CN107133653B - 一种基于深度阶梯网络的高分辨sar图像分类方法 - Google Patents
一种基于深度阶梯网络的高分辨sar图像分类方法 Download PDFInfo
- Publication number
- CN107133653B CN107133653B CN201710369380.XA CN201710369380A CN107133653B CN 107133653 B CN107133653 B CN 107133653B CN 201710369380 A CN201710369380 A CN 201710369380A CN 107133653 B CN107133653 B CN 107133653B
- Authority
- CN
- China
- Prior art keywords
- layer
- data set
- noise
- image
- resolution sar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012549 training Methods 0.000 claims abstract description 47
- 238000012360 testing method Methods 0.000 claims abstract description 30
- 238000013145 classification model Methods 0.000 claims abstract description 11
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 10
- 238000000605 extraction Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/285—Selection of pattern recognition techniques, e.g. of classifiers in a multi-classifier system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于深度阶梯网络的高分辨SAR图像分类方法,该方法主要解决高分辨SAR图像有类标数据较少无法有效对网络进行训练的问题。其实现步骤为:输入待分类的高分辨SAR图像及其标记信息;构造训练数据集D1与测试数据集D2;对数据集D1、D2的特征进行归一化得到数据集D3、D4;构造基于深度阶梯网络的分类器模型;用训练数据集D3对网络进行训练;利用训练好的分类模型对测试数据集D4进行分类。本发明可充分利用少量有类标的训练样本,而获得较高的分类精度。
Description
【技术领域】
本发明属于图像处理技术领域,具体涉及一种基于深度阶梯网络的高分辨SAR图像分类方法,能够用于目标检测与地物分类方法。
【背景技术】
合成孔径雷达SAR在地球科学遥感领域的应用十分广泛,为它不仅具有全天时、全天候的特性、而且它还能提供不同于红外和可见光传感器的不同的信息。因此对SAR图像进行理解与解译成为一个研究热点。
SAR图像地物分类是模式分类在SAR图像处理中的应用,它完成将图像从二维灰度空间转换到目标模式空间的工作,其分类的结果是将图像根据不同属性划分为多个不同类别的子区域。即根据SAR图像的基本特征,提取可靠特征,将图像区分为人造目标、自然目标、背景和阴影四种类别,为不同的应用提供对应的感兴趣区域。人造目标包括机动车辆、建筑物等强散射体;自然目标包括树木、灌木、树林等自然作物;背景包括草地、平地、植被等占图像大部分面积的地域;阴影包括目标阴影、湖泊、水域等镜面散射体。
SAR图像地物分类是传统自动地物分类SAR技术的扩展。一方面可以作为SAR图像解译系统的中前端,以带层次信息的感兴趣区域取代目标检测和鉴别模块,为目标识别过程提供潜在目标切片以及空间位置、尺寸等信息,另一方面,可以直接为人工判读提供必要参数,建立独立的辅助判别系统。
SAR图像特征的提取是分类的核心,传统的SAR图像特征提取主要采用人工设计的特征,如广泛使用灰度共生矩阵来提取SAR图像的空域特征,但随着分辨率的提高,提取图像中更为复杂的结构变得极为重要,因此采用多尺度滤波器如Gabor滤波器组、小波变换等方法去建模SAR图像中的局部信息,但是无法自适应的确定滤波器的尺度及方向来提取SAR图像的判别信息。
对于大多数现存的SAR图像分类系统来说,他们的性能主要取决于高质量的SAR图像人工标记,及其特征的有效提取。然而,人工进行标记非常耗时,并且由于对目标区域的不了解,标记的图像并不可靠。
【发明内容】
针对上述问题,本发明的目的在于提出一种基于深度阶梯网络的高分辨SAR图像分类方法,通过该方法能够减少训练样本个数,提高分类速度精度。
本发明的目的通过如下技术方案实现:
一种基于深度阶梯网络的高分辨SAR图像分类方法,包括如下步骤:
(1)通过高分辨SAR图像及其人工标记图来构造训练数据集D1和测试数据集D2;
(2)将训练数据集D1和测试数据集D2中每个元素归一化至[0,1]之间,分别得到归一化后的训练数据集D3和归一化后的测试数据集D4;
(3)构造基于深度阶梯网络的分类模型;
(4)用训练数据集D1对基于深度阶梯网络进行训练,得到训练好的模型;
(5)利用训练好的模型对测试数据集D2进行分类,获得最终的分类结果。
所述步骤(1)的具体步骤如下:
(1a)先对高分辨SAR图像进行三倍降采样,再在该图上采用滑窗的方法取21×21像素大小的块代表该块区域,将21×21像素大小的块拉成441维的列向量作为训练数据集D1的特征部分;
再将待分类的高分辨SAR图像的人工标记图采用滑窗的方法取21×21像素大小的图像块,并统计每个图像块中每类标记像素的个数,若未标记像素占整个图像块的30%以上则抛弃该像素块,否则选取像素个数最多的类别作为这块图像的类标,得到训练数据集D1的类标;在D1中取5%作为有类标数据L,剩下数据作为无类标数据U;
(1b)对高分辨SAR图像进行三倍降采样后的图进行超像素分割,以每个超像素的中心点取21×21大小的图像块代表整个超像素区域,将其拉成441维的列向量作为测试数据集D2的特征部分。
所述步骤(2)中归一化处理采用线性缩放的方法,具体为:对训练数据集D1的特征先求出其最大值max(D1);再将训练数据集D1特征中的每个元素均除以最大值max(D1),得到归一化后的训练数据集D3,对测试数据集D2进行相同的操作得到归一化后的测试数据集D4。
所述步骤(3)的具体步骤如下:
(3a)构造一个编码器,分为含噪通路与不含噪通路,含噪通路中每层均会加入一定的噪声,不含噪通路则不加,两者采用相同的结构,其结构为:由输入层→隐藏层1→隐藏层2→隐藏层3→隐藏层4→softmax分类器组成的6层全连接神经网络,给定各层的节点数,所采用的6层全连接神经网络,每层的权重与偏置参数对含噪通路与不含噪通路是共享的;
(3b)构造一个解码器,其接受来自编码器含噪通路中对应层的输出以及解码器上一层的输出作为解码器的输入,其每一层重构出编码器不含噪通路对应层的特征;
(3c)构造损失函数C。
所述步骤(3a)中,对含噪通路中添加的噪声为均值为0,方差为0.2的高斯噪声,输入层、隐藏层1、隐藏层2、隐藏层3、隐藏层4和softmax分类器的参数如下:
第一层为输入层,设置单元个数为441;
第二层为隐藏层1,设置单元个数为800;
第三层为隐藏层2,设置单元个数为500;
第四层为隐藏层3,设置单元个数为300;
第五层为隐藏层4,设置单元个数为100;
第六层为softmax分类器,设置输出单元个数为3。
步骤(3c)构造的损失函数C为:
其中,为交叉熵损失函数,其中为分类器输出,t(n)为第n个样本的类标,N为每批训练样本个数;为每层重构均方误差项,其中z(l)为第l层不含噪通路的特征,为解码器第l层重构特征,L为网络的层数,λl代表每层重构误差在损失函数中所占权重,设置为[1000,10,0.1,0.1,0.1,0.1],ml每层神经元个数。
本发明与现有技术相比具有以下优点:
本发明的基于深度阶梯网络的高分辨SAR图像分类方法通过阶梯网络采用半监督的方法可有效减少训练数据;采用的模型相比现有的半监督模型,能够避免逐层训练再精调的过程,采用超像素分割的方法,能够有效减少测试数据集的规模,减少测试时间,综上,本发明通过采用一种半监督的阶梯网络通过重构每层的特征,且同时优化有监督损失函数与无监督损失函数,同时完成特征提取与分类的任务,避免了逐层训练精调的过程,提高了分类速度精度。
【附图说明】
图1是本发明的基于深度阶梯网络的高分辨SAR图像分类方法的实现流程图;
图2是本发明中对待分类图像的人工标记图;
图3是用本发明的方法对待分类图像的分类结果图。
【具体实施方式】
下面结合附图来对本发明做进一步的说明。
参照图1,本发明的基于深度阶梯网络的高分辨SAR图像分类方法的具体实现步骤如下:
步骤1,输入待分类的高分辨SAR图像,及其人工标记图;由该高分辨SAR图像及其标记图来构造训练数据集D1,测试数据集D2,待分类的高分辨SAR图像选用德国DLR的ESAR传感器在特劳恩施泰因县获取的X波段三极化数据中的水平极化图,图像分辨率为1米,图像大小为4278×6187像素;
具体步骤如下:
(1a)先对高分辨SAR图像的原图进行三倍降采样,再在该图上采用滑窗的方法取21×21像素大小的块代表该块区域,将21×21像素大小的块拉成441维的列向量作为训练数据集D1的特征部分;将待分类的人工标记图同样采用滑窗的方法取21×21像素大小的图像块,并统计每个图像块中每类标记像素的个数,若未标记像素占整个图像块的30%以上则抛弃该像素块,否则选取像素个数最多的类别作为这块图像的类标,得到训练数据集D1的类标;在D1中取5%作为有类标数据L,剩下数据作为无类标数据U;
(1b)对高分辨SAR图像的原图进行三倍降采样后的图进行超像素分割,以每个超像素的中心点取21×21大小的图像块代表整个超像素区域,将其拉成441维的列向量作为测试数据集D2的特征部分;
步骤2,将训练数据集D1和测试数据集D2中的特征部分进行归一化,分别得到归一化后的训练数据集D3和归一化后的测试数据集D4;常用的归一化方法有:线性缩放法、标准化与白化,本实例采用线性缩放法,对训练数据集D1的特征先求出其最大值max(D1);再将训练数据集D1特征中的每个元素均除以最大值max(D1),得到归一化后的训练数据集D3,对测试数据集D2进行相同的操作得到归一化后的测试数据集D4;
步骤3,构造基于深度阶梯网络的分类器模型,具体步骤如下:
(3a)构造一个编码器,分为含噪通路与不含噪通路,含噪通路中每层均会加入一定的噪声,不含噪通路则不加噪声,含噪通路所加的噪声为均值为0方差为0.2的高斯噪声,含噪通路与不含噪通路采用相同的结构,其结构为:输入层→隐藏层1→隐藏层2→隐藏层3→隐藏层4→softmax分类器组成的6层全连接神经网络,每层的权重与偏置参数对含噪通路与不含噪通路是共享的,每层的参数设置如下:
第一层为输入层,设置单元个数为441;
第二层为隐藏层1,设置单元个数为800;
第三层为隐藏层2,设置单元个数为500;
第四层为隐藏层3,设置单元个数为300;
第五层为隐藏层4,设置单元个数为100;
第六层为softmax分类器,设置输出单元个数为3;
(3b)构造解码器,其接受来自编码器含噪通路对应层的输出以及从编码器上一层的重构特征,其每一层重构出编码器不含噪通路对应层的特征,其重构函数为 为含噪通路第l层的输出,为解码器l+1层的输出,为解码器第l层的输出;
(3c)构造损失函数C:
其中,为交叉熵损失函数,其中为分类器输出,t(n)为第n个样本的类标,N为每批训练样本个数;为每层重构均方误差项,其中z(l)为第l层不含噪通路的特征,为解码器第l层重构特征,L为网络的层数,λl代表每层重构误差在损失函数中所占权重,设置为[1000,10,0.1,0.1,0.1,0.1],ml每层神经元个数;
步骤4,用训练数据集D1对分类模型进行训练,得到训练好的分类模型,具体步骤如下:
将归一化后的训练数据集D3的特征作为分类模型的输入,归一化后的训练数据集D3中对应每个图像块的类别作为分类模型的输出,通过计算损失函数C,并对其进行误差反向传播来优化分类模型的参数,得到训练好的分类模型,人工标记的正确类标,如图2所示;
步骤5,利用训练好的分类模型对测试数据集D2进行分类,具体步骤如下:
将归一化后的测试数据集D4的特征向量作为训练好的模型的输入,训练好的分类模型的输出作为对测试数据集中每个超像素块进行分类得到的类别,并恢复成图片,得到最后的分类结果。
本发明的效果可以通过以下方针实验进一步说明:
仿真条件:
硬件平台为:Intel(R)Xeon(R)CPU E5-2630,2.40GHz×16,内存为64G。
软件平台为:Tensorflow。
仿真内容与结果:
用本发明方法在上述仿真条件下进行实验,即分别从高分辨SAR图像数据的每个类别随机选取5%有标记的图像块作为训练样本,采用超像素分割的方法得到的数据集作为测试样本进行测试得到如图3的分类结果。
从图3可以看出:分类结果的区域一致性较好,采用超像素分割的方法使得区域边缘清晰明显,且保持良好的细节信息。
再一次减少训练样本,使训练样本占样本总数的4%,3%,2%,将本发明与传统的多层感知器网络性能进行比较,采用相同的数据集及样本量进行测试,结果如表1所示:
表1
训练样本所占比例 | 多层感知器 | 本发明 |
5% | 78.66% | 86.87% |
4% | 77.23% | 85.44% |
3% | 74.78% | 82.22% |
2% | 72.94% | 81.42% |
由表1可知,训练样本占总样本总数的5%、4%、3%、2%时,本发明的测试数据集分类精度均高于多层感知器网络。
综上,本发明通过重构每层的特征,采用半监督的方法对数据进行特征的学习并分类,增强了模型的范化能力,使得在训练样本较少的情况下仍可以达到很高的分类精度。
Claims (3)
1.一种基于深度阶梯网络的高分辨SAR图像分类方法,其特征在于,包括如下步骤:
(1)通过高分辨SAR图像及其人工标记图来构造训练数据集D1和测试数据集D2;
(2)将训练数据集D1和测试数据集D2中每个元素归一化至[0,1]之间,分别得到归一化后的训练数据集D3和归一化后的测试数据集D4;
(3)构造基于深度阶梯网络的分类模型;
(4)用训练数据集D1对基于深度阶梯网络进行训练,得到训练好的模型;
(5)利用训练好的模型对测试数据集D2进行分类,获得最终的分类结果;
所述步骤(1)的具体步骤如下:
(1a)先对高分辨SAR图像进行三倍降采样,再在该图上采用滑窗的方法取21×21像素大小的块代表该块区域,将21×21像素大小的块拉成441维的列向量作为训练数据集D1的特征部分;
再将待分类的高分辨SAR图像的人工标记图采用滑窗的方法取21×21像素大小的图像块,并统计每个图像块中每类标记像素的个数,若未标记像素占整个图像块的30%以上则抛弃该像素块,否则选取像素个数最多的类别作为这块图像的类标,得到训练数据集D1的类标;在D1中取5%作为有类标数据L,剩下数据作为无类标数据U;
(1b)对高分辨SAR图像进行三倍降采样后的图进行超像素分割,以每个超像素的中心点取21×21大小的图像块代表整个超像素区域,将其拉成441维的列向量作为测试数据集D2的特征部分;
所述步骤(3)的具体步骤如下:
(3a)构造一个编码器,分为含噪通路与不含噪通路,含噪通路中每层均会加入一定的噪声,不含噪通路则不加,两者采用相同的结构,其结构为:由输入层→隐藏层1→隐藏层2→隐藏层3→隐藏层4→softmax分类器组成的6层全连接神经网络,给定各层的节点数,所采用的6层全连接神经网络,每层的权重与偏置参数对含噪通路与不含噪通路是共享的;
(3b)构造一个解码器,其接受来自编码器含噪通路中对应层的输出以及解码器上一层的输出作为解码器的输入,其每一层重构出编码器不含噪通路对应层的特征;
(3c)构造损失函数C;
步骤(3c)构造的损失函数C为:
2.根据权利要求1所述的一种基于深度阶梯网络的高分辨SAR图像分类方法,其特征在于,所述步骤(2)中归一化处理采用线性缩放的方法,具体为:对训练数据集D1的特征先求出其最大值max(D1);再将训练数据集D1特征中的每个元素均除以最大值max(D1),得到归一化后的训练数据集D3,对测试数据集D2进行相同的操作得到归一化后的测试数据集D4。
3.根据权利要求1所述的一种基于深度阶梯网络的高分辨SAR图像分类方法,其特征在于,所述步骤(3a)中,对含噪通路中添加的噪声为均值为0,方差为0.2的高斯噪声,输入层、隐藏层1、隐藏层2、隐藏层3、隐藏层4和softmax分类器的参数如下:
第一层为输入层,设置单元个数为441;
第二层为隐藏层1,设置单元个数为800;
第三层为隐藏层2,设置单元个数为500;
第四层为隐藏层3,设置单元个数为300;
第五层为隐藏层4,设置单元个数为100;
第六层为softmax分类器,设置输出单元个数为3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710369380.XA CN107133653B (zh) | 2017-05-23 | 2017-05-23 | 一种基于深度阶梯网络的高分辨sar图像分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710369380.XA CN107133653B (zh) | 2017-05-23 | 2017-05-23 | 一种基于深度阶梯网络的高分辨sar图像分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107133653A CN107133653A (zh) | 2017-09-05 |
CN107133653B true CN107133653B (zh) | 2020-11-03 |
Family
ID=59732613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710369380.XA Active CN107133653B (zh) | 2017-05-23 | 2017-05-23 | 一种基于深度阶梯网络的高分辨sar图像分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107133653B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108062709B (zh) * | 2017-12-12 | 2021-08-20 | 北京奇虎科技有限公司 | 基于半监督学习的用户行为预测方法及装置 |
CN109145832A (zh) * | 2018-08-27 | 2019-01-04 | 大连理工大学 | 基于dsfnn与非局部决策的极化sar图像半监督分类方法 |
CN109541567B (zh) * | 2018-12-28 | 2023-04-07 | 西安电子科技大学 | 基于深度学习的高速机动目标检测方法 |
CN111598075B (zh) * | 2020-05-25 | 2024-09-20 | 深圳前海微众银行股份有限公司 | 图片生成方法、设备及可读存储介质 |
CN113313197B (zh) * | 2021-06-17 | 2022-06-10 | 哈尔滨工业大学 | 一种全连接神经网络训练方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504393A (zh) * | 2014-12-04 | 2015-04-08 | 西安电子科技大学 | 基于集成学习的极化sar图像半监督分类方法 |
CN106067042A (zh) * | 2016-06-13 | 2016-11-02 | 西安电子科技大学 | 基于半监督深度稀疏滤波网络的极化sar分类方法 |
CN106096627A (zh) * | 2016-05-31 | 2016-11-09 | 河海大学 | 顾及特征优化的极化sar图像半监督分类方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104751174B (zh) * | 2015-03-12 | 2017-11-17 | 西安电子科技大学 | 基于超向量编码的极化sar图像分类方法 |
EP3320368A4 (en) * | 2015-07-08 | 2018-07-25 | Conoco Phillips Company | Terrestrial imaging using multi-polarization synthetic aperture radar |
CN105205491A (zh) * | 2015-08-19 | 2015-12-30 | 西安电子科技大学 | 基于极限学习机的极化sar图像分类方法 |
US10235589B2 (en) * | 2015-09-08 | 2019-03-19 | The Johns Hopkins University | Small maritime target detector |
CN105868793B (zh) * | 2016-04-18 | 2019-04-19 | 西安电子科技大学 | 基于多尺度深度滤波器的极化sar图像分类方法 |
CN106096652B (zh) * | 2016-06-12 | 2019-05-24 | 西安电子科技大学 | 基于稀疏编码和小波自编码器的极化sar图像分类方法 |
-
2017
- 2017-05-23 CN CN201710369380.XA patent/CN107133653B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504393A (zh) * | 2014-12-04 | 2015-04-08 | 西安电子科技大学 | 基于集成学习的极化sar图像半监督分类方法 |
CN106096627A (zh) * | 2016-05-31 | 2016-11-09 | 河海大学 | 顾及特征优化的极化sar图像半监督分类方法 |
CN106067042A (zh) * | 2016-06-13 | 2016-11-02 | 西安电子科技大学 | 基于半监督深度稀疏滤波网络的极化sar分类方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107133653A (zh) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107358203B (zh) | 一种基于深度卷积阶梯网络的高分辨sar图像分类方法 | |
CN107133653B (zh) | 一种基于深度阶梯网络的高分辨sar图像分类方法 | |
CN107239751B (zh) | 基于非下采样轮廓波全卷积网络的高分辨sar图像分类方法 | |
CN108573276B (zh) | 一种基于高分辨率遥感影像的变化检测方法 | |
CN108154192B (zh) | 基于多尺度卷积与特征融合的高分辨sar地物分类方法 | |
CN105069468B (zh) | 基于脊波和深度卷积网络的高光谱图像分类方法 | |
CN107358260B (zh) | 一种基于表面波cnn的多光谱图像分类方法 | |
CN103456018B (zh) | 基于融合和pca核模糊聚类的遥感图像变化检测方法 | |
CN110097101B (zh) | 一种基于改进可靠性因子的遥感图像融合与海岸带分类方法 | |
CN112950780B (zh) | 一种基于遥感影像的网络地图智能生成方法及系统 | |
CN111368825B (zh) | 一种基于语义分割的指针定位方法 | |
CN111639587B (zh) | 基于多尺度谱空卷积神经网络的高光谱图像分类方法 | |
CN104331698A (zh) | 一种遥感图像城区提取方法 | |
CN105184297B (zh) | 基于张量和稀疏自编码器的极化sar图像分类方法 | |
Liang et al. | Maximum likelihood classification of soil remote sensing image based on deep learning | |
CN106096655A (zh) | 一种基于卷积神经网络的光学遥感图像飞机检测方法 | |
CN113989652B (zh) | 分层多重判定规则下的耕地变化检测方法及系统 | |
Wan et al. | Automatic extraction of flood inundation areas from SAR images: A case study of Jilin, China during the 2017 flood disaster | |
CN109034213B (zh) | 基于相关熵原则的高光谱图像分类方法和系统 | |
CN115984585A (zh) | 一种引入注意力机制的多尺度高光谱图像特征提取方法 | |
Farahani et al. | Domain adaptation for unsupervised change detection of multisensor multitemporal remote-sensing images | |
CN116403046A (zh) | 一种高光谱影像分类装置及方法 | |
CN112784777A (zh) | 基于对抗学习的无监督高光谱图像变化检测方法 | |
CN106096650B (zh) | 基于收缩自编码器的sar图像分类方法 | |
CN111914922A (zh) | 一种基于局部卷积和空洞卷积的高光谱图像分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |