CN107093838B - 利用压电陶瓷反馈控制的数字化光脉冲产生装置 - Google Patents

利用压电陶瓷反馈控制的数字化光脉冲产生装置 Download PDF

Info

Publication number
CN107093838B
CN107093838B CN201710492361.6A CN201710492361A CN107093838B CN 107093838 B CN107093838 B CN 107093838B CN 201710492361 A CN201710492361 A CN 201710492361A CN 107093838 B CN107093838 B CN 107093838B
Authority
CN
China
Prior art keywords
input terminal
photo
coupler
output end
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710492361.6A
Other languages
English (en)
Other versions
CN107093838A (zh
Inventor
霍佳雨
李志军
高博
郭玉彬
孙铁刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710492361.6A priority Critical patent/CN107093838B/zh
Publication of CN107093838A publication Critical patent/CN107093838A/zh
Application granted granted Critical
Publication of CN107093838B publication Critical patent/CN107093838B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明的利用压电陶瓷反馈控制的数字化光脉冲产生装置属于光通信器件的技术领域,其主要结构包括由泵浦光源(1)、波分复用器(2)、第一光耦合器(3)、第一偏振控制器(4)等器件构成的主动锁模光纤激光器谐振腔,以及由色散补偿光纤(25)、石墨烯可饱和吸收体(27)等器件构成的被动锁模光纤激光器系统和两个自动反馈控制环构成的脉冲优化系统。本发明采用主被动混合锁模技术,利用光探测器接收部分输出激光,并利用单片机对接收的信号进行处理,控制压电陶瓷实现整个系统输出脉冲的优化,最终使整个系统产生稳定的超短高速光脉冲,操作简单并可达到精确控制。

Description

利用压电陶瓷反馈控制的数字化光脉冲产生装置
技术领域
本发明属于光通信器件的技术领域,特别涉及一种利用压电陶瓷反馈控制的数字化光脉冲产生装置。
背景技术
国民经济发展迅速,信息时代已经到来,光纤通信技术已渗透到各种通信与信息网络中。光纤激光器是光纤通信的理想光源,与传统的固体激光器相比具有许多优势,近年来得到了广泛的研究。光纤激光器中的锁模光纤激光器是光通信系统中脉冲光源的理想选择。
锁模光纤激光器常见的结构有主动锁模和被动锁模光纤激光器。其中主动锁模光纤激光器输出脉冲宽度窄、频率啁啾小且频率可调谐,因而在超高速光纤通信中有很大的应用前景。
与本发明最接近的现有技术是如附图2所示的主动锁模光纤激光器系统,正弦电压信号作用于铌酸锂(LiNbO3)调制器,调制器将产生周期性的相位变化或是损耗,周期性的变化作用于谐振腔内循环的脉冲,它们之间的相互影响使得产生锁模序列。LiNbO3调制器是偏振敏感的,通常在调制器前放置一个偏振控制器来调节调制器的光场偏振态。中心波长通过可调谐滤波器进行调节。
但主动锁模光纤激光器输出激光的光谱比较窄,很难得到超窄脉冲,而且主动锁模光纤激光器的腔长一般都较长,容易受到外界的影响,导致其稳定性较差。
被动锁模光纤激光器结构简单、成本低且可靠性高,是真正的全光纤器件,利用光纤的非线性效应,可以产生最短的光学脉冲,但其输出脉冲重复频率的稳定性差,不能外界调控。
综上所述,目前现有的主动或被动锁模光纤激光器系统均各自存在固有的缺点,尤其由于现有锁模光纤激光器系统中没有采取有效的自动控制,使得输出光脉冲的稳定性较差。
发明内容
本发明要解决的技术问题是,克服背景技术中锁模光纤激光器存在的缺点,提供一种利用压电陶瓷反馈控制的数字化光脉冲产生装置,以产生稳定的超高速脉冲为目的。
本发明的技术方案如下:
一种利用压电陶瓷反馈控制的数字化光脉冲产生装置,其结构有,泵浦光源1与波分复用器2的980nm端相连,波分复用器2的1550nm端与第一光耦合器3的输入端相连;第一光耦合器3的10%输出端与第一偏振控制器4的一端相连,第一偏振控制器4的另一端与由微波源6驱动的铌酸锂调制器5的输入端相连;铌酸锂调制器5的输出端与缠绕在第一PZT压电陶瓷7上的光纤的一端相连;所述的缠绕在第一PZT压电陶瓷7上的光纤的另一端与第二光耦合器8的一个输入端相连;第二光耦合器8的另一个输入端与第一光隔离器9的输入端相连;第一光隔离器9的输出端与第一掺铒光纤10的一端相连,第一掺铒光纤10的另一端与波分复用器2的公共端相连;
其特征在于,结构还有第三光耦合器11的输入端与第一光耦合器3的90%输出端相连,第三光耦合器11的40%输出端与第四光耦合器12的输入端相连,第三光耦合器11的60%输出端作为所述的基于石墨烯可饱和吸收体的主被动混合锁模脉冲产生系统的输出端口;第四光耦合器12的一个50%输出端与第一光探测器13的输入端相连,另一个50%输出端与第二光探测器18的输入端相连;第一光探测器13的输出端与第一模/数转换器14的输入端相连,第一模/数转换器14的输出端与第一单片机15相连,第一单片机15与第一数/模转换器16的输入端相连,第一数/模转换器16的输出端与第一压电陶瓷驱动器17的输入端相连,第一压电陶瓷驱动器17的输出端与第一PZT压电陶瓷7相连;第二光探测器18的输出端与第二模/数转换器19的输入端相连,第二模/数转换器19的输出端与第二单片机20相连,第二单片机20与第二数/模转换器21的输入端相连,第二数/模转换器21的输出端与第二压电陶瓷驱动器22的输入端相连,第二压电陶瓷驱动器22的输出端与第二PZT压电陶瓷23相连,缠绕在第二PZT压电陶瓷23上的光纤的一端与第二光耦合器8的一个50%输出端相连,第二光耦合器8的另一个50%输出端与第二光隔离器24的输入端相连,第二光隔离器24的输出端与色散补偿光纤25的一端相连,色散补偿光纤25的另一端与第二掺铒光纤26的一端相连,第二掺铒光纤26的另一端与石墨烯可饱和吸收体27的一端相连;石墨烯可饱和吸收体27的另一端与第二偏振控制器28的一端相连,第二偏振控制器28的另一端与单模光纤29的一端相连,单模光纤29的另一端与所述的缠绕在第二PZT压电陶瓷23上的光纤的另一端相连。
有益效果:
1、本发明采用主被动混合锁模光纤激光器系统结构产生高速超短光脉冲输出,可以克服被动锁模光纤激光器系统无法控制输出脉冲重复频率及重复频率稳定性差的缺点,发挥被动锁模光纤激光器系统可以产生飞秒级光脉冲的优势;同时可以克服主动锁模光纤激光器系统输出稳定性差的缺点,发挥主动锁模光纤激光器系统输出重复频率可调的优势,使整个系统产生稳定的超短高速光脉冲。
2、本发明利用反馈信号控制压电陶瓷稳定主动锁模光纤激光器中谐振腔的长度,克服腔长漂移,使系统输出稳定;同时利用反馈信号控制被动锁模光纤激光器中的压电陶瓷,使被动锁模光纤激光器系统中的光脉冲更加优化,最终使整个系统产生稳定的超短高速光脉冲。
3、本发明将新型二维材料石墨烯作为可饱和吸收体产生超短高速光脉冲,基于石墨烯的可饱和吸收体有超短的恢复时间、抗损伤阈值高、带宽响应波长范围宽、非饱和吸收损耗低等优点,可产生飞秒级超短脉冲。
4、本发明在被动锁模光纤激光器的谐振腔中加入了掺铒光纤,可以对在其中传输的光信号产生增益放大作用,使系统输出的光脉冲能量进一步增加;并且加入了偏振控制器,可以改变在其中传输的光信号的偏振态,使系统输出的光脉冲得到进一步的优化。
5、本发明结构简单,利用光探测器接收部分输出激光,并将接收到的信号进行模/数转换,并将转换后的数字信号送入单片机,利用单片机反馈控制压电陶瓷,实现整个系统输出脉冲的优化。系统经过对信号数字化的处理,可以达到精确控制,实现高质量的光脉冲输出。
附图说明:
图1是本发明的一种利用压电陶瓷反馈控制的数字化光脉冲产生装置的原理框图。
图2是传统的主动锁模光纤激光器系统框图。
具体实施方式
下面结合附图,说明本发明各部分光路的具体结构。实施例中,元器件后面的括号中标注的本发明的优选的参数,但本发明的保护范围并不受这些参数的限制。
实施例1:本发明的具体结构
本发明的一种利用压电陶瓷反馈控制的数字化光脉冲产生装置结构如附图1所示,其结构有,泵浦光源1(980nm激光器,最大输出功率为1W)与波分复用器2(980/1550nm波分复用器)的980nm端相连,波分复用器2的1550nm端与第一光耦合器3(1×2标准单模光耦合器,分光比为10:90)的输入端相连;第一光耦合器3的10%输出端与第一偏振控制器4(尾纤型机械式偏振控制器)的一端相连,其输出的光脉冲在主动锁模光纤激光器谐振腔中继续运行,第一光耦合器3的90%输出端与第三光耦合器11(1×2标准单模光耦合器,分光比为40:60)的输入端相连;第一偏振控制器4的另一端与由微波源6驱动的铌酸锂调制器5(上海瀚宇光纤通信技术有限公司的MX-LN-20光强度调制器)的输入端相连;铌酸锂调制器5的输出端与缠绕在第一PZT压电陶瓷7上的光纤的一端相连;所述的缠绕在第一PZT压电陶瓷7上的光纤的另一端与第二光耦合器8(2×2标准单模光耦合器,分光比为50:50)的一个输入端相连;第二光耦合器8的另一个输入端与第一光隔离器9(1550nm偏振无关光隔离器)的输入端相连,第一光隔离器9使系统中的光脉冲单向运行,方向是附图1的顺时针方向;第一光隔离器9的输出端与第一掺铒光纤10(美国Nufern公司生产的SM-ESF-7/125掺铒光纤)的一端相连,第一掺铒光纤10的另一端与波分复用器2的公共端相连。上述结构构成了传统的主动锁模光纤激光器谐振腔。
本发明在传统的主动锁模光纤激光器谐振腔的基础上,还有基于石墨烯可饱和吸收体的被动锁模光纤激光器系统以及由两个自动反馈控制环构成的脉冲优化系统,结构为,第三光耦合器11的40%输出端与第四光耦合器12(1×2标准单模光耦合器,分光比为50:50)的输入端相连,第三光耦合器11的60%输出端作为所述的基于石墨烯可饱和吸收体的主被动混合锁模脉冲产生系统的输出端口,系统产生的光脉冲由此端口输出;第四光耦合器12的一个50%输出端与第一光探测器13(北京敏光科技有限公司的LSIPD-LD50型光探测器)的输入端相连,另一个50%输出端与第二光探测器18(北京敏光科技有限公司的LSIPD-LD50型光探测器)的输入端相连;第一光探测器13的输出端与第一模/数转换器14(MAX197)的输入端相连,第一模/数转换器14的输出端与第一单片机15(STC89C51单片机)相连,第一单片机15接收数字量进行计算处理;第一单片机15与第一数/模转换器16(AD7541)的输入端相连,第一数/模转换器16的输出端与第一压电陶瓷驱动器17(本课题组自制的装置,具体结构见专利ZL200710055865.8)的输入端相连,第一压电陶瓷驱动器17的输出端与第一PZT压电陶瓷7(圆柱形压电陶瓷,外径50mm,内径40mm,高50mm)相连,以控制谐振腔的长度;第二光探测器18的输出端与第二模/数转换器19(MAX197)的输入端相连,第二模/数转换器19的输出端与第二单片机20(STC89C51单片机)相连,第二单片机20接收数字量进行计算处理,第二单片机20与第二数/模转换器21的输入端相连,第二数/模转换器21的输出端与第二压电陶瓷驱动器22(本课题组自制的装置,具体结构见专利ZL200710055865.8)的输入端相连,第二压电陶瓷驱动器22的输出端与第二PZT压电陶瓷23相连,缠绕在第二PZT压电陶瓷23上的光纤的一端与第二光耦合器8的一个50%输出端相连,第二光耦合器8的另一个50%输出端与第二光隔离器24(1550nm偏振无关光隔离器)的输入端相连,第二光隔离器24允许光脉冲通过方向是附图1的逆时针方向;第二光隔离器24的输出端与色散补偿光纤25(美国THORLABS公司的DCF38型色散补偿光纤)的一端相连,色散补偿光纤25的另一端与第二掺铒光纤26(美国Nufern公司生产的SM-ESF-7/125掺铒光纤)的一端相连,第二掺铒光纤26的另一端与石墨烯可饱和吸收体27(将多层石墨烯制作在一侧光纤接头的端面上,用光纤连接器将此接头与另一侧的光纤接头相连接,光纤连接器可采用上海瀚宇光纤通信技术有限公司生产的标准FC/PC光纤连接器)的一端相连;石墨烯可饱和吸收体27的另一端与第二偏振控制器28(尾纤型机械式偏振控制器)的一端相连,第二偏振控制器28的另一端与单模光纤29(标准单模光纤)的一端相连,单模光纤29的另一端与缠绕在第二PZT压电陶瓷23上的光纤的另一端相连。
实施例2本发明的工作过程及各主要部件的作用
附图1所示的结构中,泵浦光源1作为整个系统的激光泵浦源,泵浦光源1通过波分复用器2进入系统中;分光比为10:90的第一光耦合器3将腔内运行的激光分为两部分,一部分(90%)输出给第三光耦合器11,另一部分(10%)继续在主动锁模光纤激光器谐振腔内运行;分光比为40:60的第三光耦合器11将第一光耦合器3输出的激光分为两部分,一部分(60%)作为整个系统的激光输出,另一部分(40%)输出到第四光耦合器12作为系统的反馈信号;第一偏振控制器4和第二偏振控制器28用于控制系统中的偏振态;第一光隔离器9用于保证主动锁模光纤激光器谐振腔中光的单向运行;第一掺铒光纤10和第二掺铒光纤26在系统中产生增益作用,保证谐振腔内运行激光的能量不衰减;分光比为50:50的第二光耦合器8连接了主动锁模和被动锁模两部分结构,使基于石墨烯的被动锁模光纤激光器系统和主动锁模光纤激光器系统有机的结合在一起,实现主被动混合锁模;石墨烯可饱和吸收体27是将石墨烯材料制作成可饱和吸收体,用于锁模超短脉冲的产生。
第四光耦合器12将接收到光分成两路,一路输出给第一光探测器13,由第一光探测器13将光信号转换为电流,第一模/数转换器14接收第一光探测器13输出的电信号,并将模拟信号转换为数字信号,使之适合后续控制;第一单片机15接收第一模/数转换器14输出的数字信号进行计算处理,并产生控制信号;第一数/模转换器16将第一单片机15输出的控制信号转换为模拟信号输出给第一压电陶瓷驱动器17,第一压电陶瓷驱动器17将接收到的控制信号放大用于驱动第一PZT压电陶瓷7,进而控制缠在第一PZT压电陶瓷7上的光纤的长度对主动锁模光纤激光器谐振腔进行腔长补偿,克服腔长漂移,保证系统锁模的可靠性。
第四光耦合器12输出的另一路输出给第二光探测器18,第二光探测器18将其转化为电流并由第二模/数转换器19转换为数字信号,第二单片机20接收第二模/数转换器19输出的数字信号进行计算处理,并由第二数/模转换器21转换为模拟电压送给第二压电陶瓷驱动器22,第二压电陶瓷驱动器22将接收到的控制信号放大用于驱动第二PZT压电陶瓷23,进而控制缠在第二PZT压电陶瓷23上的光纤的长度,以保证基于石墨烯可饱和吸收体的被动锁模光纤激光器系统所产生的孤子类型与主动锁模光纤激光器谐振腔产生的孤子类型自动匹配,进而使整个系统输出的超短高速光脉冲得到优化。

Claims (1)

1.一种利用压电陶瓷反馈控制的数字化光脉冲产生装置,其结构有,泵浦光源(1)与波分复用器(2)的980nm端相连,波分复用器(2)的1550nm端与第一光耦合器(3)的输入端相连;第一光耦合器(3)的10%输出端与第一偏振控制器(4)的一端相连,第一偏振控制器(4)的另一端与由微波源(6)驱动的铌酸锂调制器(5)的输入端相连;铌酸锂调制器(5)的输出端与缠绕在第一PZT压电陶瓷(7)上的光纤的一端相连;所述的缠绕在第一PZT压电陶瓷(7)上的光纤的另一端与第二光耦合器(8)的一个输入端相连;第二光耦合器(8)的另一个输入端与第一光隔离器(9)的输入端相连;第一光隔离器(9)的输出端与第一掺铒光纤(10)的一端相连,第一掺铒光纤(10)的另一端与波分复用器(2)的公共端相连;
其特征在于,结构还有第三光耦合器(11)的输入端与第一光耦合器(3)的90%输出端相连,第三光耦合器(11)的40%输出端与第四光耦合器(12)的输入端相连,第三光耦合器(11)的60%输出端作为所述的利用压电陶瓷反馈控制的数字化光脉冲产生装置的输出端口;第四光耦合器(12)的一个50%输出端与第一光探测器(13)的输入端相连,另一个50%输出端与第二光探测器(18)的输入端相连;第一光探测器(13)的输出端与第一模/数转换器(14)的输入端相连,第一模/数转换器(14)的输出端与第一单片机(15)相连,第一单片机(15)与第一数/模转换器(16)的输入端相连,第一数/模转换器(16)的输出端与第一压电陶瓷驱动器(17)的输入端相连,第一压电陶瓷驱动器(17)的输出端与第一PZT压电陶瓷(7)相连;第二光探测器(18)的输出端与第二模/数转换器(19)的输入端相连,第二模/数转换器(19)的输出端与第二单片机(20)相连,第二单片机(20)与第二数/模转换器(21)的输入端相连,第二数/模转换器(21)的输出端与第二压电陶瓷驱动器(22)的输入端相连,第二压电陶瓷驱动器(22)的输出端与第二PZT压电陶瓷(23)相连,缠绕在第二PZT压电陶瓷(23)上的光纤的一端与第二光耦合器(8)的一个50%输出端相连,第二光耦合器(8)的另一个50%输出端与第二光隔离器(24)的输入端相连,第二光隔离器(24)的输出端与色散补偿光纤(25)的一端相连,色散补偿光纤(25)的另一端与第二掺铒光纤(26)的一端相连,第二掺铒光纤(26)的另一端与石墨烯可饱和吸收体(27)的一端相连;石墨烯可饱和吸收体(27)的另一端与第二偏振控制器(28)的一端相连,第二偏振控制器(28)的另一端与单模光纤(29)的一端相连,单模光纤(29)的另一端与所述的缠绕在第二PZT压电陶瓷(23)上的光纤的另一端相连。
CN201710492361.6A 2017-06-26 2017-06-26 利用压电陶瓷反馈控制的数字化光脉冲产生装置 Expired - Fee Related CN107093838B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710492361.6A CN107093838B (zh) 2017-06-26 2017-06-26 利用压电陶瓷反馈控制的数字化光脉冲产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710492361.6A CN107093838B (zh) 2017-06-26 2017-06-26 利用压电陶瓷反馈控制的数字化光脉冲产生装置

Publications (2)

Publication Number Publication Date
CN107093838A CN107093838A (zh) 2017-08-25
CN107093838B true CN107093838B (zh) 2019-06-18

Family

ID=59641385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710492361.6A Expired - Fee Related CN107093838B (zh) 2017-06-26 2017-06-26 利用压电陶瓷反馈控制的数字化光脉冲产生装置

Country Status (1)

Country Link
CN (1) CN107093838B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825172A (zh) * 2014-03-11 2014-05-28 天津理工大学 一种基于石墨烯和复合腔结构的被动锁模光纤激光器
CN104638501A (zh) * 2015-01-28 2015-05-20 清华大学 一种具有宽重复频率调谐范围的小型化光纤飞秒激光器
CN105826804A (zh) * 2016-05-27 2016-08-03 清华大学 一种重复频率可宽带调谐的光频参考光纤飞秒光频梳
CN106356706A (zh) * 2016-11-18 2017-01-25 重庆邮电大学 一种基于混合锁模技术的中红外超连续谱光纤激光器
CN106848823A (zh) * 2017-03-06 2017-06-13 南京邮电大学 一种基于模式选择耦合器的8字腔锁模柱矢量光纤激光器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577057A (en) * 1991-03-01 1996-11-19 Telstra Corporation Limited Modelocked lasers
KR0149127B1 (ko) * 1995-10-31 1998-12-01 양승택 수동과 능동의 혼합형으로 모드로킹 된 레이저 구도
KR100327899B1 (ko) * 1999-11-03 2002-03-09 오길록 모드 로킹 광섬유 레이저 안정화 장치 및 그 방법
US7733923B2 (en) * 2005-12-08 2010-06-08 Alcatel-Lucent Usa Inc. Wide-bandwidth mode-locked laser
CN103151686B (zh) * 2013-02-22 2015-09-09 北京工业大学 基于氧化石墨烯被动锁模的拉曼光纤激光器
CN103337774B (zh) * 2013-05-31 2015-09-09 西北核技术研究所 一种基于光纤光栅和石墨烯的可调谐锁模光纤激光器
CN103401133B (zh) * 2013-07-12 2016-08-10 吉林大学 一种基于等离激元轴向振动模的可饱和吸收体
CN104037599A (zh) * 2014-06-07 2014-09-10 吉林大学 一种基于被动锁模掺镱光纤激光器的光孤子产生装置
CN106129799A (zh) * 2016-08-30 2016-11-16 张家港初恒激光科技有限公司 基于石墨烯的混合锁模激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825172A (zh) * 2014-03-11 2014-05-28 天津理工大学 一种基于石墨烯和复合腔结构的被动锁模光纤激光器
CN104638501A (zh) * 2015-01-28 2015-05-20 清华大学 一种具有宽重复频率调谐范围的小型化光纤飞秒激光器
CN105826804A (zh) * 2016-05-27 2016-08-03 清华大学 一种重复频率可宽带调谐的光频参考光纤飞秒光频梳
CN106356706A (zh) * 2016-11-18 2017-01-25 重庆邮电大学 一种基于混合锁模技术的中红外超连续谱光纤激光器
CN106848823A (zh) * 2017-03-06 2017-06-13 南京邮电大学 一种基于模式选择耦合器的8字腔锁模柱矢量光纤激光器

Also Published As

Publication number Publication date
CN107093838A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN107154576B (zh) 基于SMF-SIMF-GIMF-SMF光纤结构的2μm耗散孤子锁模光纤激光器
CN105591273B (zh) 脉冲光纤激光器及其实现时域脉冲切片的方法
CN109066278B (zh) 双向锁模多态孤子光纤激光器
CN107230927B (zh) 基于SMF-SIMF-GIMF-SMF光纤结构的2μm锁模光纤激光器
CN109038191B (zh) 一种谱受限傅里叶域锁模光纤激光器
US11870210B2 (en) Transverse mode switchable all-fiber high-order mode Brillouin laser
CN107302177B (zh) 基于黑磷可饱和吸收体的主被动混合锁模脉冲产生系统
CN107302176B (zh) 一种高稳定度主被动混合锁模光孤子产生系统
CN107134712B (zh) 一种带有温度补偿的主被动混合锁模光纤激光器
CN105633773A (zh) 一种基于啁啾相移光纤光栅的环腔调q脉冲激光器
CN202025977U (zh) 可调谐多波长光纤激光器
CN103152105A (zh) 一种基于单边带调制和循环移频的扫频源
CN107134711B (zh) 基于压电陶瓷反馈控制的光脉冲发生器
CN107039880B (zh) 主被动混合锁模光纤激光器脉冲产生系统
CN107093838B (zh) 利用压电陶瓷反馈控制的数字化光脉冲产生装置
CN107039877B (zh) 一种高稳定度光脉冲发生器
CN107069415B (zh) 基于石墨烯可饱和吸收体的主被动混合锁模光脉冲发生器
CN109361145B (zh) 单波长可调谐调q锁模脉冲激光器
CN104733987A (zh) 一种线性自动可调谐环形腔光纤激光器
CN205385196U (zh) 脉冲光纤激光器
CN105607382A (zh) 一种产生高阶矢量耗散孤子的新方法
CN206195145U (zh) 基于微环谐振腔的多倍频锁模激光器
CN105790053B (zh) 一种平坦光谱输出的中红外超连续谱激光实现方法
CN110061779B (zh) 一种光纤通信系统
CN105591272A (zh) 一种基于掺铥光纤激光器产生高能量矢量孤子雨装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190618

Termination date: 20200626