CN107113749B - 用于功率控制的系统和方法 - Google Patents

用于功率控制的系统和方法 Download PDF

Info

Publication number
CN107113749B
CN107113749B CN201580053899.6A CN201580053899A CN107113749B CN 107113749 B CN107113749 B CN 107113749B CN 201580053899 A CN201580053899 A CN 201580053899A CN 107113749 B CN107113749 B CN 107113749B
Authority
CN
China
Prior art keywords
power level
frame
indication
target
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580053899.6A
Other languages
English (en)
Other versions
CN107113749A (zh
Inventor
容志刚
杨云松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201910280965.3A priority Critical patent/CN110113808A/zh
Publication of CN107113749A publication Critical patent/CN107113749A/zh
Application granted granted Critical
Publication of CN107113749B publication Critical patent/CN107113749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种在无线系统中进行通信的方法包含:接收指示用于发送数据包的资源的位置的资源调度信息、目标功率水平的指示和第一带宽的指示;接收第一发送功率水平的指示;根据所述目标功率水平、以及所述第一带宽和所述第一发送功率水平这两者中的至少一个,确定第二发送功率水平;以及在所述资源的所述位置处以所述第二发送功率水平发送所述数据包。

Description

用于功率控制的系统和方法
本发明要求2015年9月28日递交的发明名称为“用于功率控制的系统和方法(System and Method for Power Control)”的第14/868,031号美国非临时申请案的在先申请优先权,所述美国非临时申请案又要求2014年10月2日递交的发明名称为“用于功率控制的系统和方法(System and Method for Power Control)”的第62/059,030号美国临时申请案的在先申请优先权,该在先申请的内容如同全文复制一样以引入的方式并入本文本中。
技术领域
本发明大体上涉及数字通信,且更确切地说,涉及用于功率控制的系统和方法。
背景技术
随着具有WiFi连接能力的智能电话/平板计算机的数目持续增长,接入点(accesspoint,AP)和站点(station,STA)的密度变得越来越高,尤其是在城市区域中。高密度的AP和STA使得WiFi系统的效率降低,这是因为原始的WiFi系统是在假定低密度的AP和STA下设计的。举例来说,当前的增强型分布式信道访问(基于EDCA)媒体接入控制(media accesscontrol,MAC)方案将无法在具有高密度的AP和STA的环境中高效地工作。因此,在IEEE802.11中形成了被称作高效无线局域网(Wireless Local Area Network,WLAN)(HighEfficiency Wireless Local Area Network,HEW)的新研究组(Study Group,SG)以改进在高密度环境中的系统性能。由于HEW SG的研究,在2014年5月形成了被称作TGax的任务组。
发明内容
实例实施例提供了一种用于功率控制的系统和方法。
根据一个实例实施例,提供一种在无线系统中进行通信的方法。所述方法包含:通过站点接收指示用于发送数据包的资源的位置的资源调度信息、目标功率水平的指示、第一带宽的指示;通过站点接收第一发送功率水平的指示;通过站点根据目标功率水平、以及第一带宽和第一发送功率水平这两者中的至少一个,确定第二发送功率水平;并且通过站点在资源的位置处以第二发送功率水平发送数据包。
根据另一实例实施例,提供一种在无线系统中进行通信的方法。所述方法包含:通过接入点发送指示用于发送数据包的资源的位置的资源分配信息、目标功率水平的指示以及第一带宽的指示;通过接入点发送第一发送功率水平的指示;并且通过接入点在资源的位置处接收数据包。
根据另一实例实施例,提供一种用于执行功率控制的站点。所述站点包含接收器、以操作方式耦合到接收器的处理器、以及以操作方式耦合到处理器的发送器。接收器接收指示用于发送数据包的资源的位置的资源调度信息、目标功率水平的指示和第一带宽的指示,并且接收第一发送功率水平的指示。处理器根据目标功率水平、以及第一带宽和第一发送功率水平这两者中的至少一个,确定第二发送功率水平。发送器在资源的位置处以第二发送功率水平发送数据包。
根据另一实例实施例,提供一种接入点。接入点包含发送器和以操作方式耦合到发送器的接收器。发送器发送指示用于发送数据包的资源的位置的资源分配信息、目标功率水平的指示和第一带宽的指示,并且发送第一发送功率水平的指示。接收器在资源的位置处接收数据包。
前述实施例的实践通过潜在动态系统带宽实现了异步通信系统中的发送功率控制。
附图说明
为了更完整地理解本发明及其优点,现在参考下文结合附图进行的描述,其中:
图1示出根据本文中描述的实例实施例的实例无线通信系统;
图2示出根据本文中描述的实例实施例的实例信道接入时序图;
图3A示出根据本文中描述的实例实施例在通过AP进行功率控制的第一实例实施例中发生的操作的流程图;
图3B示出根据本文中描述的实例实施例在通过站点进行功率控制的第一实例实施例中发生的操作的流程图;
图4示出根据第一实例实施例当AP和站点参与功率控制时在这两个装置之间的消息交换图;
图5A示出根据本文中描述的实例实施例在通过AP进行功率控制的第二实例实施例中发生的操作的流程图;
图5B示出根据本文中描述的实例实施例在通过站点进行功率控制的第二实例实施例中发生的操作的流程图;
图6A示出根据本文中描述的实例实施例在通过AP进行功率控制的第三实例实施例中发生的操作的流程图;
图6B示出根据本文中描述的实例实施例在通过站点进行功率控制的第三实例实施例中发生的操作的流程图;以及
图7是可以用于实施本文中所公开的装置和方法的处理系统的方框图。
具体实施方式
以下详细论述当前实例实施例的操作和其结构。但应了解,本发明提供的许多适用发明概念可实施在多种具体环境中。所论述的具体实施例仅仅说明本发明的具体结构以及用于操作本发明的具体方式,而不应限制本发明的范围。
一个实施例涉及功率控制。举例来说,站点接收指示用于发送数据包的资源的位置的资源调度信息、目标功率水平的指示以及第一带宽的指示;接收第一发送功率水平的指示;根据目标功率水平、以及第一带宽和第一发送功率水平这两者中的至少一个,确定第二发送功率水平;并且在资源的位置处以第二发送功率水平发送数据包。
将相对于特定情境中的实例实施例来描述实施例,特定情境即与潜在动态系统带宽异步但是使用功率控制来改进通信性能的通信系统。实施例可以应用于标准兼容的通信系统和非标准兼容的通信系统,标准兼容的通信系统例如与IEEE 802.11等技术标准兼容的那些通信系统,非标准兼容的通信系统是与潜在动态系统带宽异步但是使用功率控制来改进通信性能的通信系统。
图1示出实例无线通信系统100。无线通信系统100包含接入点(access point,AP)105,所述接入点服务于一个或多个站点,例如,站点(station,STA)110至116,方法是通过接收源自站点的通信且随后转发所述通信至通信的既定目的地,或接收目的地为站点的通信且随后转发所述通信至通信的既定站点。除通过AP 105通信之外,一些站点可彼此直接通信。作为示意性实例,站点116可以直接发送到站点118。尽管应理解通信系统可采用能够与多个站点通信的多个AP,但是为简单起见仅示出了一个AP和多个站点。
发送到站点和/或从站点发送发生在共享无线信道上。WLAN利用载波侦听多址访问/冲突避免(carrier sense multiple access with collision avoidance,CSMA/CA),其中希望发送的站点需要在它能够发送之前竞争对无线信道的接入。站点可以使用网络分配矢量(network allocation vector,NAV)竞争对无线信道的接入。NAV可以设置成第一值以表示无线信道忙,且设置成第二值以表示无线信道闲。可以根据物理载波侦听和/或从其它站点和/或AP的发送的接收通过站点设置NAV。因此,竞争对无线信道的接入可能需要站点花费大量的时间,由此降低无线信道利用率和总体效率。此外,如果竞争接入的站点的数目有可能增加,竞争对无线信道的接入会变得困难。
图2示出实例信道接入时序图200。第一迹线205表示第一站点(STA1)的信道接入,第二迹线207表示第二站点(STA 2)的信道接入,并且第三迹线209表示第三站点(STA 3)的信道接入。短帧间间隔(short inter-frame space,SIFS)具有16微秒的持续时间,点协调功能(point coordination function,PCF)帧间间隔(point coordination functioninter-frame space,PIFS)具有25微秒的持续时间,而分布式帧间间隔(distributedinter-frame space,DIFS)可持续的时间长于SIFS或PIFS中的任一个。退避周期可以是随机持续时间。因此,当存在尝试执行AP/网络发现的大量站点时主动扫描可能无法提供最佳方案。
在3GPP LTE兼容通信系统等蜂窝式通信系统中,正交频分多址接入(orthogonalfrequency division multiple access,OFDMA)已经显示出能够在高密度环境中提供稳固性能。OFDMA具有通过在通信系统带宽的不同部分上携载来自不同用户的业务而同时支持多个用户的能力。一般而言,OFDMA可以更有效地支持大量用户,尤其是当来自个别用户的数据业务较低时。具体来说,如果来自一个用户的业务无法填充全部通信系统带宽,OFDMA可以通过利用未使用的带宽来携载来自其它用户的发送而避免浪费频率资源。随着通信系统带宽继续变宽,利用未使用的带宽的能力会变得至关重要。
类似地,上行链路多用户多输入多输出(uplink multi-user multiple inputmultiple output,UL MU-MIMO)技术也已用于蜂窝式通信系统中,例如,3GPP LTE,以增强通信系统性能。UL MU-MIMO允许多个用户同时在相同时频资源上发送,其中发送在空间上间隔开(即,在不同空间流上)。
为了支持OFDMA和UL MU-MIMO,在AP接收器处来自多个站点的接收信号的功率应该在适当水平处,如在以下实例中所示。对于UL MU-MIMO,在相同时频资源上来自多个站点的接收信号的功率差应该在合理的范围内。否则的话,如果差值过大,那么来自较强的接收信号的干涉将压倒较弱的一个,使得UL MU-MIMO不可工作。对于OFDMA,由于实施方案不准确,所以存在从一个资源单元泄漏到另一个的干涉,尤其是针对那些彼此邻近的资源单元。因此同样重要的是将来自多个站点的接收信号的功率差维持在合理的范围内以避免较弱的一个被较强的一个压倒。
可以利用UL发送功率控制以确保在AP接收器处来自多个STA的接收信号的功率在适当水平处。UL功率控制还有助于控制重叠基本服务集(overlapping basic serviceset,OBSS)当中的干扰。
在LTE中,UL发送功率控制包含闭环和开环功率控制两者。在闭环功率控制中,增强型Node B(enhanced Node B,eNB)发送功率控制命令以指示UE增大或减小其UL发送功率。在开环功率控制中,UE基于下行链路(downlink,DL)参考信号(reference signal,RS)测量来测量eNB与其本身之间的路径损耗(path loss,PL),并且根据所测量的PL和其它因子调节其UL发送功率,所述其它因子例如所分配的UL资源的大小和调制译码方案(modulation coding scheme,MCS)等。
然而,在11ax等Wi-Fi系统中,上述UL功率控制方案可能不起作用。Wi-Fi系统是异步的,不存在周期性UL控制信道以使得AP能够执行UL接收信号测量并且相应地产生闭环功率控制命令。在LTE中,在系统带宽和DL RS功率通常固定的情况下,PL测量是简单明了的,通过比较DL RS的发送信号功率和接收信号功率来完成。在Wi-Fi系统中,系统带宽可以是动态的,例如,从20MHz到80MHz改变。由于可以不需要站点来监测整个系统带宽,所以测量PL不是简单明了的。
根据实例实施例,通过AP发送到站点的帧包含资源分配以及下行链路发送的指示。资源分配包含指示用于分配到站点的上行链路发送的资源的信息(例如,频率资源分配)以及目标上行链路接收功率。下行链路发送的指示可以包含针对由AP进行的发送的下行链路发送功率水平的指示,以及总下行链路带宽的指示。
图3A示出在通过AP进行功率控制的第一实例实施例中发生的操作300的流程图。操作300可指示根据第一实例实施例当AP参与功率控制时在AP中发生的操作。
操作300通过AP发送帧而开始,所述帧例如触发帧,包含资源分配以及下行链路发送的指示(方框305)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。下行链路发送的指示可以包含:包含帧的下行链路发送的下行链路发送功率水平PDL_TX_TOTAL的指示;以及包含帧的下行链路发送的总下行链路带宽BWDL_TOTAL的指示。应注意,下行链路发送可以包含与帧占据的带宽相比更多的带宽。作为一个实例,帧可以20MHz的带宽发送,而总下行链路带宽是80MHz。其余的60MHz的带宽可以用于携载其它下行链路帧。AP接收如在触发帧的资源分配中所指示的帧(方框310)。
图3B示出在通过站点进行功率控制的第一实例实施例中发生的操作350的流程图。操作350可指示根据第一实例实施例当站点参与功率控制时在站点中发生的操作。
操作350通过站点接收帧而开始,所述帧例如触发帧,包含资源分配以及下行链路发送的指示(方框355)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。下行链路发送的指示可以包含:包含帧的下行链路发送的下行链路发送功率水平PDL_TX_TOTAL的指示;以及包含帧的下行链路发送的总下行链路带宽BWDL_TOTAL的指示。应注意,下行链路发送可以包含与帧占据的带宽相比更多的带宽。作为一个实例,帧可以20MHz的带宽发送,而总下行链路带宽是80MHz。其余的60MHz的带宽可以用于携带携载下行链路帧。
站点测量帧的下行链路接收功率PDL_RX(方框360)。仅在由帧占据的带宽中测量下行链路接收功率。站点根据下行链路接收功率PDL_RX导出AP与站点之间的路径损耗(方框365)。路径损耗可以是下行链路发送功率与下行链路接收功率之间的差值。作为示意性实例,路径损耗可以表示为
路径损耗=PDL_TX_TOTAL+10*log10(BWDL/BWDL_TOTAL)-PDL_RX
其中BWDL是帧的带宽,并且10*log10(BWDL/BWDL_TOTAL)是当下行链路发送中的功率密度在整个下行链路带宽上恒定时使用的比例因子。
站点根据路径损耗和站点的最大上行链路发送功率PUL_TX_MAX确定上行链路发送功率PUL_TX(方框370)。作为示意性实例,上行链路发送功率可表示为
PUL_TX=min(PUL_TX_MAX,PUL_RX_TARGET+路径损耗),
其中min()是一个最小函数,用于返回其输入元素的最小值。站点在等于PUL_TX的上行链路发送功率下根据上行链路调度信息在上行链路中进行发送(方框375)。上行链路中的发送可以在下行链路帧结束之后的短帧间间隔(short interframe space,SIFS)中发生。
图4示出根据第一实例实施例当AP 405和站点410参与功率控制时在这两个装置之间的消息交换图。AP 405确定站点的上行链路资源分配以及对应的目标上行链路接收功率(方框415)。AP 405在下行链路中发送帧以及下行链路发送的指示,所述帧携载上行链路调度信息(事件420)。站点410接收帧并测量帧的下行链路接收功率、导出路径损耗并且确定上行链路发送功率(方框425)。站点410在上行链路发送功率下根据上行链路调度信息在上行链路中进行发送(事件430)。
作为示意性实例,考虑站点从AP接收帧的情况。出于讨论的目的,假定站点测量帧的下行链路接收功率PDL_RX为-60dBm,帧以20MHz的带宽携载并包含上行链路调度信息,站点的最大上行链路发送功率是15dBm。帧还包含总下行链路带宽是80MHz的指示、下行链路发送功率是23dBm以及目标上行链路接收功率是-67dBm的指示。站点可以确定路径损耗为
路径损耗=PDL_TX_TOTAL+10*log10(BWDL/BWDL_TOTAL)-PDL_RX
路径损耗=23dBm+10*log10(20MHz/80MHz)-(-60dBm),
路径损耗=77dB。
站点可随后导出上行链路发送功率为
PUL_TX=min(PUL_TX_MAX,PUL_RX_TARGET+路径损耗),
PUL_TX=min(15dBm,-67dBm+77dB),
PUL_TX=10dBm。
因此,在SIFS中在帧的结束之后,站点可以在上行链路调度信息中指示的一个或多个资源上以10dBm的上行链路发送功率开始上行链路中的发送。
根据实例实施例,在其中总下行链路发送功率并非跨越总下行链路带宽平均分布的情况中,帧包含针对仅用于发送帧的带宽的下行链路发送功率而不是针对整个带宽的下行链路发送功率。
图5A示出在通过AP进行功率控制的第二实例实施例中发生的操作500的流程图。操作500可指示根据第二实例实施例当AP参与功率控制时在AP中发生的操作。
操作500通过AP发送帧而开始,所述帧例如触发帧,包含资源分配以及下行链路发送的指示(方框505)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。下行链路发送的指示可以包含帧的下行链路发送功率水平PDL_TX的指示。应注意,下行链路发送可以包含与帧占据的带宽相比更多的带宽。作为一个实例,帧可以20MHz的带宽发送,而总下行链路带宽是80MHz。其余的60MHz的带宽可以用于携载其它下行链路帧。不同于第一实例实施例,下行链路发送中的功率密度不是恒定的。因此,AP指示帧的发送功率水平。AP接收如在触发帧的资源分配中所指示的帧(方框510)。
图5B示出在通过站点进行功率控制的第二实例实施例中发生的操作550的流程图。操作550可指示根据第二实例实施例当站点参与功率控制时在站点中发生的操作。
操作550通过站点接收帧而开始,所述帧例如触发帧,包含资源分配以及下行链路发送的指示(方框555)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。帧还包含下行链路发送的指示。下行链路发送的指示可以包含帧的下行链路发送功率水平PDL_TX的指示。
站点测量帧的下行链路接收功率PDL_RX(方框560)。仅在由帧占据的带宽中测量下行链路接收功率。站点根据下行链路接收功率PDL_RX导出AP与站点之间的路径损耗(方框565)。路径损耗可以是下行链路发送功率与下行链路接收功率之间的差值。作为示意性实例,路径损耗可以表示为
路径损耗=PDL_TX-PDL_RX
因为下行链路发送的功率密度不是恒定的,所以帧的功率水平可能不同于下行链路发送的其它部分的功率水平。
站点根据路径损耗和站点的最大上行链路发送功率PUL_TX_MAX确定上行链路发送功率PUL_TX(方框570)。作为示意性实例,上行链路发送功率可表示为
PUL_TX=min(PUL_TX_MAX,PUL_RX_TARGET+路径损耗),
其中min()是一个最小函数,用于返回其输入元素的最小值。站点在等于PUL_TX的上行链路发送功率下根据上行链路调度信息在上行链路中进行发送(方框575)。上行链路中的发送可以在下行链路帧结束之后的SIFS中发生。
根据实例实施例,由AP发送到站点的帧包含资源分配,但是并不包含下行链路发送功率或针对用于发送帧的带宽的下行链路发送功率的指示,所述指示在不同的帧中发送。在下行链路发送功率或针对用于发送帧的带宽的下行链路发送功率在延长的时间量仍然相对恒定的情况中,可以通过消除总下行链路发送功率或针对用于发送帧的带宽的下行链路发送功率的指示而减少通信开销。总下行链路发送功率或针对用于发送帧的带宽的下行链路发送功率的指示可携载在系统信息帧中,例如,信标帧中。在触发帧等另一帧中发送资源分配(包含指示针对分配到站点的上行链路发送的资源(例如,频率资源分配)以及目标上行链路接收功率的信息)。
图6A示出在通过AP进行功率控制的第三实例实施例中发生的操作600的流程图。操作600可指示根据第三实例实施例当AP参与功率控制时在AP中发生的操作。
操作600以AP发送第一帧开始,所述第一帧例如系统信息帧,包含下行链路发送功率水平的指示(方框605)。下行链路发送功率水平可以是针对整个下行链路发送(例如,当整个下行链路发送的功率密度是恒定的时)或针对用于发送第一帧的带宽(例如,当下行链路发送的功率密度在带宽上不是恒定的时)。AP发送第二帧,例如,触发帧,包含资源分配以及下行链路发送的指示(方框610)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。下行链路发送的指示可以包含总下行链路带宽BWDL_TOTAL的指示。AP接收如在触发帧的资源分配中所指示的帧(方框615)。
图6B示出在通过站点进行功率控制的第三实例实施例中发生的操作650的流程图。操作650可指示根据第三实例实施例当站点参与功率控制时在站点中发生的操作。
操作650以站点接收第一帧开始,所述第一帧例如系统信息帧,包含下行链路发送功率水平的指示(方框655)。因为下行链路发送功率水平保持相对恒定,所以可能没有必要在每个下行链路发送中包含它,由此减少通信开销。站点接收第二帧,例如,触发帧,包含资源分配以及下行链路发送的指示(方框660)。资源分配包含上行链路调度信息,例如,用于分配到站点的上行链路发送的资源的指示(例如,一个或多个频率资源位置)。上行链路调度信息还包含针对站点的目标上行链路接收功率PUL_RX_TARGET的指示。帧还包含下行链路发送的指示。下行链路发送的指示可以含有包含帧的下行链路发送的总下行链路带宽BWDL_TOTAL的指示。
站点测量帧的下行链路接收功率PDL_RX(方框665)。仅在由帧占据的带宽中测量下行链路接收功率。站点根据下行链路接收功率PDL_RX导出AP与站点之间的路径损耗(方框670)。路径损耗可以是下行链路发送功率与下行链路接收功率之间的差值。作为示意性实例,路径损耗可以表示为
路径损耗=PDL_TX_TOTAL+10*log10(BWDL/BWDL_TOTAL)-PDL_RX
其中BWDL是帧的带宽,并且10*log10(BWDL/BWDL_TOTAL)是当下行链路发送中的功率密度在整个下行链路带宽上恒定时使用的比例因子。
站点根据路径损耗和站点的最大上行链路发送功率PUL_TX_MAX确定上行链路发送功率PUL_TX(方框675)。作为示意性实例,上行链路发送功率可表示为
PUL_TX=min(PUL_TX_MAX,PUL_RX_TARGET+路径损耗),
其中min()是一个最小函数,用于返回其输入元素的最小值。站点在等于PUL_TX的上行链路发送功率下根据上行链路调度信息在上行链路中进行发送(方框680)。上行链路中的发送可以在下行链路帧结束之后的SIFS中发生。
根据实例实施例,有可能组合本文中呈现的两个或更多个实例功率控制技术。作为示意性实例,在包含帧的下行链路发送的总下行链路带宽并非恒定而是随时间推移保持相对不变的情况中,有可能含有包含系统信息帧中的帧的下行链路发送的总下行链路带宽的指示(第二实例功率控制技术和第三实例功率控制技术的组合)。
图7是处理系统700的方框图,该处理系统可以用来实现本文公开的装置和方法。在一些实施例中,处理系统700包括UE。特定装置可利用所有所示的组件或所述组件的仅一子集,且装置之间的集成程度可能不同。此外,装置可以包括组件的多个实例,例如多个处理单元、处理器、存储器、发送器、接收器等。处理系统可以包括配备一个或多个输入/输出装置,例如人机接口715(包括扬声器、麦克风、鼠标、触摸屏、按键、键盘、打印机等)、显示器710等的处理单元705。处理单元可以包括中央处理器(central processing unit,CPU)720、存储器725、大容量存储器装置730、视频适配器735以及连接至总线745的I/O接口740。
总线745可以是任意类型的若干总线架构中的一个或多个,包括存储总线或存储控制器、外设总线、视频总线等等。所述CPU 720可包括任何类型的电子数据处理器。存储器725可包括任意类型的系统存储器,例如静态随机存取存储器(static random accessmemory,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步DRAM(synchronous DRAM,SDRAM)、只读存储器(read-only memory,ROM)或其组合等等。在实施例中,存储器725可包括在开机时使用的ROM以及在执行程序时使用的存储程序和数据的DRAM。
大容量存储器装置730可包括任意类型的存储装置,其用于存储数据、程序和其它信息,并使这些数据、程序和其它信息通过总线745访问。大容量存储器装置730可包括如下项中的一种或多种:固态磁盘、硬盘驱动器、磁盘驱动器、光盘驱动器等等。
视频适配器735和I/O接口740提供接口以将外部输入和输出装置耦合到处理单元700。如图所示,输入和输出装置的示例包括耦合到视频适配器735的显示器710和耦合到I/O接口740的鼠标/键盘/打印机组合715。其它装置可以耦合到处理器单元700,并且可以使用额外或更少的接口卡。例如,可使用如通用串行总线(Universal Serial Bus,USB)(未示出)等串行接口将接口提供给打印机。
处理单元800还包括一个或多个网络接口750,网络接口750可包括以太网电缆等有线链路,和/或到接入节点或者不同的网络755的无线链路。网络接口750允许处理单元700通过这些网络755与远程单元通信。例如,网络接口750可以通过一个或多个发送器/发送天线以及一个或多个接收器/接收天线提供无线通信。在一个实施例中,处理单元700耦合到局域网或广域网755上以用于数据处理以及与远程装置通信,所述远程装置例如其它处理单元、因特网、远程存储设施或其类似者。
虽然已详细地描述了本发明及其优点,但是应理解,可以在不脱离如所附权利要求书所界定的本发明的精神和范围的情况下对本发明做出各种改变、替代和更改。

Claims (26)

1.一种在Wi-Fi系统中进行通信的方法,其特征在于,所述方法包括:
站点接收一个下行传输,所述下行传输包括一个帧,所述帧中包括用于发送上行数据包的资源的位置的指示、目标功率水平的指示以及第一发送功率水平的指示,其中,所述目标功率水平的指示用于指示所述上行数据包的目标上行接收功率,所述第一发送功率水平的指示用于指示所述帧的发送功率;
所述站点根据所述目标功率水平和所述第一发送功率水平,确定第二发送功率水平;以及
所述站点在所述资源的所述位置处以所述第二发送功率水平发送所述上行数据包;
其中,所述站点根据所述目标功率水平和所述第一发送功率水平,确定所述第二发送功率水平包括根据:
PUL_TX=PUL_RX_TARGET+PL和PL=PDL_TX-PDL_RX来确定所述第二发送功率水平,
其中PUL_TX是所述第二发送功率水平,PUL_RX_Target是所述目标功率水平,PL是路径损耗,PDL_TX是所述第一发送功率水平,PDL_RX是所述帧的接收功率水平。
2.根据权利要求1所述的方法,其特征在于,所述帧为触发帧。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:所述站点测量所述帧的接收功率水平PDL_RX
4.根据权利要求1所述的方法,其特征在于,所述帧中还包括第一带宽的指示。
5.根据权利要求4所述的方法,其特征在于,所述第一带宽为总下行链路带宽。
6.根据权利要求1所述的方法,其特征在于,所述帧为IEEE 802.11触发帧。
7.一种在Wi-Fi系统中进行通信的方法,其特征在于,所述方法包括:
接入点发送一个下行传输,所述下行传输包括一个帧,所述帧中包括用于发送上行数据包的资源的位置的指示、目标功率水平的指示以及第一发送功率水平的指示,其中,所述目标功率水平的指示用于指示所述上行数据包的目标上行接收功率,所述第一发送功率水平的指示用于指示所述帧的发送功率;以及
所述接入点在所述资源的所述位置处接收以第二发送功率水平发送的所述上行数据包,其中,所述第二发送功率水平是根据PUL_TX=PUL_RX_TARGET+PL和PL=PDL_TX-PDL_RX来确定的,其中,PUL_TX是所述第二发送功率水平,PUL_RX_Target是所述目标功率水平,PL是路径损耗,PDL_TX是所述第一发送功率水平,PDL_RX是所述帧的接收功率水平。
8.根据权利要求7所述的方法,其特征在于,所述帧为触发帧。
9.根据权利要求8所述的方法,其特征在于,所述帧为IEEE 802.11触发帧。
10.根据权利要求7所述的方法,其特征在于,所述帧中还包括第一带宽的指示。
11.根据权利要求10所述的方法,其特征在于,所述第一带宽为总下行链路带宽。
12.一种用于在Wi-Fi系统中执行功率控制的站点,其特征在于,所述站点包括:
接收器,其用于接收一个下行传输,所述下行传输包括一个帧,所述帧中包括用于发送上行数据包的资源的位置的指示、目标功率水平的指示以及第一发送功率水平的指示,其中,所述目标功率水平的指示用于指示所述上行数据包的目标上行接收功率,所述第一发送功率水平的指示用于指示所述帧的发送功率;
处理器,其与所述接收器耦合,所述处理器用于根据所述目标功率水平和所述第一发送功率水平,确定第二发送功率水平;以及
发送器,其与所述处理器耦合,所述发送器用于在所述资源的所述位置处以所述第二发送功率水平发送所述上行数据包;
其中,所述处理器用于根据所述目标功率水平和所述第一发送功率水平,确定所述第二发送功率水平包括所述处理器用于根据:
PUL_TX=PUL_RX_TARGET+PL和PL=PDL_TX-PDL_RX来确定所述第二发送功率水平,
其中PUL_TX是所述第二发送功率水平,PUL_RX_Target是所述目标功率水平,PL是路径损耗,PDL_TX是所述第一发送功率水平,PDL_RX是所述帧的接收功率水平。
13.根据权利要求12所述的站点,其特征在于,所述帧为触发帧。
14.根据权利要求12所述的站点,其特征在于,所述接收器还用于测量所述帧的接收功率水平PDL_RX
15.根据权利要求12所述的站点,其特征在于,所述帧中还包括第一带宽的指示。
16.根据权利要求15所述的站点,其特征在于,所述第一带宽为总下行链路带宽。
17.根据权利要求12-16任一所述的站点,其特征在于,所述帧为IEEE 802.11触发帧。
18.一种Wi-Fi系统中的接入点,其特征在于,包括:
发送器,其用于发送一个下行传输,所述下行传输包括一个帧,所述帧中包括用于发送上行数据包的资源的位置的指示、目标功率水平的指示以及第一发送功率水平的指示,其中,所述目标功率水平的指示用于指示所述上行数据包的目标上行接收功率,所述第一发送功率水平的指示用于指示所述帧的发送功率;以及
接收器,其与所述发送器耦合,所述接收器用于在所述资源的所述位置处接收以第二发送功率水平发送的所述上行数据包,其中,所述第二发送功率水平是根据PUL_TX=PUL_RX_TARGET+PL和PL=PDL_TX-PDL_RX来确定的,其中,PUL_TX是所述第二发送功率水平,PUL_RX_Target是所述目标功率水平,PL是路径损耗,PDL_TX是所述第一发送功率水平,PDL_RX是所述帧的接收功率水平。
19.根据权利要求18所述的接入点,其特征在于,所述帧为触发帧。
20.根据权利要求19所述的接入点,其特征在于,所述帧为IEEE802.11触发帧。
21.根据权利要求18-20任一所述的接入点,其特征在于,所述帧中还包括第一带宽的指示。
22.根据权利要求21所述的接入点,其特征在于,所述第一带宽为总下行链路带宽。
23.一种装置,其特征在于,所述装置包括处理单元和存储单元,所述处理单元用于执行所述存储单元存储的程序,使得所述装置执行如权利要求1-6任一所述的方法。
24.根据权利要求23所述的装置,其特征在于,所述装置为站点或所述站点的一部分。
25.一种装置,其特征在于,所述装置包括处理单元和存储单元,所述处理单元用于执行所述存储单元存储的程序,使得所述装置执行如权利要求7-11任一所述的方法。
26.根据权利要求25所述的装置,其特征在于,所述装置为接入点或所述接入点的一部分。
CN201580053899.6A 2014-10-02 2015-09-30 用于功率控制的系统和方法 Active CN107113749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910280965.3A CN110113808A (zh) 2014-10-02 2015-09-30 用于功率控制的系统和方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462059030P 2014-10-02 2014-10-02
US62/059,030 2014-10-02
US14/868,031 US9967827B2 (en) 2014-10-02 2015-09-28 System and method for power control
US14/868,031 2015-09-28
PCT/CN2015/091224 WO2016050213A1 (en) 2014-10-02 2015-09-30 System and method for power control

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910280965.3A Division CN110113808A (zh) 2014-10-02 2015-09-30 用于功率控制的系统和方法

Publications (2)

Publication Number Publication Date
CN107113749A CN107113749A (zh) 2017-08-29
CN107113749B true CN107113749B (zh) 2020-08-07

Family

ID=55629450

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580053899.6A Active CN107113749B (zh) 2014-10-02 2015-09-30 用于功率控制的系统和方法
CN201910280965.3A Withdrawn CN110113808A (zh) 2014-10-02 2015-09-30 用于功率控制的系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910280965.3A Withdrawn CN110113808A (zh) 2014-10-02 2015-09-30 用于功率控制的系统和方法

Country Status (9)

Country Link
US (2) US9967827B2 (zh)
EP (1) EP3192314A4 (zh)
JP (2) JP6553177B2 (zh)
KR (2) KR101889515B1 (zh)
CN (2) CN107113749B (zh)
AU (2) AU2015327446C1 (zh)
CA (1) CA2963320A1 (zh)
RU (1) RU2639323C1 (zh)
WO (1) WO2016050213A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9992746B2 (en) * 2014-10-28 2018-06-05 Qualcomm Incorporated Uplink power control in multi-user unlicensed wireless networks
US20160249303A1 (en) * 2015-02-20 2016-08-25 Thomas J. Kenney Power Control for High Efficiency Wireless Local Area Network
US10201017B2 (en) * 2015-04-09 2019-02-05 Marvell World Trade Ltd. Contention-based orthogonal frequency division multiple access (OFDMA) communication
WO2016201739A1 (zh) * 2015-06-16 2016-12-22 华为技术有限公司 资源调度的方法、装置和设备
US11032780B2 (en) * 2015-09-03 2021-06-08 Qualcomm Incorporated Power control in wireless networks
CN117336839A (zh) 2015-09-10 2024-01-02 交互数字专利控股公司 多用户功率控制方法及过程
US9980233B2 (en) * 2015-12-17 2018-05-22 Qualcomm Incorporated Power control for uplink transmissions
JP7297400B2 (ja) * 2016-03-18 2023-06-26 キヤノン株式会社 通信装置、情報処理装置、制御方法、および、プログラム
US10375683B2 (en) * 2016-05-06 2019-08-06 Qualcomm Incorporated Trigger frame in wireless local area network
WO2018081472A1 (en) * 2016-10-28 2018-05-03 Qinghua Li Power control for channel sounding
GB201705601D0 (en) 2017-04-07 2017-05-24 Patlock Design Ltd Spindle apparatus and method of use thereof
WO2020082711A1 (en) * 2018-10-23 2020-04-30 Huawei Technologies Co., Ltd. System and method for uplink power control in a communications system with multi-access point coordination
EP3878240A1 (en) * 2018-11-08 2021-09-15 Interdigital Patent Holdings, Inc. Methods and apparatus for joint multi-ap transmission in wlans
CN113632547B (zh) * 2019-04-02 2023-03-10 华为技术有限公司 用于多ap协调中上行功率控制的系统和方法
WO2020096663A1 (en) * 2019-07-23 2020-05-14 Futurewei Technologies, Inc. Uplink power control in multi-band transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120126A1 (en) * 2008-03-27 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control in a tdd communication system
CN101667960A (zh) * 2008-09-04 2010-03-10 中兴通讯股份有限公司 无线接入网系统、终端、数据传输方法、调度终端的方法
CN101883417A (zh) * 2010-06-23 2010-11-10 中兴通讯股份有限公司 功率上升空间设置的方法及装置
CN102812661A (zh) * 2010-03-26 2012-12-05 高通股份有限公司 物理下行链路共享信道(pdsch)保护
CN102845016A (zh) * 2010-03-25 2012-12-26 高通股份有限公司 取决于子帧的物理上行链路控制信道(pucch)区域设计方案

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179495B1 (en) 2003-07-08 2015-11-03 Hewlett-Packard Development Company, L.P. Implementing “all wireless” network over WiFi equipment using “scheduled TDMA”
US7146169B2 (en) 2004-03-17 2006-12-05 Motorola, Inc. Power balancing for downlink fast power control using central processing
US8909945B2 (en) 2005-04-08 2014-12-09 Interdigital Technology Corporation Method for transmit and receive power control in mesh systems
AR065637A1 (es) 2007-03-07 2009-06-17 Interdigital Tech Corp Un metodo combinado de bucle abierto/bucle cerrado para controlar la potencia de enlace ascendente de una estacion movil
US8073074B2 (en) 2007-08-22 2011-12-06 Texas Instruments Incorporated System and method for power control in a wireless transmitter
RU2443079C2 (ru) 2007-08-24 2012-02-20 Алькатель Люсент Способ планирования ресурса, элемент сети и абонентское оборудование
WO2009026739A1 (en) 2007-08-24 2009-03-05 Alcatel Shanghai Bell Co., Ltd. Method for scheduling resource, network element and user equipment
BRPI0820414A2 (pt) 2007-10-26 2015-05-19 John Clement Preston Barreiras de segurança
US9031044B2 (en) 2008-08-20 2015-05-12 Qualcomm Incorporated Power control for wireless LAN stations
WO2010105398A1 (zh) 2009-03-16 2010-09-23 华为技术有限公司 一种功率控制方法、装置及网络设备
JP5364048B2 (ja) 2010-07-07 2013-12-11 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び方法
CN103636267B (zh) 2011-03-31 2017-06-13 北京新岸线移动多媒体技术有限公司 上行接入开环功率控制的方法及装置
DK2845422T3 (en) * 2012-05-03 2019-02-04 Ericsson Telefon Ab L M RADIO NETWORKS, USER DEVICE AND PROCEDURES
WO2014071308A1 (en) 2012-11-02 2014-05-08 Interdigital Patent Holdings, Inc. Power control methods and procedures for wireless local area networks
WO2014119264A1 (ja) 2013-01-30 2014-08-07 日本電気株式会社 無線通信システム、無線局および上り送信電力制御方法
US9706529B2 (en) 2013-02-07 2017-07-11 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in multi-BSS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120126A1 (en) * 2008-03-27 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control in a tdd communication system
CN101667960A (zh) * 2008-09-04 2010-03-10 中兴通讯股份有限公司 无线接入网系统、终端、数据传输方法、调度终端的方法
CN102845016A (zh) * 2010-03-25 2012-12-26 高通股份有限公司 取决于子帧的物理上行链路控制信道(pucch)区域设计方案
CN102812661A (zh) * 2010-03-26 2012-12-05 高通股份有限公司 物理下行链路共享信道(pdsch)保护
CN101883417A (zh) * 2010-06-23 2010-11-10 中兴通讯股份有限公司 功率上升空间设置的方法及装置

Also Published As

Publication number Publication date
JP2017535158A (ja) 2017-11-24
AU2019200010A1 (en) 2019-01-24
CA2963320A1 (en) 2016-04-07
EP3192314A1 (en) 2017-07-19
US20180234924A1 (en) 2018-08-16
AU2015327446B2 (en) 2018-09-27
KR102114786B1 (ko) 2020-05-25
AU2015327446A1 (en) 2017-04-27
US10764830B2 (en) 2020-09-01
AU2015327446C1 (en) 2019-04-11
CN107113749A (zh) 2017-08-29
US9967827B2 (en) 2018-05-08
KR20170054536A (ko) 2017-05-17
CN110113808A (zh) 2019-08-09
WO2016050213A1 (en) 2016-04-07
US20160100370A1 (en) 2016-04-07
KR20180093122A (ko) 2018-08-20
JP6553177B2 (ja) 2019-07-31
EP3192314A4 (en) 2017-08-23
KR101889515B1 (ko) 2018-08-17
RU2639323C1 (ru) 2017-12-21
JP2019195212A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
CN107113749B (zh) 用于功率控制的系统和方法
US10542557B2 (en) System and method for digital communications with interference avoidance
JP6884805B2 (ja) サイクリック・プレフィックスの長さを設定するためのシステムおよび方法
JP6399416B2 (ja) サイクリックプレフィックス長を設定するシステムおよび方法
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant