CN107132611B - 一种介质硅纳米粒子自沉积涂层光纤及其制作方法 - Google Patents

一种介质硅纳米粒子自沉积涂层光纤及其制作方法 Download PDF

Info

Publication number
CN107132611B
CN107132611B CN201710351788.4A CN201710351788A CN107132611B CN 107132611 B CN107132611 B CN 107132611B CN 201710351788 A CN201710351788 A CN 201710351788A CN 107132611 B CN107132611 B CN 107132611B
Authority
CN
China
Prior art keywords
optical fiber
silicon nano
medium silicon
glue
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710351788.4A
Other languages
English (en)
Other versions
CN107132611A (zh
Inventor
李晋
范蕊
胡海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710351788.4A priority Critical patent/CN107132611B/zh
Publication of CN107132611A publication Critical patent/CN107132611A/zh
Application granted granted Critical
Publication of CN107132611B publication Critical patent/CN107132611B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/0229Optical fibres with cladding with or without a coating characterised by nanostructures, i.e. structures of size less than 100 nm, e.g. quantum dots

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种介质硅纳米粒子自沉积涂层光纤及其制作方法,包括介质硅纳米粒子、微米光纤、宽谱激光器、光谱分析仪、光学UV胶、石英毛细管、显微镜、紫外光固化器。本发明将介质硅纳米粒子均匀、紧密沉积在石英毛细管内壁,借助宽谱激光器和光谱分析仪实时监测透射光谱变化,利用紫外光固化器固化UV胶来获得固体光纤结构,并通过显微镜实时观测光纤结构的形成过程。介质硅纳米粒子具备局域光场增强和零后向散射特点,本发明公布的制作方法获得的介质硅修饰光纤,有助于新型生化传感及光子器件的研制。

Description

一种介质硅纳米粒子自沉积涂层光纤及其制作方法
技术领域
本发明属于光纤制作与应用技术领域,基于介质硅纳米粒子的零后向散射和局域光场增强特性,提出了一种介质硅纳米粒子自沉积涂层光纤及其制作方法。
背景技术
从近年来相关研究进展可看出,相对于表面等离子体纳米结构,具有Mie谐振特性的高折射率介质硅纳米粒子可以保证电场和磁场偶极子模式共存,进而利用电、磁场相互作用产生局域光场增强效应,有效增强表面荧光和拉曼散射,并且不会产生自加热现象,适合对热敏感生物样品的高精度检测;当电、磁场强度相当时,可有效减小甚至近乎消除后向散射,可用于减小背景噪声,提高微型传感器件性能;所产生Fano谐振现象的Q值更高,可用于实现痕量分子浓度或单分子探测,并在此基础上开发高分辨率、高集成度的微型生物传感器。
同时,通过在光纤表面自组装纳米粒子,实现传感器件性能改进的相关研究工作中,所使用的基元均为聚合物纳米粒子或金属纳米粒子,尚未出现将介质纳米粒子自组装结构与光纤结构或光纤传感技术相结合,并设计先进传感器件研究的报道。
发明内容
本发明提供了一种介质硅纳米粒子自沉积涂层光纤及其制作方法,解决了目前介质硅纳米结构或纳米粒子与光纤的结合问题。
为达到上述目的,本发明采用的技术方案如下:
一种介质硅纳米粒子自沉积涂层光纤,包含有介质硅纳米粒子1、光学UV胶5、微米光纤2、微米光纤6,介质硅纳米粒子1通过光学UV胶5沉积固化在微米光纤6的内壁,介质硅纳米粒子1紧密排列,形成分层堆栈修饰涂层。
其中,介质硅纳米粒子1的形状为球形,直径为100nm;微米光纤2的材质为石英,折射率为1.46,内径为20微米,外径为150微米,由普通单模光纤经过高温拉伸法制备得到。光学UV胶5的折射率为1.37。
一种介质硅纳米粒子自沉积涂层光纤的制作方法如下:
(1)利用微量生物注射器将含有介质硅纳米粒子1的光学UV胶5注入微米光纤6中,借助介质硅纳米粒子1在重力场作用下自然沉积在微米光纤6的内壁,同时纳米粒子间的相互作用可保证介质硅纳米粒子1沉积后紧密排列,即形成分层堆栈修饰涂层;
(2)使用显微镜7实时监测光纤结构,并通过宽谱激光器3和光谱分析仪4实时监测透射光谱变化,待观测到光纤的特征透射光谱时启动紫外光固化器8将光学UV胶5固化,截取固化后的微米光纤,就可得到自沉积涂层光纤。
宽谱激光器3的波长范围为1520-1560nm,光谱分析仪4的波长探测范围为1200-2000nm,可用于光纤透射光谱的实时观测,以结合显微镜7来确定光子晶体结构的形成。紫外光固化器8的功率为125W,可使光学UV胶5在5s内快速固化,将光纤结构固定。
与现有技术相比,本发明的有益效果是
1)本发明提出的一种介质硅纳米粒子自沉积涂层光纤,可以通过选取不同参数或类型的介质硅纳米粒子、不同折射率的光学UV胶和不同尺寸的微米光纤,构建所需的特种光纤结构;
2)本发明提出的一种介质硅纳米粒子自沉积涂层光纤的制作方法,将介质硅纳米粒子引入光纤结构中,有利于新型光纤传感器件和光子器件的研发。
附图说明
附图1为一种介质硅纳米粒子自沉积涂层光纤的制作方法示意图。
图中:1介质硅纳米粒子;2微米光纤;3宽谱激光器;4光谱分析仪;5光学UV胶;6微米光纤;7显微镜;8紫外光固化器。
具体实施方式
下面通过具体实施方式阐明本发明的实质特点和显著进步。
如图所示,一种介质硅纳米粒子自沉积涂层光纤的制作方法,采用UV胶自身呈液体状、透明并且易掺杂的特点,实现介质硅纳米粒子在其中的均匀分布,形成并制备三维光子晶体结构光纤,介质硅纳米粒子1、微米光纤2、宽谱激光器3、光谱分析仪4、光学UV胶5、微米光纤6、显微镜7、紫外光固化器8。具体实施方式是利用微量生物注射器将含有介质硅纳米粒子1的光学UV胶5注入微米光纤6中,借助重力场作用使介质硅纳米粒子1自然沉积在微米光纤6的内壁,同时纳米粒子间的相互作用可保证介质硅纳米粒子1沉积后紧密排列,即形成分层堆栈修饰涂层,使用显微镜7实时监测涂层结构的形成过程,并结合宽谱激光器3和光谱分析仪4实时监测透射光谱变化,待观测到光纤的特征透射光谱时启动紫外光固化器8将光学UV胶5迅速固化,即可将介质硅涂层结构固定在微米光纤中,截取固化后的微米光纤,就可得到介质硅修饰光纤。其中,介质硅纳米粒子1的形状为球形,直径为100nm,微米光纤2的材质为石英,折射率为1.46,由普通单模光纤经过高温拉伸法制备得到,直径为2微米,宽谱激光器3的波长范围为1520-1560nm,光谱分析仪4的波长探测范围为1200-2000nm,可用于光纤透射光谱的实时观测,以结合显微镜7来确定光纤结构的形成,光学UV胶5的折射率为1.37,微米光纤6的内径为20微米,外径为150微米,折射率为1.46,紫外光固化器8的功率为125W,可使UV胶在5s内快速固化,将光纤结构固定。
本发明利用UV胶作为介质硅纳米粒子的分散基液,因此可借助UV胶的紫外固化特性得到固化的介质硅修饰光纤。该方法成本低、制备速度快、所需设备简单、光纤参数可灵活控制,可以大大节省特种光纤的制作成本。同时,构建的介质硅纳米粒子、UV胶折射率和微米光纤可以根据实际应用需要选择所需几何尺寸和功能修饰材料,来制备多种类型光纤,丰富相关研究内容。

Claims (5)

1.一种介质硅纳米粒子自沉积涂层光纤,包含有介质硅纳米粒子(1)、光学UV胶(5)、第一微米光纤(2)、第二微米光纤(6),介质硅纳米粒子通过光学UV胶沉积固化在第二微米光纤的内壁,介质硅纳米粒子紧密排列,形成分层堆栈修饰涂层;其中,介质硅纳米粒子(1)的形状为球形,直径为100nm;第一微米光纤(2)的材质为石英,折射率为1.46,直径为2微米;第二微米光纤(6)的材质为石英,折射率为1.46,内径为20微米,外径为150微米;光学UV胶(5)的折射率为1.37。
2.权利要求1所述一种介质硅纳米粒子自沉积涂层光纤的制作方法,其特征在于,包括以下步骤:利用微量生物注射器将含有介质硅纳米粒子(1)的光学UV胶(5)注入第二微米光纤(6)中,借助介质硅纳米粒子(5)在重力场作用下自然沉积在第二微米光纤(6)的内壁,同时纳米粒子间的相互作用可保证介质硅纳米粒子(1)沉积后紧密排列,即形成分层堆栈修饰涂层;使用显微镜实时监测光纤结构,并通过宽谱激光器和光谱分析仪实时监测透射光谱变化,待观测到光纤的特征透射光谱时启动紫外光固化器将光学UV胶(5)固化,截取固化后的微米光纤,即得到自沉积涂层光纤。
3.根据权利要求2所述的制作方法,其特征在于,所述的宽谱激光器的波长范围为1520-1560nm。
4.根据权利要求2或3所述的制作方法,其特征在于,光谱分析仪的波长探测范围为1200-2000nm。
5.根据权利要求4所述的制作方法,其特征在于,紫外光固化器的功率为125W。
CN201710351788.4A 2017-05-19 2017-05-19 一种介质硅纳米粒子自沉积涂层光纤及其制作方法 Expired - Fee Related CN107132611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710351788.4A CN107132611B (zh) 2017-05-19 2017-05-19 一种介质硅纳米粒子自沉积涂层光纤及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710351788.4A CN107132611B (zh) 2017-05-19 2017-05-19 一种介质硅纳米粒子自沉积涂层光纤及其制作方法

Publications (2)

Publication Number Publication Date
CN107132611A CN107132611A (zh) 2017-09-05
CN107132611B true CN107132611B (zh) 2019-07-12

Family

ID=59731812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710351788.4A Expired - Fee Related CN107132611B (zh) 2017-05-19 2017-05-19 一种介质硅纳米粒子自沉积涂层光纤及其制作方法

Country Status (1)

Country Link
CN (1) CN107132611B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240008922A1 (en) * 2020-11-13 2024-01-11 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Ultrahydrophobic laser coating and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050135759A1 (en) * 2003-12-22 2005-06-23 Xingwu Wang Optical fiber assembly
US8236375B2 (en) * 2006-10-27 2012-08-07 Ofs Fitel, Llc Selective deposition of carbon nanotubes on optical fibers
CN101788697A (zh) * 2010-02-23 2010-07-28 南京师范大学 一种包层型胶体晶体微结构光纤及其制备方法
CN103311784B (zh) * 2013-06-17 2015-12-02 东南大学 一种掺染料和金属纳米粒子的pdlc光纤及其光纤随机激光器
CN104614360B (zh) * 2015-01-16 2018-10-12 中国科学院合肥物质科学研究院 一种在锥形光纤表面组装贵金属纳米晶的方法

Also Published As

Publication number Publication date
CN107132611A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
Liu et al. Self-assembled colloidal arrays for structural color
Cherpak et al. Robust chiral organization of cellulose nanocrystals in capillary confinement
Li et al. Recent advances in photonic crystal-based sensors
Chu et al. Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires
Crisp et al. Preparation of nanoparticle coatings on surfaces of complex geometry
Deeb et al. Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging
Zhang et al. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains
Seo et al. Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae)
Han et al. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties
Zou et al. Up-conversion luminescence of NaYF4: Yb3+/Er3+ nanoparticles embedded into PVP nanotubes with controllable diameters
Cai et al. Bio‐Inspired Multi‐Responsive Structural Color Hydrogel with Constant Volume and Wide Viewing Angles
CN107132212A (zh) 基于光子晶体带边效应的表面增强拉曼散射传感器件的制备方法
Xue et al. Preparation of noniridescent structurally colored PS@ TiO2 and Air@ C@ TiO2 core–shell nanoparticles with enhanced color stability
Feng et al. Review of recent advancements in the biomimicry of structural colors
Zhang et al. Brilliant structurally colored films with invariable stop-band and enhanced mechanical robustness inspired by the cobbled road
CN107132611B (zh) 一种介质硅纳米粒子自沉积涂层光纤及其制作方法
Richter et al. Plasmonic core–shell nanowires for enhanced second-harmonic generation
Wang et al. Flexible and superhydrophobic silver nanoparticles decorated aligned silver nanowires films as surface-enhanced raman scattering substrates
Hassan et al. Physical properties of pure gold nanoparticles and gold doped ZnO nanoparticles using laser ablation in liquid for sensor applications
Hu et al. Sprayable ultrablack coating based on hollow carbon nanospheres
Sun et al. Integrated microfluidic device for the spherical hydrogel pH sensor fabrication
Qian et al. A high-performance long-range surface plasmon resonance sensor based on the co-modification of carbon nanotubes and gold nanorods
Hsieh et al. Assembly of Nanometer-Sized Hollow Sphere Colloidal Crystals for Applications as Tunable Photonic Materials
CN107290820B (zh) 一种介质硅光子晶体光纤及其制作方法
Rusen et al. Fluorescence enhancement of rhodamine B in the presence of photonic crystal heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190712

CF01 Termination of patent right due to non-payment of annual fee