CN107121684B - 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法 - Google Patents

一种基于残差卡方检验法的gps诱骗识别和阈值决策方法 Download PDF

Info

Publication number
CN107121684B
CN107121684B CN201710299472.5A CN201710299472A CN107121684B CN 107121684 B CN107121684 B CN 107121684B CN 201710299472 A CN201710299472 A CN 201710299472A CN 107121684 B CN107121684 B CN 107121684B
Authority
CN
China
Prior art keywords
gps
threshold value
identification
value
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710299472.5A
Other languages
English (en)
Other versions
CN107121684A (zh
Inventor
王养柱
韩震
丁典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710299472.5A priority Critical patent/CN107121684B/zh
Publication of CN107121684A publication Critical patent/CN107121684A/zh
Application granted granted Critical
Publication of CN107121684B publication Critical patent/CN107121684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,属于导航技术领域。所述方法包括以下几个步骤:步骤一,建立组合导航的松组合模型;步骤二,优化检验算法;步骤三,根据环境因素确定检验阈值,并定期更新阈值,利用优化后的检验法对GPS诱骗进行识别。本发明优化了基于松组合的残差卡方检验算法,降低了原算法的复杂度;优化了滤波模型,使模型对GPS误差信号和GPS信号变化率更加敏感。根据GPS误差信号和GPS信号变化率的响应特性可以确定检验阈值,据此检验GPS是否被诱骗,并可给出最小可检验的诱骗程度。本发明所用松组合模型的计算结果仅用于对GPS进行诱骗检测。

Description

一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法
技术领域
本发明涉及一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,属于导航技术领域。
背景技术
惯性导航系统自主性强,短时精度高,但是误差会随着任务耗时的增加而不断积累,最终导致导航结果发散。GPS精度高,使用简单,但是需要依赖卫星信号,易受电磁干扰。无人机常用的组合导航系统通常由惯性导航系统和GPS组成,利用GPS精度高的特性,来弥补长时间导航下惯导导航结果发散的缺点。如果GPS在工作时受到诱骗,组合导航的精度将会受到严重影响。目前,研究最为深入的诱骗方式为转发式诱骗。因此,有必要研究对GPS转发式诱骗的识别方法。
发明内容
本发明的目的是为了解决上述问题,提出一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,所述方法将对残差卡方检验法进行优化修改,然后用于对GPS转发式诱骗信号的识别。
本发明的一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,,具体包括以下几个步骤:
步骤一:建立组合导航的松组合模型。
步骤二:优化检验算法。
步骤三:根据环境因素确定检验阈值,并定期更新阈值,利用优化后的检验法对GPS诱骗进行识别。
本发明的优点在于:
(1)相较于原始残差卡方检验算法,计算量减小;
(2)可根据GPS信号的误差决定检验的阈值,以此降低了因误差引起的误判。并可给出最小可识别诱骗信号变化率。
附图说明
图1是本发明的方法流程图。
图2是未受诱骗时北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
图3是诱骗量为0.0002°/s时未优化的松组合模型的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
图4是诱骗量为0.00004°/s时未优化的松组合模型的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
图5是未受诱骗时优化的松组合模型的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
图6是诱骗量为0.0002°/s时经过优化的松组合模型的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
图7是诱骗量为0.00004°/s时经过优化的松组合模型的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明是一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,流程如图1所示,包括以下几个步骤:
步骤一:建立组合导航的松组合模型。
常见的松组合模型的状态量包括十八个分量:
Figure BDA0001283847670000021
其中,δL是纬度误差,δλ是经度误差,δh是高度误差,δVE是东向速度误差,δVN是北向速度误差,δVU是天向速度误差,
Figure BDA0001283847670000022
是俯仰角误差,
Figure BDA0001283847670000023
是滚转角误差,
Figure BDA0001283847670000024
是偏航角误差,εbxbybz和εrxryrz分别是三轴陀螺仪的常值漂移和一阶马尔科夫过程,
Figure BDA0001283847670000025
是三轴加速度计的一阶马尔科夫过程。而在利用残差卡方检验法对GPS诱骗进行识别的过程中,仅关注位置、速度状态量,而忽略姿态角误差、惯性元件模型误差参数。因此,可将状态分量缩减为六个:X=[δL δλ δh δVE δVN δVU]。因此,可列写出用于GPS诱骗识别的松组合滤波模型:
Figure BDA0001283847670000031
其中,F表示滤波模型的系统矩阵,具体参数为:
Figure BDA0001283847670000032
其中,VE是东向速度,VN是北向速度,VU是天向速度,L是纬度,R是地球半径,h是高度,ωie是地球自转角速率。
H为:
Figure BDA0001283847670000033
W是系统噪声矩阵,和陀螺仪、加速度计的误差有关;V是量测噪声矩阵,和GPS接收终端的环境、性能、卫星分布情况有关。这两矩阵为相互独立的高斯白噪声矩阵,方差分别为Q和R。
将第一个微分方程进行离散化,可得:
Xk=AXk-1+Wk (4)
其中,A为系统的一步状态转移矩阵,Wk为系统噪声矩阵,A为:
Figure BDA0001283847670000041
n为大于0的正整数 (5)
其中,I为维数与F相同的单位矩阵,T为滤波周期,对应不同的n值,矩阵A有不同的截断误差。
步骤二:优化检验算法。
原始的残差卡方检验法取系统状态量Xk/k-1,构建误差量ek
ek=Zk-HkXk/k-1 (6)
其中,Hk为量测矩阵,Zk表示实际测量所得的量测值。当GPS未受诱骗时,残差ek也基本符合零均值的高斯白噪声序列,可用来构建满足卡方分布的检验量。该残差向量的方差矩阵Sk为:
Figure BDA0001283847670000042
其中,Pk|k-1为状态向量的一步转移均方差矩阵,Rk为量测噪声矩阵。
故可设诱骗识别函数Dk为:
Figure BDA0001283847670000043
由序列统计特性可知,该识别函数服从以量测量维度为自由度的χ2分布。当GPS被诱骗后,残差ek就不再是高斯白噪声序列,因此识别函数的数值将会发生改变,可通过设置一定的阈值,来检验GPS是否发生了诱骗。但是,正常工作下的GPS信号因误差的影响,很可能会产生较大的识别结果,而较小的GPS诱骗量,很可能并不会使识别结果超过阈值。因此,阈值的选择决定了残差卡方检验法对诱骗的识别效果。
该算法在每次运算时,均要对残差向量的方差矩阵进行求逆,而该方差矩阵是一个n×n的矩阵,其中,n为量测量的维数。因此,该算法主要的运算量在求逆这一方面。于此同时,若选择的状态初始值接近于0的话,原算法在第一次运算时会产生极大的数据结果。
因此,为使算法不受初值的影响,且能够有效减少运算量,对算法进行优化。
首先,选取系统状态量
Figure BDA0001283847670000051
来构建误差量ek
ek=Zk-HkXk (9)
根据式(1)中的量测方程可知,式(10)所得的误差量相比于式(7)所得的误差量,更符合零均值的高斯白噪声序列。同时,由于使用了经过量测量加权而得的状态估计量,虽然检验法的最小可识别诱骗变化率将会增大,但这并不影响算法对GPS诱骗的识别能力。
在这种情况下,该残差向量的方差矩阵为:
Figure BDA0001283847670000052
其中,Kk是卡尔曼滤波中的增益矩阵。
因此,残差向量的方差矩阵Sk可取:
Sk=(I-HkKk)(HkPk/k-1Hk+R)(I-HkKk)T (11)
又因为,Pk和Rk是对称矩阵,所以Sk是对称矩阵,与其逆矩阵具有相同的对称性质,仅在数值上有所不同。令诱骗识别函数Dk为:
Figure BDA0001283847670000053
故可知新的诱骗识别函数仍然满足卡方分布特性,在对诱骗的识别性能上,与原识别函数相同。使用滤波后的状态量来构建残差量,避免了初值过小所造成的识别函数溢出的问题,同时,由于不用再去计算矩阵的逆,计算量大大减少。
同时,对松组合滤波模型进行优化。由于算法的目的是实现对GPS的诱骗识别,因此,对模型进行以下修改:
(1)引入速度信息,在滤波中使用速度信息来求取速度量测量,不使用GPS的速度信息;
(2)滤波后不再对姿态矩阵和方向余弦矩阵进行更新。
优化后的滤波模型对GPS的误差和变化率更加敏感,但单独的滤波结果存在严重的跳变,无法作为导航的结果。
步骤三:确定检验阈值,并定期更新阈值,利用优化后的滤波模型和检验算法对GPS诱骗进行识别。
(对于流程的描述说明)在建立松组合优化检验模型以及优化检验算法后,便可以对GPS进行监测识别。首先,需要确定是否已存在阈值,若还未设定阈值,则需要计算出阈值与最小可识别诱骗,以供检验算法使用;,若阈值已经完成设定但需要更新,则同样需要计算出最新的阈值和对应的最小可识别诱骗来取代原来的数据;若阈值已确定,且不需要更新,,则读取INS和GPS的信号数据以及其他辅助传感器所给出的速度信息,利用步骤一中建立的松组合模型估算出状态估计量,将状态估计量带入步骤二建立的优化检验算法中,可以计算出识别函数的具体数值,根据识别函数的数值,可以来判断GPS是否受到诱骗。这里给出一种判别方法:若在一定滤波周期内,识别函数的数值大于阈值,则可认为GPS被诱骗;若数值不大于阈值,则可认为GPS未被诱骗或诱骗信号的变化率过小。对于固定的阈值而言,存在最小可识别诱骗变化率。该变化率可通过线下计算获取准确的与阈值的对应关系,在线运行时,可根据阈值的大小查表估计。若识别任务完成,则终止算法,否则再次判断阈值是否需要更新,并重复获取INS和GPS信号数据等算法步骤。
(对于确定检验阈值的说明)确定检验阈值以及最小可识别诱骗的方法描述如下:对于GPS信号而言,既存在误差量,也可能存在诱骗量。因此,检验阈值必须能够大于误差量所引起的识别函数的响应。由于诱骗检测对导航数据的精度要求较低,在于短时间内经纬度变化一般小于0.1°(纬度约为11千米,经度约为11*cos(纬度)千米)的情况下,根据式(2)可知,系统可以视为时不变的。如果外界环境未发生突变,同一大小的噪声所引起的响应是不变的。同时,飞行速度所产生的GPS位置变化率在滤波过程中通过与SINS的位置信息做差可以予以剔除。
由于优化后的算法对随机噪声的响应和斜坡式诱骗的响应具有明显的特征,因此可以将GPS噪声所造成的响应的最大值作为诱骗识别的阈值。具体方法为:
1.初始对准阶段,可以通过由外部提供准确的GPS经纬度信息或者经过平均后的静基座GPS信息来作为经纬度的真值,取一定时间内的GPS输出信息,通过和真值对比可以确定GPS噪声的大小。将噪声最大值带入模型中,根据噪声的响应确定诱骗识别的阈值;
2.飞行阶段,在未检测出诱骗的条件下,取组已经过检验的GPS位置信息和INS解算位置信息进行做差并取均值,以此来作为真值,来确定该时段的GPS噪声信息,根据模型对噪声的响应来确定诱骗识别的阈值。
3.GPS噪声通常与卫星的分布情况,大气环境以及设备自身精度有关,也可以在线下进行提前估算。GPS变化率对应的响应也可以提前计算得出。在线运行且未检测出诱骗的条件下,利用环境信息对噪声进行评估后,可选取评估噪声所对应的已经估算好的阈值来对GPS信号进行诱骗识别。
(对于阈值更新的说明)在组合导航运行过程中,若环境发生变化,GPS信号的噪声情况也会发生改变。因此,需要定期对噪声情况进行估算,对阈值进行更新。阈值更新可以采用两种更新策略:1.固定周期更新。在一个阈值周期内,使用同一阈值进行诱骗识别,周期结束后,重新估计噪声情况,使用新估算的阈值代替原有阈值进行诱骗识别;2.变周期更新。若在一定时间区间内,诱骗识别函数的数值多次不连续不相关的超过阈值,可以根据不同的决策方法,比如取最大值或取中值来重新选取阈值。
实例:
在116.205443°E,39.586544°N处设置静止的GPS/INS组合导航系统,GPS的定位误差设为[-0.0001°,0.0001°],且不随时间发生变化;陀螺常值漂移:0.1度/小时;加速度计常值偏置:50ug;原始惯导数据率为100Hz;GPS数据率为20Hz。组合滤波的周期为0.1s。令诱骗信号仅影响纬度方向。
在64位Window7操作系统,E5504处理器上使用MATLAB 2015a进行算法仿真,原始的残差卡方检验法的运行耗时约为0.000222s,优化后的运行耗时约为0.000094s,可见优化后算法节约了大量的时间。
在无诱骗未优化模型的情况下,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图2所示。由图可知,北向速度误差分量因误差的存在在小范围内波动,位置误差分量基本在误差范围内随机波动,识别函数的数值也都小于8。
使用未优化的滤波模型,在第100秒时加入变化率为0.0002°/s的诱骗量,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图3所示。由图可知,检测向量北向速度分量在加入诱骗信号后发生明显改变,而检测向量纬度分量的变化较小。识别函数的数值也在诱骗发生后增大,随时间推移逐渐减少。可以通过设定合理的阈值对GPS诱骗进行识别。
使用未优化的滤波模型,在第100秒时加入变化率为0.00004°/s的诱骗量,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图4所示。由图可知,此时检验算法已无法识别诱骗。
使用优化后的滤波模型,在无诱骗的情况下,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图5所示。由图可知,北向速度误差分量因误差的存在在小范围内波动,位置误差分量基本在误差范围内随机波动,识别函数的数值也都小于6。
使用优化后的滤波模型,在第100秒时加入变化率为0.0002°/s的诱骗量,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图6所示。由图可知,由于GPS信号存在一定的变化率,检测向量纬度分量近似于增加了一个常值,该常值与信号的变化率对应,通过对误差的分析,可以得出较为合理的检测阈值。
使用优化后的滤波模型,在第100秒时加入变化率为0.00004°/s的诱骗量,滤波后组合导航的北向误差、检测向量北向速度分量、检测向量纬度分量、识别函数数值如图7所示。由图可知,相比于未优化的滤波模型,优化后的模型可以通过优化后的检验算法识别出变化率更小的GPS诱骗信号。

Claims (3)

1.一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,包括以下几个步骤:
步骤一:建立组合导航的松组合模型;
松组合模型的状态量为:
X=[δL δλ δh δVE δVN δVU]
其中,δL是纬度误差,δλ是经度误差,δh是高度误差,δVE是东向速度误差,δVN是北向速度误差,δVU是天向速度误差
则用于GPS诱骗识别的松组合滤波模型:
Figure FDA0002275119720000011
Figure FDA0002275119720000012
表示系统模型状态向量的导数,Z表示系统量测值;
其中,F表示滤波模型的系统矩阵,具体参数为:
Figure FDA0002275119720000021
其中,VE是东向速度,VN是北向速度,VU是天向速度,L是纬度,R是地球半径,h是高度,ωie是地球自转角速率;
H为:
Figure FDA0002275119720000022
W是系统噪声矩阵,V是量测噪声矩阵,这两矩阵为相互独立的高斯白噪声矩阵,方差分别为Q和r;
将系统误差状态矩阵进行离散化,可得:
Xk=AXk-1+Wk (4)
其中,Xk表示系统的n维状态向量;A为系统的一步状态转移矩阵,Wk为系统噪声矩阵,A为:
Figure FDA0002275119720000031
其中,I为维数与F相同的单位矩阵,T为滤波周期;
滤波后的校正采用反馈校正的方式;
步骤二:优化检验算法;
选取系统状态量
Figure FDA0002275119720000032
来构建误差量ek
ek=Zk-HkXk (9)
其中,Hk为量测矩阵,Zk表示实际测量所得的量测值;
残差向量的方差矩阵为:
E[(Zk-HkXk)(Zk-HkXk)T]=E[((I-HkKk)(Zk-HkXk/k-1))((I-HkKk)(Zk-HkXk/k-1))T]
=(I-HkKk)(HkPk/k-1Hk+R)(I-HkKk)T (10)
其中,Kk是卡尔曼滤波中的增益矩阵;Pk/k-1是一步预测方差矩阵;
因此,残差向量的方差矩阵Sk为:
Sk=(I-HkKk)(HkPk/k-1Hk+R)(I-HkKk)T (11)
令诱骗识别函数Dk为:
Figure FDA0002275119720000033
步骤三:确定检验阈值,并定期更新阈值,利用优化后的滤波模型和检验算法对GPS诱骗进行识别;
判断是否已存在阈值,若还未设定阈值,则需要计算出阈值与最小可识别诱骗,若阈值已经完成设定但需要更新,则同样需要计算出最新的阈值和对应的最小可识别诱骗来取代原来的数据;若阈值已确定,且不需要更新,则读取INS和GPS的信号数据以及其他辅助传感器所给出的速度信息,利用松组合模型估算出状态估计量,将状态估计量带入步骤二建立的优化检验算法中,可以计算出识别函数的具体数值,根据识别函数的数值,来判断GPS是否受到诱骗,若在一定滤波周期内,识别函数的数值大于阈值,则认为GPS被诱骗;若数值不大于阈值,则认为GPS未被诱骗或诱骗信号的变化率过小,若识别任务完成,则终止,否则再次判断阈值是否需要更新,并重复获取INS和GPS信号数据。
2.根据权利要求1所述的一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,所述的步骤三中,确定检验阈值以及最小可识别诱骗的方法为:
将GPS噪声所造成的响应的最大值作为诱骗识别的阈值,具体的:
(1)初始对准阶段,通过由外部提供准确的GPS经纬度信息或者经过平均后的静基座GPS信息作为经纬度的真值,取时间T内的GPS输出信息,通过和真值对比确定GPS噪声的大小,将噪声最大值带入模型中,根据噪声的响应确定诱骗识别的阈值;
(2)飞行阶段,在未检测出诱骗的条件下,取组已经过检验的GPS位置信息和INS解算位置信息进行做差并取均值,设为真值,确定该时段的GPS噪声信息,根据模型对噪声的响应确定诱骗识别的阈值;
(3)线下提前估算GPS噪声和GPS变化率对应的响应,在线运行且未检测出诱骗的条件下,利用环境信息对噪声进行评估后,选取评估噪声所对应的已经估算好的阈值对GPS信号进行诱骗识别。
3.根据权利要求1所述的一种基于残差卡方检验法的GPS诱骗识别和阈值决策方法,所述的步骤三中,阈值更新采用两种更新方法策略:
(1)固定周期更新:在一个阈值周期内,使用同一阈值进行诱骗识别,周期结束后,重新估计噪声情况,使用新估算的阈值代替原有阈值进行诱骗识别;
(2)变周期更新:若在一定时间区间内,诱骗识别函数的数值若干次不连续不相关的超过阈值,重新选取阈值。
CN201710299472.5A 2017-05-02 2017-05-02 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法 Active CN107121684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710299472.5A CN107121684B (zh) 2017-05-02 2017-05-02 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710299472.5A CN107121684B (zh) 2017-05-02 2017-05-02 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法

Publications (2)

Publication Number Publication Date
CN107121684A CN107121684A (zh) 2017-09-01
CN107121684B true CN107121684B (zh) 2020-03-17

Family

ID=59725113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710299472.5A Active CN107121684B (zh) 2017-05-02 2017-05-02 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法

Country Status (1)

Country Link
CN (1) CN107121684B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828628B (zh) * 2018-04-23 2021-04-27 厦门大学 一种欺骗信号检测方法
CN110146907B (zh) * 2018-12-19 2023-04-11 太原理工大学 一种基于消除残余相位和改进tlbo算法的卫星导航定位方法
CN110068839B (zh) * 2019-03-15 2023-04-28 中国人民解放军63601部队 基于数据统计特性的卫星导航接收机干扰检测方法
CN110906929B (zh) * 2019-12-12 2022-01-25 北京中科宇航探索技术有限公司 一种卫星异常数据识别方法及装置
CN111505669A (zh) * 2020-05-06 2020-08-07 苏州象天春雨科技有限公司 一种利用双天线的gnss欺骗检测方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167347A (en) * 1998-11-04 2000-12-26 Lin; Ching-Fang Vehicle positioning method and system thereof
CN102662187A (zh) * 2012-05-16 2012-09-12 山东大学 一种多模组合导航防诱骗装置及其工作方法
CN103592658A (zh) * 2013-09-30 2014-02-19 北京大学 多模卫星导航系统中基于选星算法的raim新方法
CN104297557B (zh) * 2014-10-08 2017-04-26 北京航空航天大学 一种适用于多飞行器自由飞行的联合导航自主完好性监测方法
CN105656594B (zh) * 2016-01-12 2019-04-30 杭州电子科技大学 基于信道差异的转发式gnss欺骗干扰检测方法

Also Published As

Publication number Publication date
CN107121684A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN107121684B (zh) 一种基于残差卡方检验法的gps诱骗识别和阈值决策方法
US10234292B2 (en) Positioning apparatus and global navigation satellite system, method of detecting satellite signals
US10746551B2 (en) Positioning apparatus and positioning method
US7643939B2 (en) Methods and systems for implementing an iterated extended Kalman filter within a navigation system
US7860651B2 (en) Enhanced inertial system performance
CN110779521A (zh) 一种多源融合的高精度定位方法与装置
US8024119B2 (en) Systems and methods for gyrocompass alignment using dynamically calibrated sensor data and an iterated extended kalman filter within a navigation system
Chiang et al. Assessment for INS/GNSS/odometer/barometer integration in loosely-coupled and tightly-coupled scheme in a GNSS-degraded environment
US7778111B2 (en) Methods and systems for underwater navigation
EP2927641A1 (en) Positioning apparatus comprising an inertial sensor and inertial sensor temperature compensation method
CN110057356B (zh) 一种隧道内车辆定位方法及装置
Wang et al. Enhanced multi-sensor data fusion methodology based on multiple model estimation for integrated navigation system
Martin et al. The Limits of In‐Run Calibration of MEMS Inertial Sensors and Sensor Arrays
Zhao et al. Adaptive two-stage Kalman filter for SINS/odometer integrated navigation systems
CN114415224B (zh) 一种复杂受限环境中车辆融合定位系统及方法
Wang et al. Attitude determination method by fusing single antenna GPS and low cost MEMS sensors using intelligent Kalman filter algorithm
Maliňák et al. Pure-inertial AHRS with adaptive elimination of non-gravitational vehicle acceleration
CN112697154A (zh) 一种基于矢量分配的自适应多源融合导航方法
CN113959433A (zh) 一种组合导航方法及装置
EP3047303A1 (en) Method and apparatus for determination of misalignment between device and vessel using radius of rotation
Turan Comparison of nonlinear filtering methods for terrain referenced aircraft navigation
CN113137975B (zh) 天文惯性组合导航的惯性校正方法、装置及电子设备
Alaeiyan et al. GPS/INS integration via faded memory Kalman filter
CN117310767A (zh) 组合导航方法
Dhital et al. Improving the reliability of personal navigation devices in harsh environments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant