CN107121932A - Motor servo system error symbol integrates Robust Adaptive Control method - Google Patents

Motor servo system error symbol integrates Robust Adaptive Control method Download PDF

Info

Publication number
CN107121932A
CN107121932A CN201710439765.9A CN201710439765A CN107121932A CN 107121932 A CN107121932 A CN 107121932A CN 201710439765 A CN201710439765 A CN 201710439765A CN 107121932 A CN107121932 A CN 107121932A
Authority
CN
China
Prior art keywords
msub
mrow
mover
centerdot
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710439765.9A
Other languages
Chinese (zh)
Other versions
CN107121932B (en
Inventor
胡健
刘雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710439765.9A priority Critical patent/CN107121932B/en
Publication of CN107121932A publication Critical patent/CN107121932A/en
Application granted granted Critical
Publication of CN107121932B publication Critical patent/CN107121932B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

Robust Adaptive Control method is integrated the invention discloses a kind of motor servo system error symbol, this method comprises the following steps:Set up motor position servo system model;Design error symbolic integration Robust adaptive controller;Robust adaptive controller is integrated according to error symbol, carrying out stability to motor servo system using Lyapunov stability theory proves, and obtains with Barbalat lemma the result of the Globally asymptotic of system.The present invention be directed to motor servo system in there is parameter uncertainty and unknown non-linear factor propose based on parameter adaptive error symbol integration robust adaptive anti-interference controller, parameter adaptive rate can be effectively in estimating system unknown parameter, other Uncertain nonlinear factors in system are overcome using error symbol integration robust, it is ensured that the control accuracy in motor servo system.

Description

Motor servo system error symbol integrates Robust Adaptive Control method
Technical field
The present invention relates to motor servo control technology, and in particular to a kind of motor servo system error symbol integration robust is certainly Adaptive control method.
Background technology
Permanent-magnet brushless DC electric machine has fast response time due to its own, and energy utilization rate is high, the features such as polluting small, Industrial circle has a wide range of applications.With the fast development of industrial technology in recent years, the control technology to direct current generator is also carried Higher requirement is gone out, the kinematic accuracy for how improving direct current unit has become the main direction of studying of direct current generator. In motor servo system, due to the different limitations with some structures of working condition, system is difficult to reflect completely in modeling Real model, therefore when designing controller, these model uncertainties have very important effect, do not know especially It is non-linear, the control performance of meeting severe exacerbation controller, so that cause low precision, limit cycle concussion, the mistake for even causing system Surely.
For nonlinear problem present in system, traditional control method is difficult to solve its shadow to system control accuracy Ring.In recent years, it is various to be proposed in succession for uncertain nonlinear control strategy with the development of control theory, such as sliding formwork Variable-structure control, Robust Adaptive Control, ADAPTIVE ROBUST etc..But above-mentioned control strategy controller design is more complicated, no It is easy to Project Realization.
The content of the invention
Robust Adaptive Control method, solution are integrated it is an object of the invention to provide a kind of motor servo system error symbol Certainly Uncertain nonlinear problem in motor position servo system.
The technical scheme for realizing the object of the invention is:A kind of motor servo system error symbol integrates Robust Adaptive Control Method, comprises the following steps:
Step 1, motor position servo system model is set up;
Step 2, design error symbolic integration Robust adaptive controller;
Step 3, Robust adaptive controller is integrated according to error symbol, using Lyapunov stability theory to motor Servo-drive system, which carries out stability, to be proved, and obtains with Barbalat lemma the result of the Globally asymptotic of system.
Compared with prior art, remarkable advantage of the invention is:
The present invention, which is directed in motor servo system, has parameter uncertainty and unknown non-linear factor (is disturbed outside It is dynamic) the error symbol integration robust adaptive anti-interference controller based on parameter adaptive is proposed, parameter adaptive rate can Unknown parameter in effective estimating system, integrates robust to overcome other Uncertain nonlinears in system using error symbol Factor, it is ensured that the control accuracy in motor servo system;The validity for the control strategy that the result verification of emulation is proposed.
Brief description of the drawings
Fig. 1 is motor servo system schematic diagram.
Fig. 2 is the motor servo system error symbol integration Robust Adaptive Control policy map of the present invention.
Fig. 3 is the system output for disturbing the lower controller of (1) effect to the tracking procedure chart of given output.
Fig. 4 is the tracking error time history plot for disturbing the lower system of (1) effect.
Fig. 5 is the lower PID control of interference (2) effect and ARISE control tracking accuracy curve maps.
Fig. 6 is interference (2) control input u-curve figure.
Fig. 7 is the tracking error time history plot for disturbing the lower system of (3) effect.
Fig. 8 is the lower control input v curve maps of interference (3) effect.
Fig. 9 is the lower parameter adaptive curve map of interference (3) effect.
Embodiment
With reference to Fig. 1, Fig. 2, a kind of motor servo system error symbol integrates Robust Adaptive Control method, including following step Suddenly:
Step 1, set up motor position servo system model;
According to Newton's second law, the kinetic model equation of motor inertia load is:
In formula, y represents angular displacement, JequRepresent inertia load, kuTorque coefficient is represented, u is system control input, BequGeneration Table viscosity friction coefficient, dnThe constant value interference that the system of representative is subject to,Represent other and do not model interference, such as input full With outside time-varying disturbance and Unmarried pregnancy;
Write (1) formula as state space form, it is as follows:
WhereinX=[x1,x2]TRepresent the state vector of position and speed;Parameter set θ=[θ12, θ3]T, wherein θ1=Jequ/ku, θ2=Bequ/ku, θ3=dn/ku,Other in expression system are not modeled Interference.Due to systematic parameter Jequ, ku, Bequ, dnUnknown, systematic parameter is uncertain, but the general information of system is to know Road.In addition, the Uncertain nonlinear of systemIt is also clearly to model, but the Unmarried pregnancy of system and dry Disturb always bounded.Thus, it is assumed hereinafter that always set up:
Assuming that 1:Parameter θ is met:
Wherein θmin=[θ1min2min3min]T, θmax=[θ1max2max3max]T, they be all it is known, in addition θ1min> 0, θ2min> 0, θ3min> 0;
Assuming that 2:D (x, t) is bounded and single order can be micro-, i.e.,
Wherein δdIt is known.
Step 2, design error symbolic integration Robust adaptive controller, are comprised the following steps that:
Step 2-1, definition z1=x1-x1dFor the angular displacement tracking error of system, x1d is that system expects that the position of tracking refers to Make and the instruction Second Order Continuous can be micro-, according to first equation in formula (2)Choose x2For virtual controlling amount, make equationTend towards stability state;Make x2eqFor the desired value of virtual controlling, x2eqWith time of day x2Error be z2=x2-x2eq, it is right z1Derivation is obtained:
Design virtual controlling rule:
K in formula (6)1> 0 is adjustable gain, then
Due to z1(s)=G (s) z2(s), G (s)=1/ (s+k in formula1) it is a stable transmission function, work as z2Tend to 0 When, z1Also 0 is necessarily tended to.
Step 2-2, in order to more easily design controller, introduce the error signal r (t) of an auxiliary
K in formula 82> 0 is adjustable gain;
According to formula (2), (7) and (8), there is following r expansion:
According to formula (2) and (9), there is following equation:
According to formula (10), design System design based on model device is:
Formula (11)θ estimate is represented,For the error of estimationβ is that system controls gain;krTo be positive and negative Feedforward gain;For parameter adaptive rate;Γ > 0 are adjustable positive self-regulated rhythm and pace of moving things gain.
Parameter adaptive rate is known in formula (11), although r is unknown quantity, stillIt is known, institute with its first derivative It can be integrated and obtained with adaptive rate:
Formula (11) is substituted into calculate in formula (10) and obtained:
Derivation is obtained:
Step 3, according to error symbol integrate Robust adaptive controller, using Lyapunov stability theory to motor Servo-drive system, which carries out stability, to be proved, and obtains with Barbalat lemma the result of the Globally asymptotic of system, specifically such as Under:
Lemma 1:
Define auxiliary function
z2(0)、Z is represented respectively2(t)、Initial value.
WhenWhen, then
P(t)≥0 (19)
To the proof of the lemma:
Formula (15) both sides are integrated simultaneously and obtained with formula (7):
Carrying out step integrations to latter two in formula (20) can obtain:
Therefore
By formula (22) if it can be seen from β value meetWhen, there are formula (17) and (19) to set up, lemma is obtained Card.
According to above-mentioned lemma, liapunov function is defined as follows:
For the error of estimation, i.e.,
Carrying out stability with Lyapunov stability theory proves, and obtains the complete of system with Barbalat lemma The result of office's asymptotically stability, therefore regulation gain k1、k2、krAnd Γ makes the tracking error of system in the infinite bar of time zone Gone to zero under part.To formula (23) derivation and (7), (8), (14) and (16) are substituted into:
Wherein
Definition:
Z=[z1,z2,r] (25)
Pass through adjusting parameter k1、k2、kr, it is positive definite matrix that can cause symmetrical matrix Λ,
Then have:
λ in formula (27)min(Λ) is symmetrical matrix Λ minimal eigenvalue.
There is conclusion by formula (27) and Lyapunov theorem of stability:The uncertain non-thread existed for motor servo system Property design integral sign Robust adaptive controller system can be made to reach the effect of asymptotically stability, adjust the parameter of controller k1、k2、krTracking accuracy can be made constantly to level off to zero.The error symbol integration Robust Adaptive Control of motor servo system is former Manage schematic diagram as shown in Figure 2.
With reference to specific embodiments and the drawings, the invention will be further described.
Embodiment
Simulation parameter:Jequ=0.00138kgm2, Bequ=0.4Nm/rad, ku=2.36Nm/V.Controller is taken to join Number k1=12, k2=1.5, kr=1, θ1n=0.02, θ2n=0.294, selected e nominal value are away from the true value of parameter, To examine the effect of adaptive control laws.PID controller parameter is kp=90, ki=70, kd=0.3.Given reference by location is defeated Enter signalUnit rad.
Disturb (1) in the case where only existing the operating mode of constant value disturbance and dn=0.5Nm.(2) constant value is disturbed to disturb with other not When modeling is disturbed and deposited, and dn=0.5Nm,Interference (3) constant value disturbance does not model interference with other And deposit, and in the case of input-bound, dn=0.5Nm,V=u0.8.
Control law action effect is shown in Fig. 3-Fig. 9:
Fig. 3 is the system output for disturbing the lower controller of (1) effect to the tracking procedure chart of given output.Fig. 4 is interference (1) The tracking error time history plot figure of the lower system of effect.Fig. 5 is the lower PID control of interference (2) effect and ARISE controls Tracking accuracy curve map.Fig. 6 is interference (2) control input u-curve figure.Fig. 7 be disturb the tracking error of the lower system of (3) effect with The curve map of time change.Fig. 8 is the lower control input v curve maps of interference (3) effect.Fig. 9 is that the lower parameter of interference (3) effect is adaptive Answer curve map.
From the foregoing, it will be observed that algorithm proposed by the present invention can more accurately estimate interference value under simulated environment, compare In traditional PID control, the controller that the present invention is designed, which can greatly be improved, has parameter uncertainty and big interference system Control accuracy.Result of study shows that under the influence of Uncertain nonlinear and parameter uncertainty method proposed by the present invention can Meet performance indications.

Claims (4)

1. a kind of motor servo system error symbol integrates Robust Adaptive Control method, it is characterised in that comprise the following steps:
Step 1, motor position servo system model is set up;
Step 2, design error symbolic integration Robust adaptive controller;
Step 3, Robust adaptive controller is integrated according to error symbol, using Lyapunov stability theory to motor servo System, which carries out stability, to be proved, and obtains with Barbalat lemma the result of the Globally asymptotic of system.
2. motor servo system error symbol according to claim 1 integrates Robust Adaptive Control method, its feature exists In step 1 is specially:
According to Newton's second law, the kinetic model equation of motor inertia load is:
<mrow> <msub> <mi>J</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>k</mi> <mi>u</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>u</mi> <mo>-</mo> <msub> <mi>B</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mi>d</mi> <mi>n</mi> </msub> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula, y is angular displacement, JequFor inertia load, kuFor torque coefficient, u is system control input, BequFor viscous friction system Number, dnThe constant value interference being subject to for system,Interference is not modeled for other;
Write (1) formula as state space form, it is as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>u</mi> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> <mo>-</mo> <mi>&amp;xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
WhereinX=[x1,x2]TRepresent the state vector of position and speed;Parameter set θ=[θ123]T, Wherein θ1=Jequ/ku, θ2=Bequ/ku, θ3=dn/ku,Other in expression system do not model interference; Have it is assumed hereinafter that setting up:
Assuming that 1:Parameter θ is met:
<mrow> <mi>&amp;theta;</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>&amp;theta;</mi> </msub> <mover> <mo>=</mo> <mi>&amp;Delta;</mi> </mover> <mo>{</mo> <mi>&amp;theta;</mi> <mo>:</mo> <msub> <mi>&amp;theta;</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <mi>&amp;theta;</mi> <mo>&amp;le;</mo> <msub> <mi>&amp;theta;</mi> <mi>max</mi> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein θmin=[θ1min2min3min]T, θmax=[θ1max2max3max]T, it is, it is known that θ in addition1min> 0, θ2min> 0, θ3min> 0;
Assuming that 2:It is bounded and single order can be micro-, i.e.,
<mrow> <mo>|</mo> <mi>&amp;xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;le;</mo> <msub> <mi>&amp;delta;</mi> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein δdIt is known.
3. motor servo system error symbol according to claim 1 integrates robust adaptive anti-interference control method, its It is characterised by, step 2 is specially:
Step 2-1, definition z1=x1-x1dFor the angular displacement tracking error of system, x1dBe system expect tracking position command and The instruction Second Order Continuous can be micro-, according to first equation in formula (2)Choose x2For virtual controlling amount, make equation Tend towards stability state;Make x2eqFor the desired value of virtual controlling, x2eqWith time of day x2Error be z2=x2-x2eq, to z1Ask Lead:
<mrow> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Design virtual controlling rule:
<mrow> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
K in formula (6)1> 0 is adjustable gain, then
<mrow> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Due to z1(s)=G (s) z2(s), G (s)=1/ (s+k in formula1) it is a stable transmission function, work as z2When tending to 0, z1 Also 0 is necessarily tended to;
Step 2-2, the error signal r (t) for introducing an auxiliary
<mrow> <mi>r</mi> <mo>=</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
K in formula2> 0 is adjustable gain;
According to formula (2), (7) and (8), there is following r expansion:
<mrow> <mi>r</mi> <mo>=</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
According to formula (2) and (9), there is following equation:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mi>r</mi> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>u</mi> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> <mo>-</mo> <mi>&amp;xi;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
According to formula (10), design System design based on model device is:
<mrow> <mi>u</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>u</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <msub> <mi>Y</mi> <mi>d</mi> </msub> </mrow>
<mrow> <msub> <mi>u</mi> <mi>s</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>&amp;mu;</mi> <mo>,</mo> <mi>&amp;mu;</mi> <mo>=</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>v</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mi>&amp;Gamma;</mi> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mi>r</mi> <mo>,</mo> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>d</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> </mrow>
In formula (11),θ estimate is represented,For the error of estimationβ is that system controls gain, krTo be positive and negative Feedforward gain,For parameter adaptive rate, Γ > 0 are adjustable positive self-regulated rhythm and pace of moving things gain.
Parameter adaptive rate is known in formula (11), although r is unknown quantity, stillIt is known with its first derivative, so adaptive Should rate can be integrated and obtain:
<mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Gamma;</mi> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Gamma;</mi> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mi>d</mi> <mi>v</mi> <mo>-</mo> <mi>&amp;Gamma;</mi> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mi>d</mi> <mi>v</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Formula (11) is substituted into calculate in formula (10) and obtained:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mi>r</mi> <mo>=</mo> <msup> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>v</mi> <mo>-</mo> <mi>&amp;xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Derivation is obtained:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msup> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mi>T</mi> </msup> <mi>&amp;Gamma;</mi> <msub> <mover> <mi>Y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mi>r</mi> <mo>-</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mi>r</mi> <mo>-</mo> <mi>&amp;beta;</mi> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&amp;xi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>r</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>k</mi> <mn>1</mn> <mn>3</mn> </msubsup> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
4. motor servo system error symbol according to claim 1 integrates robust adaptive anti-interference control method, its It is characterised by, step 3 is specially:
Define auxiliary function
<mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mover> <mi>&amp;xi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;beta;</mi> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;beta;</mi> <mo>|</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mover> <mi>&amp;xi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <mi>L</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>v</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> 2
z2(0)、Z is represented respectively2(t)、Initial value;
It is verified to work asWhen, P (t) >=0, therefore it is as follows to define liapunov function:
<mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>z</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>z</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mo>+</mo> <mi>P</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
For the error of estimation, i.e.,
Carrying out stability with Lyapunov stability theory proves, and obtains the overall situation of system gradually with Barbalat lemma Enter stable result, therefore regulation gain k1、k2、krAnd Γ makes the tracking error of system under conditions of time zone is infinite Go to zero.
CN201710439765.9A 2017-06-12 2017-06-12 Motor servo system error symbol integral robust self-adaptive control method Expired - Fee Related CN107121932B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710439765.9A CN107121932B (en) 2017-06-12 2017-06-12 Motor servo system error symbol integral robust self-adaptive control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710439765.9A CN107121932B (en) 2017-06-12 2017-06-12 Motor servo system error symbol integral robust self-adaptive control method

Publications (2)

Publication Number Publication Date
CN107121932A true CN107121932A (en) 2017-09-01
CN107121932B CN107121932B (en) 2020-06-19

Family

ID=59730458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710439765.9A Expired - Fee Related CN107121932B (en) 2017-06-12 2017-06-12 Motor servo system error symbol integral robust self-adaptive control method

Country Status (1)

Country Link
CN (1) CN107121932B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520803A (en) * 2018-08-10 2019-11-29 曾喆昭 A kind of wisdom PID control method
CN110673473A (en) * 2019-09-09 2020-01-10 南京理工大学 Error sign integral robust self-adaptive control method of two-axis coupling tank gun system
CN110673472A (en) * 2019-09-09 2020-01-10 南京理工大学 Adaptive robust control method based on neural network compensation dead zone inversion error
CN110865540A (en) * 2019-11-28 2020-03-06 曾喆昭 Mutual coupling PI cooperative control theory new method
CN110888320A (en) * 2019-09-09 2020-03-17 南京理工大学 Self-adaptive robust control method based on double-electric-cylinder synchronous motion error modeling
CN110928182A (en) * 2019-11-05 2020-03-27 南京理工大学 Robust self-adaptive repetitive control method of hydraulic servo system based on state estimation
CN111708276A (en) * 2020-04-30 2020-09-25 南京理工大学 Adaptive robust control method based on observation error compensation of linear state observer
CN111913391A (en) * 2020-08-12 2020-11-10 深圳职业技术学院 Method for stabilizing self-adaptive control discrete time non-minimum phase system
CN112769364A (en) * 2020-12-14 2021-05-07 南京理工大学 Fast self-adaptive anti-interference control method of direct current motor servo system
CN114545779A (en) * 2022-03-08 2022-05-27 南京理工大学 Self-adjustment integral robust control method of rapid erecting system based on direct drive pump
CN115047760A (en) * 2022-05-26 2022-09-13 南京理工大学 FTAIRTSM control method for DC motor servo system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131324A (en) * 2010-03-08 2011-09-16 Univ Ishou Positioning controller
JP2012032869A (en) * 2010-07-28 2012-02-16 Okouchi Kinzoku Co Ltd Disc cutter feed control method, device and cutting apparatus using the same
US20120098476A1 (en) * 2010-10-25 2012-04-26 Kuo-Lin Chiu Feedback switching device and method for driving of servo motor
CN104333280A (en) * 2014-09-17 2015-02-04 南京理工大学 Robustness adaptive control (RAC) method of direct driving motor system
CN104345639A (en) * 2014-10-09 2015-02-11 南京理工大学 Robust adaptive control (RAC) method of electro-hydraulic position servo control system
CN104834220A (en) * 2015-05-20 2015-08-12 南京理工大学 Adaptive error symbol integration robust repetitive control method for electromechanical servo system
CN105700352A (en) * 2016-01-26 2016-06-22 南京理工大学 An electro-hydraulic load simulator error symbol integral robustness control method
CN105843043A (en) * 2016-05-17 2016-08-10 南京理工大学 Electro hydraulic load simulator self-adaptive robust force control method
CN105867133A (en) * 2016-04-26 2016-08-17 南京理工大学 Method for self-adjustment error symbol integral robust control of electro-hydraulic torque servo system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131324A (en) * 2010-03-08 2011-09-16 Univ Ishou Positioning controller
JP2012032869A (en) * 2010-07-28 2012-02-16 Okouchi Kinzoku Co Ltd Disc cutter feed control method, device and cutting apparatus using the same
US20120098476A1 (en) * 2010-10-25 2012-04-26 Kuo-Lin Chiu Feedback switching device and method for driving of servo motor
CN104333280A (en) * 2014-09-17 2015-02-04 南京理工大学 Robustness adaptive control (RAC) method of direct driving motor system
CN104345639A (en) * 2014-10-09 2015-02-11 南京理工大学 Robust adaptive control (RAC) method of electro-hydraulic position servo control system
CN104834220A (en) * 2015-05-20 2015-08-12 南京理工大学 Adaptive error symbol integration robust repetitive control method for electromechanical servo system
CN105700352A (en) * 2016-01-26 2016-06-22 南京理工大学 An electro-hydraulic load simulator error symbol integral robustness control method
CN105867133A (en) * 2016-04-26 2016-08-17 南京理工大学 Method for self-adjustment error symbol integral robust control of electro-hydraulic torque servo system
CN105843043A (en) * 2016-05-17 2016-08-10 南京理工大学 Electro hydraulic load simulator self-adaptive robust force control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岳欣等: ""基于自适应的电液负载模拟器积分鲁棒控制"", 《液压与气动》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520803A (en) * 2018-08-10 2019-11-29 曾喆昭 A kind of wisdom PID control method
CN110520803B (en) * 2018-08-10 2022-10-18 曾喆昭 Intelligent PID control method
CN110673473B (en) * 2019-09-09 2022-06-28 南京理工大学 Error symbol integral robust self-adaptive control method of biaxial coupling tank gun system
CN110673472A (en) * 2019-09-09 2020-01-10 南京理工大学 Adaptive robust control method based on neural network compensation dead zone inversion error
CN110888320A (en) * 2019-09-09 2020-03-17 南京理工大学 Self-adaptive robust control method based on double-electric-cylinder synchronous motion error modeling
CN110888320B (en) * 2019-09-09 2022-06-28 南京理工大学 Self-adaptive robust control method based on double-electric-cylinder synchronous motion error modeling
CN110673473A (en) * 2019-09-09 2020-01-10 南京理工大学 Error sign integral robust self-adaptive control method of two-axis coupling tank gun system
CN110673472B (en) * 2019-09-09 2022-06-28 南京理工大学 Adaptive robust control method based on neural network compensation dead zone inversion error
CN110928182A (en) * 2019-11-05 2020-03-27 南京理工大学 Robust self-adaptive repetitive control method of hydraulic servo system based on state estimation
CN110865540A (en) * 2019-11-28 2020-03-06 曾喆昭 Mutual coupling PI cooperative control theory new method
CN111708276A (en) * 2020-04-30 2020-09-25 南京理工大学 Adaptive robust control method based on observation error compensation of linear state observer
CN111708276B (en) * 2020-04-30 2022-12-02 南京理工大学 Adaptive robust control method based on observation error compensation of linear state observer
CN111913391B (en) * 2020-08-12 2022-05-24 深圳职业技术学院 Method for stabilizing self-adaptive control discrete time non-minimum phase system
CN111913391A (en) * 2020-08-12 2020-11-10 深圳职业技术学院 Method for stabilizing self-adaptive control discrete time non-minimum phase system
CN112769364A (en) * 2020-12-14 2021-05-07 南京理工大学 Fast self-adaptive anti-interference control method of direct current motor servo system
CN112769364B (en) * 2020-12-14 2022-08-16 南京理工大学 Fast self-adaptive anti-interference control method of direct current motor servo system
CN114545779A (en) * 2022-03-08 2022-05-27 南京理工大学 Self-adjustment integral robust control method of rapid erecting system based on direct drive pump
CN114545779B (en) * 2022-03-08 2023-11-03 南京理工大学 Self-adjusting integral robust control method of quick erection system based on direct-driven pump
CN115047760A (en) * 2022-05-26 2022-09-13 南京理工大学 FTAIRTSM control method for DC motor servo system
CN115047760B (en) * 2022-05-26 2023-10-31 南京理工大学 FTAIRTSM control method for direct current motor servo system

Also Published As

Publication number Publication date
CN107121932B (en) 2020-06-19

Similar Documents

Publication Publication Date Title
CN107121932A (en) Motor servo system error symbol integrates Robust Adaptive Control method
CN104111607B (en) A kind of control method of the electric machine position servo system considering input delay
CN104238361B (en) Adaptive robust position control method and system for motor servo system
CN103051274B (en) Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor
CN104360635A (en) Anti-interference control method of motor position servo system
CN105515492B (en) Motor servo system progressive tracking control method when a kind of input-bound
CN106483844B (en) The implementation method of electrohydraulic servo system adaptive location controller based on non linear robust
CN104252134A (en) Method for controlling position of self-adaptive robust of motor servo system based on extended state observer
CN107561935A (en) Motor position servo system friciton compensation control method based on multilayer neural network
CN108303885A (en) A kind of motor position servo system self-adaptation control method based on interference observer
CN104333280A (en) Robustness adaptive control (RAC) method of direct driving motor system
CN104614984B (en) High-precision control method of motor position servo system
CN104065322A (en) Method for controlling output feedback of motor position servo system
CN105171758A (en) Self-adaptive finite time convergence sliding-mode control method of robot
CN102385342A (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN104965412B (en) The ADAPTIVE ROBUST output feedback ontrol method of controlledization flat pad
CN104270053A (en) Output feedback control method of motor position servo system based on state estimation
CN106100469B (en) Implementation method based on adaptive motor servo system robust position controller
CN105700348A (en) Electric turntable position tracking control method based on disturbance upper bound estimation
CN102591203B (en) Direct nerve network control method based on differentiator for servo motor
CN105867118A (en) Improved motor position servo system adaptive robustness control method
CN108155833A (en) Consider the motor servo system Asymptotic Stability control method of electrical characteristic
CN104965413B (en) The friciton compensation self-adaptation control method of controlledization flat pad
CN109709807B (en) Self-adaptive neural network control method and device based on friction compensation
CN105093935A (en) Sliding-model control method for compensating a model uncertainty of a direct drive motor system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200619