θi设为非零随机值从而对参数进行初始化,形成集合Sθi,蚂蚁的数目定义为Num、蚁群从源点出发,每只蚂蚁从每个集合Sθi中选择一个元素,在所有集合中均选择一个元素后,该蚂蚁即到达了食物源,然后,每只蚂蚁按原路返回源点;
步骤2.3:状态转移概率的计算:
针对集合Sθi,任意蚂蚁根据如下概率公式选择第j个元素,直至全部蚂蚁达到食物源:
式中,下标i表示为当前蚂蚁能选择的元素,分别为i、j及i、s元素间的启发信息值,τi,j、τi,s为i、j及i、s两元素间的信息素浓度,B为启发因子;
步骤2.4:信息素更新:
采用全局异步信息素更新,在每一只蚂蚁选择某个节点后,该节点的信息素进行如下更新:
τi,j=(1-ρ)τi,j+ρ△τi,j (4)
式中,ρ为[0,1]区间上的可调参数,△τi,j按照如下公式计算:
式中,yi为神经网络实际输出值,为输出期望值;
步骤3:光储联合发电系统最大功率系数计算:
当蚁群算法的迭代次数达到设定最大迭代次数nmax,蚁群算法终止,得到神经网络参数最优值初始参数,当神经网络满足精度要求Γ后,得到ypcp即为光储联合发电系统最大功率系数预测值。
本发明的有益效果是:本发明为光伏电网提供了一种光储联合发电系统最大功率系数预测方法,对配电网及其内光储系统运行参数及气象环境参数进行实时监测,并根据监测参数对光储联合发电系统最大功率系数进行预测计算,根据计算结果实时地对光储联合发电系统及配电网进行控制,能够有效避免配电网系统因光储接入带来的电压等问题,显著提高配电网电力系统在光储联合系统接入后的可靠性与经济性。
附图说明
图1为本发明实施例的目标函数迭代运算图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样在本申请所列权利要求书限定范围之内。
如图1所示,本发明实施例提供的一种光储联合发电系统最大功率系数预测方法,包括如下步骤:
步骤1:建立光储联合发电系统最大功率系数演化系统的时间序列:
在固定时间间隔对发电系统有功、发电系统无功、PM2.5、温度、辐照强度进行测量,光储输出功率最大值与输出功率测量值之差除以光储系统总容量作为光储联合发电系统最大功率系数,即:
则,在一系列时刻tpcp1,tpcp2,...,tpcpn,n为自然数,n=1,2,…,得到发电系统有功ppcp、发电系统无功qpcp、PM2.5pmp、辐照强度spcp、温度Tpcp测量数据序列:
步骤2:测量数据的蚁群神经网络处理:
步骤2.1:建立带有惩罚因子和约束函数目标函数:
ypcp=minfmb(pcpxi)+gcf(pcpxi)+rys(pcpxi) (2)
其中,式中pcpxi为优化变量,i=1,2,...,w5n),fmb(pcpxi)为目标函数,gcf(pcpxi)为目标函数的惩罚因子,rys(pcpxi)为目标函数的约束项,ypcp为待求的光储联合发电系统最大功率系数预测值。
步骤2.2蚁群神经网络参数初始化:
将神经网络参数θi排序,并将所有参数θi设为非零随机值从而对参数进行初始化,形成集合Sθi,蚂蚁的数目定义为Num、蚁群从源点出发,每只蚂蚁从每个集合Sθi中选择一个元素,在所有集合中均选择一个元素后,该蚂蚁即到达了食物源,然后,每只蚂蚁按原路返回源点。
步骤2.3:状态转移概率的计算:
针对集合Sθi,任意蚂蚁根据如下概率公式选择第j个元素,直至全部蚂蚁达到食物源:
式中,下标i表示为当前蚂蚁能选择的元素,分别为i、j及i、s元素间的启发信息值,τi,j、τi,s为i、j及i、s两元素间的信息素浓度,B为启发因子。
在本实施例中,取B=0.9678。
步骤2.4:信息素更新:
采用全局异步信息素更新,在每一只蚂蚁选择某个节点后,该节点的信息素进行如下更新:
τi,j=(1-ρ)τi,j+ρ△τi,j (4)
式中,ρ为[0,1]区间上的可调参数。在本实施例中,τ0=0.7465,ρ=0.1156。
△τi,j按照如下公式计算:
式中,yi为神经网络实际输出值,为输出期望值。
步骤3:光储联合发电系统最大功率系数计算:
当蚁群算法的迭代次数达到设定最大迭代次数nmax=40000,蚁群算法终止,得到神经网络参数最优值初始参数,当神经网络满足精度要求Γ=0.001后,得到ypcp即为光储联合发电系统最大功率系数预测值。
以上仅为本发明的实施例而已,并不用于限制本发明,因此,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
Claims (1)
1.一种光储联合发电系统最大功率系数预测方法,其特征在于,包括如下步骤:
步骤1:建立光储联合发电系统最大功率系数演化系统的时间序列:
在固定时间间隔对发电系统有功、发电系统无功、PM2.5、温度、辐照强度进行测量,光储输出功率最大值与输出功率测量值之差除以光储系统总容量作为光储联合发电系统最大功率系数,即:
则,在一系列时刻tpcp1,tpcp2,...,tpcpn,n为自然数,n=1,2,…,得到发电系统有功ppcp、发电系统无功qpcp、PM2.5pmp、辐照强度spcp、温度Tpcp测量数据序列:
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>ppcp</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>ppcp</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>ppcp</mi>
<mi>n</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>qpcp</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>qpcp</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>qpcp</mi>
<mi>n</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>pmp</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>pmp</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>pmp</mi>
<mi>n</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>spcp</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>spcp</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>spcp</mi>
<mi>n</mi>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>Tpcp</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>Tpcp</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>Tpcp</mi>
<mi>n</mi>
</msub>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
步骤2:测量数据的蚁群神经网络处理:
步骤2.1:建立带有惩罚因子和约束函数目标函数:
ypcp=minfmb(pcpxi)+gcf(pcpxi)+rys(pcpxi) (2)
其中,式中pcpxi为优化变量,i=1,2,...,w5n,fmb(pcpxi)为目标函数,gcf(pcpxi)为目标函数的惩罚因子,rys(pcpxi)为目标函数的约束项,ypcp为待求的光储联合发电系统最大功率系数预测值;
步骤2.2蚁群神经网络参数初始化:
将神经网络参数θi排序,并将所有参数θi设为非零随机值从而对参数进行初始化,形成集合Sθi,蚂蚁的数目定义为Num、蚁群从源点出发,每只蚂蚁从每个集合Sθi中选择一个元素,在所有集合中均选择一个元素后,该蚂蚁即到达了食物源,然后,每只蚂蚁按原路返回源点;
步骤2.3:状态转移概率的计算:
针对集合Sθi,任意蚂蚁根据如下概率公式选择第j个元素,直至全部蚂蚁达到食物源:
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>&tau;</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<msubsup>
<mi>&eta;</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
<mi>B</mi>
</msubsup>
</mrow>
<mrow>
<msub>
<mi>&Sigma;&tau;</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>s</mi>
</mrow>
</msub>
<msubsup>
<mi>&eta;</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>s</mi>
</mrow>
<mi>B</mi>
</msubsup>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
式中,下标i表示为当前蚂蚁能选择的元素,分别为i、j及i、s元素间的启发信息值,τi,j、τi,s为i、j及i、s两元素间的信息素浓度,B为启发因子;
步骤2.4:信息素更新:
采用全局异步信息素更新,在每一只蚂蚁选择某个节点后,该节点的信息素进行如下更新:
τi,j=(1-ρ)τi,j+ρ△τi,j (4)
式中,ρ为[0,1]区间上的可调参数,△τi,j按照如下公式计算:
<mrow>
<msub>
<mi>&Delta;&tau;</mi>
<mrow>
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>m</mi>
<mi>a</mi>
<mi>x</mi>
<msup>
<mrow>
<mo>(</mo>
<msub>
<mi>y</mi>
<mi>i</mi>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>y</mi>
<mo>^</mo>
</mover>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
1
式中,yi为神经网络实际输出值,为输出期望值;
步骤3:光储联合发电系统最大功率系数计算:
当蚁群算法的迭代次数达到设定最大迭代次数nmax,蚁群算法终止,得到神经网络参数最优值初始参数,当神经网络满足精度要求Γ后,得到ypcp即为光储联合发电系统最大功率系数预测值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710304746.5A CN107134805A (zh) | 2017-05-03 | 2017-05-03 | 一种光储联合发电系统最大功率系数预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710304746.5A CN107134805A (zh) | 2017-05-03 | 2017-05-03 | 一种光储联合发电系统最大功率系数预测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107134805A true CN107134805A (zh) | 2017-09-05 |
Family
ID=59716233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710304746.5A Pending CN107134805A (zh) | 2017-05-03 | 2017-05-03 | 一种光储联合发电系统最大功率系数预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107134805A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110059840A (zh) * | 2018-01-18 | 2019-07-26 | 中国电力科学研究院有限公司 | 一种受端电网中电池储能系统选址方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123617A (zh) * | 2014-07-25 | 2014-10-29 | 国家电网公司 | 一种电力负荷预测方法 |
CN105509749A (zh) * | 2016-01-04 | 2016-04-20 | 江苏理工学院 | 基于遗传蚁群算法的移动机器人路径规划方法及系统 |
CN106168829A (zh) * | 2016-06-29 | 2016-11-30 | 常州大学 | 基于蚁群算法改进的rbf‑bp神经网络的光伏发电输出功率追踪算法 |
CN106355299A (zh) * | 2016-10-31 | 2017-01-25 | 国家电网公司 | 一种分布式光伏并网节点薄弱性指数预测方法 |
CN106374531A (zh) * | 2016-10-31 | 2017-02-01 | 国家电网公司 | 一种主动配电网光储能量交换指数评估方法 |
CN106557834A (zh) * | 2016-10-31 | 2017-04-05 | 国家电网公司 | 一种主动配电网光储发电系统无功支撑能力指数预测方法 |
-
2017
- 2017-05-03 CN CN201710304746.5A patent/CN107134805A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123617A (zh) * | 2014-07-25 | 2014-10-29 | 国家电网公司 | 一种电力负荷预测方法 |
CN105509749A (zh) * | 2016-01-04 | 2016-04-20 | 江苏理工学院 | 基于遗传蚁群算法的移动机器人路径规划方法及系统 |
CN106168829A (zh) * | 2016-06-29 | 2016-11-30 | 常州大学 | 基于蚁群算法改进的rbf‑bp神经网络的光伏发电输出功率追踪算法 |
CN106355299A (zh) * | 2016-10-31 | 2017-01-25 | 国家电网公司 | 一种分布式光伏并网节点薄弱性指数预测方法 |
CN106374531A (zh) * | 2016-10-31 | 2017-02-01 | 国家电网公司 | 一种主动配电网光储能量交换指数评估方法 |
CN106557834A (zh) * | 2016-10-31 | 2017-04-05 | 国家电网公司 | 一种主动配电网光储发电系统无功支撑能力指数预测方法 |
Non-Patent Citations (1)
Title |
---|
师彪: "动态调整蚁群-BP神经网络模型在短期负荷预测中的应用", 《水力发电学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110059840A (zh) * | 2018-01-18 | 2019-07-26 | 中国电力科学研究院有限公司 | 一种受端电网中电池储能系统选址方法及系统 |
CN110059840B (zh) * | 2018-01-18 | 2024-04-19 | 中国电力科学研究院有限公司 | 一种受端电网中电池储能系统选址方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soufi et al. | Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system | |
Qais et al. | Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators | |
Irudayaraj et al. | Renewable sources-based automatic load frequency control of interconnected systems using chaotic atom search optimization | |
Lei et al. | Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique | |
Chen | Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability | |
Boaro et al. | Adaptive dynamic programming algorithm for renewable energy scheduling and battery management | |
Suresh et al. | An enhanced multiobjective particle swarm optimisation algorithm for optimum utilisation of hybrid renewable energy systems | |
CN104484833A (zh) | 基于遗传学算法改进的rbf-bp神经网络的光伏发电输出功率追踪算法 | |
Qin et al. | Parameter estimation of PEMFC based on improved fluid search optimization algorithm | |
Maroufmashat et al. | An imperialist competitive algorithm approach for multi-objective optimization of direct coupling photovoltaic-electrolyzer systems | |
Bechouat et al. | Energy storage based on maximum power point tracking in photovoltaic systems: a comparison between GAs and PSO approaches | |
Sayedin et al. | Optimal design and operation of a photovoltaic–electrolyser system using particle swarm optimisation | |
Parhoudeh et al. | A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids | |
CN104092231A (zh) | 一种独立微网混和储能容量优化配置方法 | |
Mehleri et al. | A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens | |
CN106786543A (zh) | 一种考虑最大供电能力约束的配电网络优化降损重构方法 | |
CN105656031A (zh) | 基于高斯混合分布特征的含风电电力系统安全风险评估方法 | |
Abu-Rub et al. | Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations | |
CN114595891A (zh) | 一种配电网电压及潮流越界风险评估方法、系统及设备 | |
Belouda et al. | Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system | |
Khanahmadi et al. | A novel economic method of battery modeling in stand-alone renewable energy systems to reduce life cycle costs | |
CN106557834A (zh) | 一种主动配电网光储发电系统无功支撑能力指数预测方法 | |
Fathy et al. | Robust electrical parameter extraction methodology based on Interior Search Optimization Algorithm applied to supercapacitor | |
CN107492903A (zh) | 一种基于统计学模型的混合储能系统容量优化配置方法 | |
Han et al. | Adaptive deterministic approach for optimized sizing of high-energy battery system applied in electric-powered application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170905 |