CN107130297A - 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法 - Google Patents

一种有机‑无机杂化的钼‑银类晶体材料及其制备方法 Download PDF

Info

Publication number
CN107130297A
CN107130297A CN201710373216.6A CN201710373216A CN107130297A CN 107130297 A CN107130297 A CN 107130297A CN 201710373216 A CN201710373216 A CN 201710373216A CN 107130297 A CN107130297 A CN 107130297A
Authority
CN
China
Prior art keywords
hydrothermal synthesiss
molybdenum
silver
organic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710373216.6A
Other languages
English (en)
Inventor
张全争
鲁红典
尹奇异
田长安
黄俊俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201710373216.6A priority Critical patent/CN107130297A/zh
Publication of CN107130297A publication Critical patent/CN107130297A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种有机‑无机杂化的钼‑银类晶体材料及其制备方法,化学式为NH4[Ag2(C10H8N2)2(C12H12N2)][PMo12O40];单斜晶系,P21/c空间群,晶胞参数为 β=110.171(2)°,Z=2,Dc=2.971g/cm3。将氧化钼、钼酸、1,2‑双(4‑吡啶基)乙烷、4,4’‑联吡啶、硝酸银、磷酸和水通过水热合成制得。在330nm的光激发下,该晶体材料可发出较强的荧光,最大强度波长为460nm,表面该晶体材料具有良好的荧光特性,可作为一种潜在的优质发光材料。

Description

一种有机-无机杂化的钼-银类晶体材料及其制备方法
技术领域
本发明属于有机-无机杂化材料、配合物晶体材料领域,具体是涉及一种有机-无机杂化的钼-银类晶体材料及其制备方法。
背景技术
前过渡金属原子(钒、铌、钽、钼和钨)在其高氧化态下能够形成多金属氧簇合物,这些物质由于所特有的分子和电子结构,常具有优良的导电性、磁性、氧化还原性、催化性和光学非线性等性质,在分析、临床诊断、催化(包含光催化)、生化、医药以及材料科学等方面有着广泛的应用。
随着高级材料的发展,组装具有特定组成和功能的超分子多金属氧酸盐越来越受到人们的重视。随着无机多金属氧酸盐化学研究进展,人们对其有机和有机/金属衍生物方面的研究越来越多。目前在这一研究领域最新的挑战就是如何组合基本的构筑模块来构建人们希望的结构,以便获得具有纳米尺寸的有机-无机杂化多金属氧酸盐晶体材料,以及如何使该类材料的发光性能得到进一步地提升。
发明内容
本发明要解决的技术问题是克服现有技术的缺陷,提出了一种有机-无机杂化的钼-银类晶体材料及其制备方法。
为解决本发明的技术问题,所采用的技术方案为:一种有机-无机杂化的钼-银类晶体材料,其化学式为NH4[Ag2(C10H8N2)2(C12H12N2)][PMo12O40];其结构式如图1所示;该晶体为单斜晶系,P21/c空间群,晶胞参数为β=110.171(2)°,Z=2,Dc=2.971g/cm3
上述有机-无机杂化的钼-银类晶体材料采用水热合成法制备,将0.07~0.11重量份氧化钼、0.08~0.12重量份钼酸、0.03~0.06重量份1,2-双(4-吡啶基)乙烷、0.02~0.05重量份4,4’-联吡啶、0.1~0.2重量份硝酸银、0.05~0.08重量份磷酸和15~20重量份水均匀混合配制成反应底物,反应底物在反应容器中水热合成制得有机-无机杂化的钼-银类晶体材料,水热合成温度至少为180℃,水热合成时间至少为24h。
作为有机-无机杂化的钼-银类晶体材料的制备方法的进一步优选:
水热合成的时间为72h,水热合成的温度为190℃,有利于获得更高产率的有机-无机杂化的钼-银类晶体材料。
水热合成开始前将反应底物温度自室温升温至水热合成温度的速率为0.5~1℃/min,水热合成结束后自水热合成温度降温至室温的速率为0.3~0.5℃/min,有利于获得形态较好的晶体材料。
所述反应容器为置于烘箱中的高压釜,且水热合成开始前的升温、水热合成过程中的保温以及水热合成结束后的降温是通过烘箱进行调控。水热合成反应在高压釜中进行可使水处于亚临界和超临界状态下,此时反应处于分子水平,反应性提高,因此采用高压釜比采用其它设备可更好地制备出该类晶体材料。烘箱可以方便地调整水热反应的温度,也可以使得水热反应釜保持合适的升温、降温速度。
本发明相对于现有技术的有益效果是:
其一,通过单晶衍射仪对制得的目标产物进行检测,由其结果可知该目标产物的晶体化学式为NH4[Ag2(C10H8N2)2(C12H12N2)][PMo12O40],晶体属于单斜晶系,P21/c空间群,晶胞参数为β=110.171(2)°,Z=2,Dc=2.971g/cm3。该目标产物命名为有机-无机杂化的钼-银类晶体材料。
其二,根据化学式NH4[Ag2(C10H8N2)2(C12H12N2)][PMo12O40]计算出化合物中H、C、N的含量:H 1.26%,C 15.6%,N 3.84%。经过元素分析,表明该晶体材料中H、C、N的含量分别为1.28%,C 15.48%,N 3.91%,这一结果与理论计算相符。
其三,有机-无机杂化的钼-银类晶体材料在330nm的光激发下,可发出较强的荧光,最大强度波长为460nm,表面该晶体材料具有良好的荧光特性,可作为一种潜在的优质发光材料。
其四,有机-无机杂化的钼-银类晶体材料的制备通过水热合成法实现,合成方法简单易操作,反应收率较高。
其五,有机-无机杂化的钼-银类晶体材料的制备方法中水热合成温度至少为180℃,否则无法制备该晶体材料。同时反应底物中添加有磷酸,它不仅可以调节溶液的酸度,还可作为配体与钼配位形成Keggin类型的多金属簇结构。
附图说明
以下结合实施例和附图对本发明作出进一步的详述。
图1是本发明制得的目标产物的单晶结构图(所有H原子省略)。
图2是本发明制得的目标产物中的二维层状结构图(所有Keggin类型阴离子省略)。
具体实施方式
首先从市场购得或用常规方法制得:
氧化钼、钼酸、4,4’-联吡啶、1,2-双(4-吡啶基)乙烷、硝酸银、磷酸、水、50mL烧瓶、磁力搅拌器、25mL高压釜、烘箱。
接着,
实施例1
①、称量氧化钼0.1g、钼酸0.095g、4,4’-联吡啶0.035g、1,2-双(4-吡啶基)乙烷0.05g、硝酸银0.14g于50mL烧瓶中,并加入19mL水和磷酸0.07mL,将烧瓶放置于磁力搅拌器上搅拌混合30分钟。
②、将混合均匀的溶液转移至25mL高压釜中。
③、把高压釜放入烘箱中,从室温开始以0.75℃/min的速率加热至190℃,在此温度下保持72h,然后以0.4℃/h的速率降至室温,产率约为63%。
通过单晶衍射仪对本实施例制得的目标产物进行晶体结构测定,结果如下:
晶体数据:
晶体结构分析:
请一并参阅图1,化合物的结构包含Keggin杂多阴离子[PMo12O40]3-、银配位的阳离子[Ag2(C10H8N2)2(C12H12N2)]2+和铵离子。在阴离子结构中,所有的Mo-O可分为三类,距离从1.635(8)到杂多阴离子没有与阳离子相连,最近的Ag-O距离为在阳离子结构中,存在一个结晶独立的银原子,被两个4,4’-联吡啶和一个1,2-双(4-吡啶基)乙烷配位。
请一并参阅图2,银原子被4,4’-联吡啶连成一维链,链与链之间又以1,2-双(4-吡啶基)乙烷作为桥,将这两条链连结起来,形成阶梯状的二维层。这个二维层中,相近的六个银原子形成一个稍有变形的长方形结构。由1,2-双(4-吡啶基)乙烷连接的四个银占据长方形的四个顶点,另外两个银则分别占据了两个对边的中心,由于1,2-双(4-吡啶基)乙烷分别从外面对这两个银的牵引作用,使得4,4’-联吡啶-Ag链由直线型变得稍有些弯曲,从而使得长方形的结构也稍有些变形。这个长方形两个对角的距离分别为28.73和这样整个二维层也可以看作由这些长方形共边相连而形成的结构。
实施例2
①、称量氧化钼0.11g、钼酸0.1g、4,4’-联吡啶0.02g、1,2-双(4-吡啶基)乙烷0.06g、硝酸银0.15g于50mL烧瓶中,并加入15mL水和磷酸0.08mL,将烧瓶放置于磁力搅拌器上搅拌混合30分钟。
②、将混合均匀的溶液转移至25mL高压釜中。
③、把高压釜放入烘箱中,从室温开始以0.6℃/min的速率加热至180℃,在此温度下保持40h,然后以0.45℃/h的速率降至室温,得到如图1和图2所示的有机-无机杂化的钼-银类晶体材料,产率约为61%。
实施例3
①、称量氧化钼0.09g、钼酸0.08g、4,4’-联吡啶0.05g、1,2-双(4-吡啶基)乙烷0.05g、硝酸银0.1g于50mL烧瓶中,并加入20mL水和磷酸0.07mL,将烧瓶放置于磁力搅拌器上搅拌混合30分钟。
②、将混合均匀的溶液转移至25mL高压釜中。
③、把高压釜放入烘箱中,从室温开始以0.9℃/min的速率加热至180℃,在此温度下保持24h,然后以0.35℃/h的速率降至室温,得到如图1和图2所示的有机-无机杂化的钼-银类晶体材料,产率约为55%。
实施例4
①、称量氧化钼0.07g、钼酸0.12g、4,4’-联吡啶0.03g、1,2-双(4-吡啶基)乙烷0.03g、硝酸银0.2g于50mL烧瓶中,并加入18mL水和磷酸0.05mL,将烧瓶放置于磁力搅拌器上搅拌混合30分钟。
②、将混合均匀的溶液转移至25mL高压釜中。
③、把高压釜放入烘箱中,从室温开始以0.8℃/min的速率加热至200℃,在此温度下保持36h,然后以0.4℃/h的速率降至室温,得到如图1和图2所示的有机-无机杂化的钼-银类晶体材料,产率约为59%。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

1.一种有机-无机杂化的钼-银类晶体材料,其特征在于:
其化学式为NH4[Ag2(C10H8N2)2(C12H12N2)][PMo12O40];
其结构式为:
该晶体为单斜晶系,P21/c空间群,晶胞参数为 β=110.171(2)°,Z=2,Dc=2.971g/cm3
2.一种制备如权利要求1所述有机-无机杂化的钼-银类晶体材料的方法,采用水热合成法,其特征在于:将0.07~0.11重量份氧化钼、0.08~0.12重量份钼酸、0.03~0.06重量份1,2-双(4-吡啶基)乙烷、0.02~0.05重量份4,4’-联吡啶、0.1~0.2重量份硝酸银、0.05~0.08重量份磷酸和15~20重量份水均匀混合配制成反应底物,反应底物在反应容器中水热合成制得有机-无机杂化的钼-银类晶体材料,水热合成温度至少为180℃,水热合成时间至少为24h。
3.如权利要求2所述的制备方法,其特征在于:水热合成的时间为72h,水热合成的温度为190℃。
4.如权利要求3所述的制备方法,其特征在于:水热合成开始前将反应底物温度自室温升温至水热合成温度的速率为0.5~1℃/min。
5.如权利要求4所述的制备方法,其特征在于:水热合成结束后自水热合成温度降温至室温的速率为0.3~0.5℃/min。
6.如权利要求5所述的制备方法,其特征在于:所述反应容器为置于烘箱中的高压釜,且水热合成开始前的升温、水热合成过程中的保温以及水热合成结束后的降温是通过烘箱进行调控。
CN201710373216.6A 2017-05-24 2017-05-24 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法 Pending CN107130297A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710373216.6A CN107130297A (zh) 2017-05-24 2017-05-24 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710373216.6A CN107130297A (zh) 2017-05-24 2017-05-24 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107130297A true CN107130297A (zh) 2017-09-05

Family

ID=59732888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710373216.6A Pending CN107130297A (zh) 2017-05-24 2017-05-24 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107130297A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899422A (zh) * 2018-06-26 2018-11-27 中国科学院深圳先进技术研究院 HxMoO3-y纳米材料、HxMoO3-y电极以及包含其的太阳能电池及制备方法
CN115281214A (zh) * 2022-08-26 2022-11-04 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407529A (zh) * 2007-10-11 2009-04-15 北京化工大学 一种有机磷钼酸盐配合物的合成方法
CN103360424A (zh) * 2013-07-03 2013-10-23 吉林化工学院 一种多金属磷钼酸盐有机—无机杂化物的结构及制备方法
CN103924302A (zh) * 2014-03-26 2014-07-16 合肥学院 有机-无机杂化的多钼氧酸盐晶体材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407529A (zh) * 2007-10-11 2009-04-15 北京化工大学 一种有机磷钼酸盐配合物的合成方法
CN103360424A (zh) * 2013-07-03 2013-10-23 吉林化工学院 一种多金属磷钼酸盐有机—无机杂化物的结构及制备方法
CN103924302A (zh) * 2014-03-26 2014-07-16 合肥学院 有机-无机杂化的多钼氧酸盐晶体材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899422A (zh) * 2018-06-26 2018-11-27 中国科学院深圳先进技术研究院 HxMoO3-y纳米材料、HxMoO3-y电极以及包含其的太阳能电池及制备方法
CN108899422B (zh) * 2018-06-26 2019-07-30 中国科学院深圳先进技术研究院 HxMoO3-y纳米材料、HxMoO3-y电极以及包含其的太阳能电池及制备方法
CN115281214A (zh) * 2022-08-26 2022-11-04 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂
CN115281214B (zh) * 2022-08-26 2024-02-13 厦门稀土材料研究所 一种抗菌助剂、制备方法及双组分抗菌防霉环氧彩砂

Similar Documents

Publication Publication Date Title
Hagrman et al. Structural influences of organonitrogen ligands on vanadium oxide solids. Hydrothermal syntheses and structures of the terpyridine vanadates [V2O4 (Terpy) 2] 3 [V10O28],[VO2 (Terpy)][V4O10], and [V9O22 (Terpy) 3]
CN106948009A (zh) 一种有机‑无机杂化的钼‑铜类晶体材料及其制备方法
Sadakane et al. Crystalline Mo3VOx Mixed‐Metal‐Oxide Catalyst with Trigonal Symmetry
Burkholder et al. Solid state coordination chemistry of oxomolybdenum organoarsonate materials
Beale et al. In situ study of the formation of crystalline bismuth molybdate materials under hydrothermal conditions
Maurya et al. Oxidovanadium (IV) and dioxidovanadium (V) complexes of hydrazones of 2-benzoylpyridine and their catalytic applications
CN107469855A (zh) 一种氮掺杂石墨烯负载金属单原子催化剂的制备方法
Chen et al. A series of inorganic− organic hybrid composite solids based on molybdenum oxide chains
Khan et al. Agar and egg shell derived calcium carbonate and calcium hydroxide nanoparticles: Synthesis, characterization and applications
McGlone et al. Silver linked polyoxometalate open frameworks (Ag-POMOFs) for the directed fabrication of silver nanomaterials
Tello et al. Microwave-driven hexagonal-to-monoclinic transition in BiPO4: an in-depth experimental investigation and first-principles study
Norquist et al. Structural diversity in organically templated uranium sulfates
CN107130297A (zh) 一种有机‑无机杂化的钼‑银类晶体材料及其制备方法
Khan et al. Inorganic− Organic Hybrid Materials Containing Porous Frameworks: Synthesis, Characterization, and Magnetic Properties of the Open Framework Solids [{Co (4, 4 ‘-Bipy)} V2O6] and [{Co2 (4, 4 ‘-Bipy) 3 (H2O) 2} V4O12]⊙ 2H2O
Khan et al. Hydrothermal synthesis and structural characterization of an organically templated layered oxovanadium (IV) organophosphonate:(C2H5NH3) 2 [V3O3 (H2O)(PhPO3) 4]
Andros et al. Ba4Ta2O9 Oxide Prepared from an Oxalate-Based Molecular Precursor Characterization and Properties
Liu et al. Series of Organic–Inorganic Hybrid Rare Earth Derivatives Based on [MnV13O38] 7–Polyoxoanion: Syntheses, Structures, and Magnetic and Electrochemical Properties
Kong et al. Hydrothermal Synthesis, Crystal Structure, Conductivity, and Thermal Decomposition of [Cu (4, 4 ‘-bipy)(H2O)(Mo3O10)]⊙ H2O
CN103924302B (zh) 有机-无机杂化的多钼氧酸盐晶体材料及其制备方法
CN106914271A (zh) 一种中性条件下一步法制备铁掺杂的sba‑15介孔分子筛的方法
Momeni et al. Crystal exploring, Hirshfeld surface analysis, and properties of 4′‐(furan‐2‐yl)‐2, 2′: 6′, 2 ″‐terpyridine complexes of nickel (II): New precursors for the synthesis of nanoparticles
Goñi et al. Synthesis, Structure, and Magnetic Properties of the New Layered Compound HNiPO4⊙ H2O. Study of Alkylamine Intercalated Compounds
Liu et al. A way for derived carbon materials by thermal etching hybrid borate for electrochemical CO2 reduction
CN103922421B (zh) 一种α‑Fe2O3的制备方法
Ranjbar et al. Thermolysis preparation of zinc (II) oxide nanoparticles from a new micro-rods one-dimensional zinc (II) coordination polymer synthesized by ultrasonic method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170905