CN107122764B - Maritime ship target detection method based on KpN model - Google Patents
Maritime ship target detection method based on KpN model Download PDFInfo
- Publication number
- CN107122764B CN107122764B CN201710364490.7A CN201710364490A CN107122764B CN 107122764 B CN107122764 B CN 107122764B CN 201710364490 A CN201710364490 A CN 201710364490A CN 107122764 B CN107122764 B CN 107122764B
- Authority
- CN
- China
- Prior art keywords
- kpn
- model
- parameters
- detection
- sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 230000014509 gene expression Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供一种基于KpN模型的海上舰船目标检测方法。技术方案是:对得到的SAR图像采用KpN分布进行统计建模并利用SAR图像的对数累积量对KpN模型的参数进行估计,根据KpN模型参数的估计值计算CFAR检测阈值,利用CFAR检测实现对于海上舰船目标的检测。本发明能够实现对于KpN模型中形状参数、尺度参数以及噪声功率更加精确的估计,增强了对海上舰船目标的检测性能,同时本发明不需要设置额外的参数或条件,简洁易行。
The invention provides a KpN model-based ship target detection method at sea. The technical solution is: Statistically model the obtained SAR image using KpN distribution and use the logarithmic cumulant of the SAR image to estimate the parameters of the KpN model, calculate the CFAR detection threshold according to the estimated value of the KpN model parameters, and use CFAR detection to realize the Detection of ship targets at sea. The invention can realize more accurate estimation of the shape parameter, scale parameter and noise power in the KpN model, and enhances the detection performance of the ship target at sea. At the same time, the invention does not need to set additional parameters or conditions, and is simple and easy to implement.
Description
技术领域technical field
本发明属于SAR(synthetic aperture radar,合成孔径雷达)技术领域,涉及一种基于KpN模型的海上舰船目标检测方法。The invention belongs to the technical field of SAR (synthetic aperture radar, synthetic aperture radar), and relates to a method for detecting a ship target at sea based on a KpN model.
背景技术Background technique
海上舰船目标检测是SAR应用的一个重要领域。在军事情报监视、非法移民监管和大范围海洋交通监管等领域有着广泛的应用。CFAR(constant false alarm rate,恒虚警率)检测是目前最常用的海上舰船目标检测方法。CFAR检测的核心在于海杂波建模,目前常用的海杂波模型主要为K分布模型和G0分布模型,但是这两种模型并没有考虑到通道噪声的影响。KpN(K plus Noise,K加噪声)模型在K分布模型的基础上加入了通道噪声的影响,能够更加精确地拟合海杂波(参考文献:K.D.Ward and R.J.A.Tough,“Radar detectionperformance in sea clutter and discrete spikes,”Radar,2002,pp.253-257)。但是现有方法对于KpN模型参数的估计精度还不够高,这在一定程度上限制了KpN模型在海上舰船目标检测上的作用。Maritime ship target detection is an important field of SAR application. It has a wide range of applications in the fields of military intelligence surveillance, illegal immigration supervision, and large-scale marine traffic supervision. CFAR (constant false alarm rate, constant false alarm rate) detection is currently the most commonly used detection method for maritime ship targets. The core of CFAR detection lies in sea clutter modeling. At present, the commonly used sea clutter models are mainly K distribution model and G 0 distribution model, but these two models do not take into account the influence of channel noise. The KpN (K plus Noise, K plus noise) model adds the influence of channel noise on the basis of the K distribution model, which can more accurately fit sea clutter (references: KDWard and RJATough, "Radar detection performance in sea clutter and discrete spikes," Radar, 2002, pp. 253-257). However, the estimation accuracy of the KpN model parameters in the existing methods is not high enough, which limits the role of the KpN model in ship target detection at sea to a certain extent.
发明内容Contents of the invention
本发明提供一种基于KpN模型的海上舰船目标检测方法。该方法对SAR图像采用KpN分布进行统计建模并利用对数累积量实现对KpN模型的参数估计,实现了对海上舰船目标的检测。The invention provides a KpN model-based ship target detection method at sea. The method adopts KpN distribution to statistically model SAR images and uses logarithmic cumulants to estimate the parameters of the KpN model, and realizes the detection of ship targets at sea.
本发明的技术方案是:Technical scheme of the present invention is:
对得到的SAR图像采用KpN分布进行统计建模并利用SAR图像的对数累积量对KpN模型的参数进行估计,根据KpN模型参数的估计值计算CFAR(constant false alarm rate,恒虚警率)检测阈值,利用CFAR检测实现对于海上舰船目标的检测。其中,利用下式求解得到KpN模型中形状参数v的估计值尺度参数b的估计值以及噪声功率pn的估计值 The obtained SAR image is statistically modeled using the KpN distribution and the parameters of the KpN model are estimated using the logarithmic cumulant of the SAR image, and the CFAR (constant false alarm rate, constant false alarm rate) detection is calculated according to the estimated value of the KpN model parameters Threshold, using CFAR detection to realize the detection of marine ship targets. Among them, the estimated value of the shape parameter v in the KpN model is obtained by solving the following formula Estimated value of the scale parameter b and an estimate of the noise power p n
其中Ψ()为psi函数,Ψ(,)为polygamma函数,N为等效视数,参数A,B,C,D的具体表达式如下式所示:Among them, Ψ() is the psi function, Ψ(,) is the polygamma function, N is the equivalent visual number, and the specific expressions of the parameters A, B, C, and D are shown in the following formula:
并且,CFAR检测阈值T的具体计算公式如下:Moreover, the specific calculation formula of the CFAR detection threshold T is as follows:
其中是KpN模型的概率密度函数;Pfa表示虚警率,通常根据实际需要人为设定。in is the probability density function of the KpN model; P fa represents the false alarm rate, which is usually set artificially according to actual needs.
本发明的有益效果是:The beneficial effects of the present invention are:
1.相比于现有方法,利用对数累积量进行KpN参数估计,能够实现对于KpN模型中形状参数、尺度参数以及噪声功率更加精确的估计,增强了对海上舰船目标的检测性能。1. Compared with existing methods, using logarithmic cumulants to estimate KpN parameters can achieve more accurate estimation of shape parameters, scale parameters and noise power in the KpN model, and enhance the detection performance of marine ship targets.
2.采用本发明提出的利用对数累积量进行KpN参数估计方法不需要设置额外的参数或条件,简洁易行。2. The KpN parameter estimation method using the logarithmic cumulant proposed by the present invention does not need to set additional parameters or conditions, and is simple and easy to implement.
附图说明Description of drawings
图1为本发明流程图;Fig. 1 is a flowchart of the present invention;
图2为本发明的实验数据;Fig. 2 is experimental data of the present invention;
图3为本发明实验结果图;Fig. 3 is the experimental result figure of the present invention;
图4、图5、图6是进行理论验证的结果。Figure 4, Figure 5, and Figure 6 are the results of theoretical verification.
具体实施方式Detailed ways
图1为本发明流程图,具体实施步骤如下:Fig. 1 is a flowchart of the present invention, and concrete implementation steps are as follows:
对得到的SAR图像采用KpN分布进行统计建模并利用对数累积量对KpN模型的参数进行估计:即首先认为SAR图像符合KpN模型分布,再估计KpN模型的参数,可以包括下面两步:The obtained SAR image is statistically modeled using the KpN distribution and the parameters of the KpN model are estimated using the logarithmic cumulant: that is, the SAR image is first considered to be in line with the KpN model distribution, and then the parameters of the KpN model are estimated, which can include the following two steps:
第一步,根据原始SAR图像,计算图像对数累积量,其计算方法如公式一所示:The first step is to calculate the image logarithmic cumulant according to the original SAR image, and its calculation method is shown in formula 1:
其中表示一阶图像对数累积量,表示二阶图像对数累积量,表示三阶图像对数累积量,M表示图像中的像素点总个数,xi为图像中第i个像素点的灰度值,i∈[1,M]。in represents the first-order image logarithmic cumulant, represents the second-order image logarithmic cumulant, Indicates the logarithmic cumulant of the third-order image, M indicates the total number of pixels in the image, x i is the gray value of the i-th pixel in the image, i∈[1,M].
第二步,通过对公式二进行数值求解得到KpN模型中形状参数v的估计值尺度参数b的估计值以及噪声功率pn的估计值其具体表达式如下。In the second step, the estimated value of the shape parameter v in the KpN model is obtained by numerically solving the formula 2 Estimated value of the scale parameter b and an estimate of the noise power p n Its specific expression is as follows.
其中Ψ()为psi函数,Ψ(,)为polygamma函数,N为等效视数,参数A,B,C,D的具体表达式如公式三所示:Among them, Ψ() is the psi function, Ψ(,) is the polygamma function, N is the equivalent visual number, and the specific expressions of the parameters A, B, C, and D are shown in formula three:
根据KpN模型参数的估计值计算CFAR检测阈值,利用CFAR检测实现对于海上舰船目标的检测,即实现下面的第三步:Calculate the CFAR detection threshold according to the estimated value of the KpN model parameters, and use the CFAR detection to realize the detection of the ship target at sea, that is, to realize the third step below:
第三步,利用第二步中得到的形状参数的估计值尺度参数的估计值以及噪声功率的估计值计算CFAR检测阈值T。CFAR检测阈值T的具体计算公式如下:In the third step, use the estimated value of the shape parameter obtained in the second step Estimated value of the scale parameter and an estimate of the noise power Calculate the CFAR detection threshold T. The specific calculation formula of CFAR detection threshold T is as follows:
其中是KpN模型的概率密度函数;Pfa表示虚警率,通常根据实际需要人为设定。in is the probability density function of the KpN model; P fa represents the false alarm rate, which is usually set artificially according to actual needs.
对原始SAR图像进行检测,当检测像素点的灰度值大于等于T时,判定为舰船目标像素。否则,判定为背景像素,实现对于海上舰船目标的检测。The original SAR image is detected, and when the gray value of the detected pixel is greater than or equal to T, it is determined to be a ship target pixel. Otherwise, it is judged as a background pixel to realize the detection of the ship target at sea.
本发明的实验数据为原始SAR图像。图2为原始的SAR图像,其中横坐标表示方位向,纵坐标表示距离向,图像中的白色像素点为需要检测的舰船目标。图3为利用本发明进行海上舰船目标检测结果图,图3的横坐标表示方位向,纵坐标表示距离向,图中白色矩形框表示检测到的舰船目标。对比图2与图3可以看出,所有的13个海上舰船目标都被较好的检测到了,而且没有虚警,这验证了本发明方法的有效性。The experimental data of the present invention is the original SAR image. Figure 2 is the original SAR image, where the abscissa represents the azimuth direction, and the ordinate represents the distance direction, and the white pixels in the image are the ship targets to be detected. Fig. 3 is a diagram of detection results of ship targets at sea by using the present invention, the abscissa of Fig. 3 represents the azimuth direction, the ordinate represents the distance direction, and the white rectangular frame in the figure represents the detected ship target. Comparing Fig. 2 with Fig. 3, it can be seen that all 13 marine ship targets are detected well without false alarms, which verifies the effectiveness of the method of the present invention.
为进一步验证对数累积量对于KpN模型参数估计的有效性,利用Matlab生成服从KpN模型的随机数。图4,图5,图6为发明中对KpN模型参数估计的结果与另外两种KpN模型参数估计方法的实验结果对比图。其中,图4为三种方法对于形状参数v的估计结果对比图,图5为三种方法对于噪声参数pn的估计结果对比图,图6为三种方法对于尺度参数b的估计结果对比图,图4,图5,图6的横坐标都表示实验次数,纵坐标都表示估计的均方误差,带圆圈的曲线对应的Home参数估计法,带米字的曲线对应的是zlog(z)参数估计方法,带正方形的曲线对应的是本发明的参数估计方法。通过观察可以发现,本发明方法估计的均方误差要小于其余两种方法,这说明本发明方法估计的精确度更高。In order to further verify the validity of the logarithmic cumulant for parameter estimation of the KpN model, Matlab is used to generate random numbers that obey the KpN model. Fig. 4, Fig. 5, and Fig. 6 are diagrams comparing the results of the parameter estimation of the KpN model in the invention with the experimental results of the other two KpN model parameter estimation methods. Among them, Figure 4 is a comparison chart of the estimation results of the shape parameter v by the three methods, Figure 5 is a comparison chart of the estimation results of the noise parameter p n by the three methods, and Figure 6 is a comparison chart of the estimation results of the scale parameter b by the three methods , Figure 4, Figure 5, and Figure 6. The abscissas represent the number of experiments, and the ordinates represent the estimated mean square error. The curve with a circle corresponds to the Home parameter estimation method, and the curve with the rice character corresponds to zlog(z) Parameter estimation method, the curve with squares corresponds to the parameter estimation method of the present invention. It can be found through observation that the mean square error estimated by the method of the present invention is smaller than that of the other two methods, which shows that the estimation accuracy of the method of the present invention is higher.
图4实验中本发明利用的KpN模型的概率密度函数如公式五所示:The probability density function of the KpN model that the present invention utilizes in Fig. 4 experiment is as shown in formula five:
利用公式五,可以得到KpN模型的Mellin变换φZ(s)表达式如下:Using Equation 5, the Mellin transformation φ Z (s) expression of the KpN model can be obtained as follows:
其中W,()表示的是Whittaker函数。Where W, () represents the Whittaker function.
根据公式六可以进一步得到KpN模型的第二个第二类型特征函数ξZ(s)的表达式如下:According to formula 6, the expression of the second second type characteristic function ξ Z (s) of the KpN model can be further obtained as follows:
其中U()表示的是Tricomi函数。Where U() represents the Tricomi function.
通过公式七可以得到KpN模型的理论对数累积量的表达式如下:The expression of the theoretical logarithmic cumulant of the KpN model can be obtained through formula 7 as follows:
其中表示i阶理论对数累积量,将公式一与公式八进行联立,可以得到如公式二的估计表达式。此外,还可以利用KpN模型其他形式的概率密度函数进行本发明的计算,不影响本发明的实际效果。in Represents the i-th order theoretical logarithmic cumulant, and combining Formula 1 and Formula 8, the estimated expression such as Formula 2 can be obtained. In addition, other forms of probability density functions of the KpN model can also be used for the calculation of the present invention, without affecting the actual effect of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710364490.7A CN107122764B (en) | 2017-05-22 | 2017-05-22 | Maritime ship target detection method based on KpN model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710364490.7A CN107122764B (en) | 2017-05-22 | 2017-05-22 | Maritime ship target detection method based on KpN model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107122764A CN107122764A (en) | 2017-09-01 |
CN107122764B true CN107122764B (en) | 2019-08-06 |
Family
ID=59727560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710364490.7A Active CN107122764B (en) | 2017-05-22 | 2017-05-22 | Maritime ship target detection method based on KpN model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107122764B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108985292A (en) * | 2018-05-23 | 2018-12-11 | 中国地质大学(武汉) | A kind of SAR image CFAR object detection method and system based on multi-scale division |
CN112560897B (en) * | 2020-11-24 | 2024-02-09 | 西安电子科技大学 | Radar ship classification capability evaluation method based on captain statistical model |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102176000A (en) * | 2011-01-27 | 2011-09-07 | 电子科技大学 | Sea clutter suppression method for marine radar |
CN104504711A (en) * | 2014-12-29 | 2015-04-08 | 西安交通大学 | Vascular image processing method based on circular contour polarity |
CN105005983A (en) * | 2015-04-13 | 2015-10-28 | 西南科技大学 | SAR image background clutter modeling and target detection method |
CN106468770A (en) * | 2016-09-23 | 2017-03-01 | 西安电子科技大学 | Closely optimum radar target detection method under K Distribution Clutter plus noise |
CN106646403A (en) * | 2016-11-16 | 2017-05-10 | 电子科技大学 | K distributed radar clutter real-time simulation method and system |
-
2017
- 2017-05-22 CN CN201710364490.7A patent/CN107122764B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102176000A (en) * | 2011-01-27 | 2011-09-07 | 电子科技大学 | Sea clutter suppression method for marine radar |
CN104504711A (en) * | 2014-12-29 | 2015-04-08 | 西安交通大学 | Vascular image processing method based on circular contour polarity |
CN105005983A (en) * | 2015-04-13 | 2015-10-28 | 西南科技大学 | SAR image background clutter modeling and target detection method |
CN106468770A (en) * | 2016-09-23 | 2017-03-01 | 西安电子科技大学 | Closely optimum radar target detection method under K Distribution Clutter plus noise |
CN106646403A (en) * | 2016-11-16 | 2017-05-10 | 电子科技大学 | K distributed radar clutter real-time simulation method and system |
Non-Patent Citations (2)
Title |
---|
"Parameter estimation for Pareto and K distributed clutter with noise";Stephen Bocquet;《IET Radar, Sonar and Navigation》;20151231;第1-10页 |
"Sea Clutter Modeling in Presence of Thennal Noise Using Beta-Prime Texture Distribution";Izzeddine Chalabi,Amar Mezache;《International Multi-Conference on Systems, Signals &Devices》;20151231;第1-5页 |
Also Published As
Publication number | Publication date |
---|---|
CN107122764A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106468770B (en) | Nearly optimal radar target detection method under K Distribution Clutter plus noise | |
CN101493520B (en) | A SAR image change detection method based on two-dimensional Gamma distribution | |
CN105699952B (en) | Double quantile methods of estimation of sea clutter K profile shape parameters | |
CN102096829B (en) | Iterative optimization distance categorization-based space weak and small target detection method | |
CN106872958B (en) | Radar target self-adapting detecting method based on linear fusion | |
CN102928822B (en) | Radar target length calculation method based on high-resolution one-dimensional range profiles | |
CN107329141A (en) | A kind of boat body faint radiated noise signals detection method under marine environment | |
CN107102302A (en) | Radar target fusion detection method based on non-gaussian parameter | |
CN103745216B (en) | A kind of radar image clutter suppression method based on Spatial characteristic | |
CN107255818A (en) | A kind of submarine target quick determination method of bidimensional multiple features fusion | |
CN103792522B (en) | Multi-radar marine target robust association algorithm based on credible association pair | |
CN113723564B (en) | Method and system for training countersample defense model and application of method and system | |
CN107942308A (en) | Adaptive Rao detection methods based on gamma texture under complex Gaussian environment | |
CN107122764B (en) | Maritime ship target detection method based on KpN model | |
CN104268574A (en) | SAR image change detecting method based on genetic kernel fuzzy clustering | |
CN108765403A (en) | A kind of SAR image two-parameter CFAR detection methods under target-rich environment | |
CN106353743B (en) | It is matched with the nearly optimal radar target detection method of equivalent shapes parameter | |
CN107748361A (en) | Based on the two-parameter CFAR detection methods of SAR image for blocking clutter statistics | |
CN110109068A (en) | Decoy jamming recognition methods based on polarization characteristic vector | |
CN115097451A (en) | Sea wave multi-parameter inversion method and system based on SAR satellite data | |
CN107479052A (en) | Ground concealed target detection method based on Generalized Gaussian Distribution Model | |
CN107045126A (en) | A kind of synthetic aperture radar movement overseas Ship Target Detection method | |
CN106199552A (en) | A kind of packet generalized likelihood test method under local uniform sea clutter background | |
CN106204664B (en) | SAR ship target detection method based on SAR-LARK feature | |
CN113093135A (en) | Target detection method and device based on F norm normalized distance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |