CN107092245B - Hardware-in-loop simulation test bed for automobile dynamic chassis control system - Google Patents
Hardware-in-loop simulation test bed for automobile dynamic chassis control system Download PDFInfo
- Publication number
- CN107092245B CN107092245B CN201710402031.3A CN201710402031A CN107092245B CN 107092245 B CN107092245 B CN 107092245B CN 201710402031 A CN201710402031 A CN 201710402031A CN 107092245 B CN107092245 B CN 107092245B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- wheel
- force
- dynamic
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 50
- 238000012360 testing method Methods 0.000 title claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 48
- 239000006096 absorbing agent Substances 0.000 claims abstract description 43
- 230000035939 shock Effects 0.000 claims abstract description 43
- 238000013016 damping Methods 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000011156 evaluation Methods 0.000 claims abstract description 5
- 230000033001 locomotion Effects 0.000 claims description 36
- 239000000725 suspension Substances 0.000 claims description 36
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 24
- 230000001133 acceleration Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 21
- 238000005070 sampling Methods 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 12
- 238000005381 potential energy Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 7
- 239000003381 stabilizer Substances 0.000 claims description 6
- 238000013519 translation Methods 0.000 claims description 6
- 238000011217 control strategy Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000010009 beating Methods 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 238000005094 computer simulation Methods 0.000 claims description 3
- 238000005312 nonlinear dynamic Methods 0.000 claims description 3
- 238000012805 post-processing Methods 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本发明公开一种汽车动态底盘控制系统硬件在环仿真试验台,在宿主机上基于Matlab/Simulink平台搭建人‑车‑路闭环数字化仿真模型,通过RTW编译模块转化为可执行的C代码,下载到目标机的CPU中,DCC控制器通过I/O数据转换模块与目标机保持通讯,DCC控制器实时采集人‑车‑路闭环数字化模型数据,DCC控制器的输出控制减振器电磁阀,电流采集模块实时采集减振器电磁阀的控制电流信号,并通过I/O数据转换模块反馈给目标机,形成闭环回路;仿真试验台对不同工况和不同模式下的控制效果进行评价,每次仿真结束,给出相应的评价结果。本发明的优点是通过自适应调节四个减振器的阻尼力实现汽车底盘动态控制。
The invention discloses a hardware-in-the-loop simulation test bench for a vehicle dynamic chassis control system. A human-vehicle-road closed-loop digital simulation model is built on a host computer based on a Matlab/Simulink platform, and is converted into executable C code through an RTW compiling module. In the CPU of the target machine, the DCC controller maintains communication with the target machine through the I/O data conversion module. The DCC controller collects the human-vehicle-road closed-loop digital model data in real time, and the output of the DCC controller controls the shock absorber solenoid valve. The current acquisition module collects the control current signal of the shock absorber solenoid valve in real time, and feeds it back to the target machine through the I/O data conversion module to form a closed loop; the simulation test bench evaluates the control effect under different working conditions and modes. At the end of the simulation, the corresponding evaluation results are given. The advantage of the invention is that the dynamic control of the vehicle chassis is realized by adaptively adjusting the damping force of the four shock absorbers.
Description
技术领域technical field
本发明涉及一种仿真试验台,特别涉及一种汽车动态底盘控制系统硬件在环仿真试验台。The invention relates to a simulation test bench, in particular to a hardware-in-the-loop simulation test bench of an automobile dynamic chassis control system.
背景技术Background technique
动态底盘控制系统(Dynamic Chassis Control,DCC)亦称“自适应底盘控制系统”,能够针对路面条件、驾驶工况及驾驶员要求实现四个悬架阻尼的自适应可变调整,将汽车底盘调节成“标准型”(Normal)、“运动型”(Sport)和“舒适型”(Comfort)三种模式。装备了DCC动态底盘控制系统的汽车能够在保持了路感清晰的基础上,也可以感受到前所未有的驾乘舒适性,根据不同的驾驶环境相应的选择运动性底盘还是舒适性底盘,使底盘能始终将行驶条件实时地与驾驶者的意愿完美地配合并维持其平衡。DCC通过可调节减振器和电动助力转向解决运动性底盘和舒适性底盘的设计冲突,同时兼顾了乘坐舒适性和操纵稳定性,能够有效解决汽车操作稳定性与乘坐舒适性技术难题。Dynamic Chassis Control (Dynamic Chassis Control, DCC), also known as "adaptive chassis control system", can realize adaptive variable adjustment of four suspension damping according to road conditions, driving conditions and driver requirements, and adjust the chassis of the car. There are three modes: "Normal", "Sport" and "Comfort". Cars equipped with DCC dynamic chassis control system can feel unprecedented driving comfort on the basis of maintaining a clear sense of the road. Driving conditions are always perfectly matched and balanced to the wishes of the driver in real time. DCC solves the design conflict between a sporty chassis and a comfortable chassis through adjustable shock absorbers and electric power steering, while taking into account the riding comfort and handling stability, which can effectively solve the technical problems of vehicle operation stability and riding comfort.
大众提出动态底盘控制(Dynamic Chassis Control,DCC)系统,该系统采用了天纳克旗下的MONROE(中文译为万里路)阀控连续阻尼可调减振器,控制器由德国大陆和大众共同开发,能够针对路面条件、驾驶工况及驾驶员要求实现四个悬架阻尼的自适应可变调整,将汽车底盘调节成“正常型”(Normal)、“运动型”(Sport)和“舒适型”(Comfort)三种模式,通过可调节减振器和电动助力转向解决运动性底盘和舒适性底盘的设计冲突,能够有效解决汽车操作稳定性与乘坐舒适性技术难题。Volkswagen proposes a Dynamic Chassis Control (DCC) system, which uses Tenneco's MONROE (translated as Wanli Road) valve-controlled continuous damping adjustable shock absorber. The controller is jointly developed by Continental Germany and Volkswagen. , which can realize adaptive variable adjustment of four suspension damping according to road conditions, driving conditions and driver requirements, and adjust the car chassis into "Normal", "Sport" and "Comfortable" "(Comfort) three modes, through the adjustable shock absorber and electric power steering to solve the design conflict between the sports chassis and the comfortable chassis, can effectively solve the technical problems of car operation stability and ride comfort.
合肥工业大学提出一种汽车底盘集成控制系统与控制方法(200810021298.9)。该控制系统通过传感器检测汽车的轮速信号、转矩信号、发动机转速信号、垂直加速度信号和制动踏板信号等,并将这些信号输入主协调CPU,主协调CPU将所述信号分别传送至ABSCPU、EPSCPU、ASSCPU,并且同时根据对所述信号的分析发出协调命令,ABSCPU、EPSCPU、ASSCPU则根据各自接收的传感器信号和协调命令控制相应驱动模块。该发明克服了现有汽车上EPS、ASS和ABS三个系统之间存在相互干扰的问题,实现了对三个系统的协调控制,全面提高汽车的行驶平顺性、安全性和操纵稳定性。同济大学提出一种汽车底盘集成控制器硬件在环仿真试验台(200810040444.2),把制动防抱死系统(ABS)、牵引力控制系统(TCS)和直接横摆力矩控制(DYC)的功能进行集成,进行硬件在环测试。Hefei University of Technology proposed a vehicle chassis integrated control system and control method (200810021298.9). The control system detects the wheel speed signal, torque signal, engine speed signal, vertical acceleration signal and brake pedal signal of the car through sensors, and inputs these signals to the main coordination CPU, and the main coordination CPU transmits the signals to the ABSCPU respectively. , EPSCPU, ASSCPU, and at the same time issue coordination commands according to the analysis of the signals, ABSCPU, EPSCPU, ASSCPU control the corresponding drive modules according to the sensor signals and coordination commands they receive. The invention overcomes the problem of mutual interference among the three systems of EPS, ASS and ABS on the existing automobile, realizes the coordinated control of the three systems, and comprehensively improves the driving smoothness, safety and handling stability of the automobile. Tongji University proposes a hardware-in-the-loop simulation test bench for an automotive chassis integrated controller (200810040444.2), which integrates the functions of anti-lock braking system (ABS), traction control system (TCS) and direct yaw moment control (DYC). , perform hardware-in-the-loop testing.
本发明所述的动态底盘控制系统(DCC)作为一种比较新颖、实用的技术,通过自适应调节四个减振器的阻尼力实现车辆汽车底盘动态控制,与在先发明专利在整车建模方法、控制算法和执行器等方面都有很大区别。As a relatively novel and practical technology, the dynamic chassis control system (DCC) of the present invention realizes the dynamic control of the vehicle chassis by adaptively adjusting the damping force of the four shock absorbers. Modulo methods, control algorithms, and actuators are all very different.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是要提供一种基于xPC Target实时平台,实现减振器电磁阀与人-车-路闭环数字化仿真模型及DCC控制器的实时通讯,减振器电磁阀的运行状态由DCC控制器进行控制的汽车动态底盘控制系统硬件在环仿真试验台。The technical problem to be solved by the present invention is to provide a real-time platform based on xPC Target, which can realize the real-time communication between the shock absorber solenoid valve, the human-vehicle-road closed-loop digital simulation model and the DCC controller, and the operation status of the shock absorber solenoid valve. A hardware-in-the-loop simulation test bench for an automotive dynamic chassis control system controlled by a DCC controller.
为了解决以上的技术问题,本发明提供了一种汽车动态底盘控制系统硬件在环仿真试验台,该仿真试验台包括宿主机、目标机、监控机、I/O数据转换模块、网络接口卡、USBCAN接口卡,BDM下载器、DCC控制器、减振器电磁阀和电流采样模块,宿主机上基于Matlab/Simulink平台搭建人-车-路闭环数字化仿真模型,通过RTW编译模块转化为可执行的C代码,下载到目标机的CPU中,DCC控制器通过I/O数据转换模块与目标机保持通讯,DCC控制器实时采集目标机中的人-车-路闭环数字化模型数据,DCC控制器的输出控制减振器电磁阀,电流采集模块实时采集减振器电磁阀的控制电流信号,并通过I/O数据转换模块反馈给目标机,形成闭环回路;仿真试验台对不同工况和不同模式下的控制效果进行评价,每次仿真结束,给出相应的评价结果。In order to solve the above technical problems, the present invention provides a hardware-in-the-loop simulation test bench for an automotive dynamic chassis control system. The simulation test bench includes a host computer, a target computer, a monitoring computer, an I/O data conversion module, a network interface card, USBCAN interface card, BDM downloader, DCC controller, shock absorber solenoid valve and current sampling module, build a human-vehicle-road closed-loop digital simulation model based on Matlab/Simulink platform on the host computer, and convert the module into executable through RTW compilation module The C code is downloaded to the CPU of the target machine. The DCC controller maintains communication with the target machine through the I/O data conversion module. The DCC controller collects the human-vehicle-road closed-loop digital model data in the target machine in real time. The output controls the solenoid valve of the shock absorber, and the current acquisition module collects the control current signal of the solenoid valve of the shock absorber in real time, and feeds it back to the target machine through the I/O data conversion module to form a closed-loop loop; the simulation test bench has different working conditions and different modes. At the end of each simulation, the corresponding evaluation results are given.
所述宿主机上基于Matlab/Simulink平台搭建人-车-路闭环数字化仿真模型,为使所建立的动力学模型具有代表性,本发明提出一种车辆纵-侧-垂向动力学统一建模思路,在分析车辆多系统耦合的复杂非线性动力学行为特性的基础上,实现车辆纵-侧-垂向动力学非线性模型的数学理论解析和仿真建模,包括以下步骤:1)建模假设;2)动力传动系统建模;3)车体建模;4)悬架建模;5)轮胎建模;6)驾驶员建模。A man-vehicle-road closed-loop digital simulation model is built on the host computer based on the Matlab/Simulink platform. In order to make the established dynamic model representative, the present invention proposes a vehicle longitudinal-side-vertical dynamic unified modeling The idea is to realize the mathematical theoretical analysis and simulation modeling of the vehicle longitudinal-side-vertical dynamic nonlinear model on the basis of analyzing the complex nonlinear dynamic behavior characteristics of the vehicle multi-system coupling, including the following steps: 1) Modeling Assumptions; 2) Powertrain modeling; 3) Body modeling; 4) Suspension modeling; 5) Tire modeling; 6) Driver modeling.
1)建模假设:1) Modeling assumptions:
通常,模型复杂程度越高或自由度数越多,仿真精度越高,但数值运算量也会随之增加并影响仿真实时性。因此,考虑必需的整车动力学耦合因素,进行相应的假设简化是必要的。车辆运动过程中必须考虑的耦合因素有:Generally, the higher the complexity of the model or the more degrees of freedom, the higher the simulation accuracy, but the amount of numerical operations will also increase and affect the real-time simulation. Therefore, considering the necessary vehicle dynamics coupling factors, it is necessary to make corresponding simplifications. The coupling factors that must be considered during vehicle motion are:
车轮转向引起的车辆横摆运动存在运动学和动力学相互耦合;轮胎与路面之间的相互作用是不容忽视的,其纵向和侧向轮胎力的分布受到附着摩擦椭圆的影响;车辆的纵-侧-垂向运动之间存在耦合性,车辆纵向和侧向加速运动会引起车辆垂向载荷转移,从而影响车辆垂向动力学,而垂向载荷的变化会影响轮胎附着特性和侧偏特性,对整车制动性和操稳性产生影响。 The yaw motion of the vehicle caused by wheel steering is coupled with kinematics and dynamics; The interaction between the tire and the road surface cannot be ignored, and the distribution of its longitudinal and lateral tire forces is affected by the traction ellipse; There is a coupling between the longitudinal-side-vertical motion of the vehicle. The longitudinal and lateral acceleration motion of the vehicle will cause the transfer of the vehicle's vertical load, which will affect the vehicle's vertical dynamics, while the change of the vertical load will affect the tire adhesion characteristics and side The partial characteristics have an impact on the braking performance and handling stability of the vehicle.
为简化建模过程,在充分考虑车辆耦合和强非线性的基础上,作以下假设:In order to simplify the modeling process, the following assumptions are made on the basis of fully considering the vehicle coupling and strong nonlinearity:
1、简化动力传动系统建模过程;2、忽略车轮定位参数不对称的影响,假设悬架中心距和轮距相等;3、假设侧倾中心和俯仰中心都位于汽车纵向平分面上,且侧倾轴线位于俯仰轴线上方;4、忽略簧下质量的侧倾和俯仰运动;5、假设簧下质量和簧上质量在垂直方向是弹性连接的,而在水平方向是刚性连接。1. Simplify the modeling process of the power transmission system; 2. Ignore the influence of the asymmetry of the wheel alignment parameters, and assume that the center distance of the suspension and the wheel distance are equal; The tilt axis is above the pitch axis; 4. Ignore the roll and pitch motion of the unsprung mass; 5. It is assumed that the unsprung mass and the sprung mass are elastically connected in the vertical direction and rigidly connected in the horizontal direction.
2)动力传动系统建模:2) Powertrain modeling:
为全面表征车辆实际工作过程中的发动机非稳态过程,在发动机稳态输出特性基础上加入具有滞后特性的一阶惯性环节,得到发动机的动态扭矩特性,即:In order to fully characterize the unsteady process of the engine in the actual working process of the vehicle, a first-order inertial link with hysteresis characteristics is added to the steady-state output characteristics of the engine, and the dynamic torque characteristics of the engine are obtained, namely:
(1) (1)
式中,为发动机动态输出扭矩,表示发动机的稳态扭矩特性函数,其为发动机转速和节气门开度的非线性函数,为时间常数,这里取。In the formula, is the dynamic output torque of the engine, Represents the steady-state torque characteristic function of the engine, which is the engine speed and throttle opening The nonlinear function of , is the time constant, which is taken here .
发动机输出力矩与输出转速之间的动力学关系为:The dynamic relationship between engine output torque and output speed is:
(2) (2)
式中,为发动机转动部件和离合器部分有效转动惯量;为发动机转动角加速度;为发动机飞轮输出扭矩;为离合器输入力矩。In the formula, Effective moment of inertia for engine rotating parts and clutch parts; is the rotational angular acceleration of the engine; Output torque for the engine flywheel; Input torque to the clutch.
所研究车辆装备双离合自动变速器,建模过程中不考虑双离合器的接合/分离过程,认为发动机的输出扭矩等于变速器的输入扭矩,即The vehicle under study is equipped with a dual-clutch automatic transmission. The engagement/disengagement process of the dual-clutch is not considered in the modeling process, and the output torque of the engine is considered to be equal to the input torque of the transmission, namely
(3) (3)
式中,为某档位变速器转动部件和传动轴有效转动惯量;和为变速器某档位传动角加速度和角速度;为车轮总的驱动扭矩;为变速器速比;为主减速器速比;为传动系统传动效率;为车轮角速度。In the formula, It is the effective moment of inertia of the rotating parts of a certain gear transmission and the transmission shaft; and It is the transmission angular acceleration and angular velocity for a certain gear of the transmission; is the total driving torque of the wheel; is the transmission speed ratio; The speed ratio of the main reducer; is the transmission efficiency of the transmission system; is the wheel angular velocity.
总的驱动力矩同时施加到两前轮,满足,车轮转动动力学方程如下:total drive torque Applied to both front wheels at the same time, satisfying , the wheel rotation dynamics equation is as follows:
(4) (4)
式中,为车轮等效转动惯量;和分别为车轮转动角速度和角加速度;为轮胎纵向力;为轮胎有效半径;和分别为车轮的驱动力矩和制动力矩;为车轮转动阻尼系数;分别对应左前、右前、左后和右后车轮。In the formula, is the equivalent moment of inertia of the wheel; and are the wheel rotational angular velocity and angular acceleration, respectively; is the longitudinal force of the tire; is the effective radius of the tire; and are the driving torque and braking torque of the wheel, respectively; is the wheel rotation damping coefficient; Corresponding to the left front, right front, left rear and right rear wheels, respectively.
3)车体建模3) Body modeling
车体包括簧上质量和簧下质量两部分,本发明基于拉格朗日分析力学建立车辆纵-侧-垂向统一动力学模型。The vehicle body includes two parts, the sprung mass and the unsprung mass. The present invention establishes a longitudinal-side-vertical unified dynamic model of the vehicle based on Lagrangian analytical mechanics.
车辆坐标系的原点与俯仰中心重合,侧倾中心相对于满足关系。簧上质量坐标系的原点与簧上质量质心重合,簧下质量主要对应四个非悬挂质量。惯性坐标系、车辆坐标系和簧上质量坐标系之间可以相互转换。若用方向余弦矩阵表示上述坐标旋转变换,即vehicle coordinate system the origin with pitch center Coincidence, Roll Center relative to Satisfy relation. sprung mass coordinate system the origin Coinciding with the center of mass of the sprung mass, the unsprung mass mainly corresponds to the four unsprung masses. inertial coordinate system , vehicle coordinate system and sprung mass coordinate system can be converted to each other. If the direction cosine matrix is used Represents the above coordinate rotation transformation, that is
(5) (5)
惯性坐标系、车辆坐标系和簧上质量坐标系之间的转换关系为:The transformation relationship between inertial coordinate system, vehicle coordinate system and sprung mass coordinate system is:
(6) (6)
根据前面定义和分析,车体部分共包含6个自由度,即簧下质量和簧上质量共有的纵向、侧向和横摆3个自由度,簧上质量具有的侧倾、俯仰和垂向3个自由度。分别求出簧上质量和簧下质量的平动和转动角速度,然后表示出各自的动能和势能。According to the previous definition and analysis, the body part contains a total of 6 degrees of freedom, namely the longitudinal, lateral and yaw degrees of freedom shared by the unsprung mass and the sprung mass, and the roll, pitch and vertical degrees of the sprung mass. 3 degrees of freedom. Find the translational and rotational angular velocities of the sprung mass and the unsprung mass, respectively, and then express their respective kinetic and potential energies.
根据坐标转换关系,簧上质量质心(簧上质量坐标系原点)在惯性坐标系下相对于点的绝对位置矢量和绝对速度矢量分别为:According to the coordinate transformation relationship, the center of mass of the sprung mass (the origin of the sprung mass coordinate system ) relative to the inertial coordinate system the absolute position vector of the point and the absolute velocity vector They are:
(7) (7)
(8) (8)
式中,为惯性坐标系下点相对于点的位置矢量;为车辆坐标系下点相对于点的位置矢量,表示为:In the formula, In the inertial coordinate system point relative to the position vector of the point; in the vehicle coordinate system point relative to The position vector of the point, expressed as:
(9) (9)
式中,为矢量的分量;为相对垂向距离;为相对垂向距离,。In the formula, as a vector the amount of; for relatively vertical distance; for relatively vertical distance, .
则惯性坐标系下点的平动速度,即Then in the inertial coordinate system The translational velocity of the point, that is
(10) (10)
记簧上质量绕其自身参考坐标轴的角速度为,则The angular velocity of the sprung mass about its own reference coordinate axis is ,but
(11) (11)
簧上质量的动能包括簧上质量的平动和转动两部分,即:The kinetic energy of the sprung mass includes translation and rotation of the sprung mass, namely:
(12) (12)
式中,为簧上质量;为簧上质量绕其质心惯性张量,考虑到簧上质量关于平面对称,则为:In the formula, is the sprung mass; for the sprung mass around its center of mass The inertia tensor, considering the sprung mass about plane symmetry, then for:
(13) (13)
式中,为簧上质量绕质心的转动惯量或惯性积。In the formula, for the sprung mass around the center of mass moment of inertia or product of inertia.
将式(10)(11)(13)代入式(12),得到簧上质量动能:Substitute equation (10) (11) (13) into equation (12) to get the sprung mass kinetic energy :
(14) (14)
同理,簧下质量动能由簧下质量的平动、转动以及四个车轮的跳动构成的,即:In the same way, the kinetic energy of the unsprung mass is composed of the translation, rotation of the unsprung mass and the beating of the four wheels, namely:
(15) (15)
总的动能为簧上质量动能和簧下质量动能之和,即。The total kinetic energy is the sprung mass kinetic energy and unsprung mass kinetic energy the sum, that is .
车体的势能包括簧上质量高度变化产生的重力势能 The potential energy of the car body includes the gravitational potential energy generated by the change in the height of the sprung mass
(16) (16)
式中,为簧上质量质心到非簧载质心的垂向位移;为簧上质量在其平衡点位置时的值。In the formula, is the vertical displacement from the sprung mass center to the unsprung mass center; is the sprung mass at its equilibrium point value of .
将车体总的动能、势能和耗散能量带入拉格朗日方程,再对其求偏导数,即可得到车体的运动方程,车体拉格朗日方程为:Bring the total kinetic energy, potential energy and dissipated energy of the car body into the Lagrangian equation, and then obtain the partial derivative of it, the motion equation of the car body can be obtained. The Lagrangian equation of the car body is:
(17) (17)
式中,为惯性坐标系下的广义坐标;为惯性坐标系下的广义力。In the formula, is the generalized coordinate in the inertial coordinate system; is the generalized force in the inertial coordinate system.
通常车辆的运动习惯于在车辆坐标系下描述,利用下面关系将(18)式中广义变量转换为车辆坐标系下的广义变量。Usually the motion of the vehicle is accustomed to be described in the vehicle coordinate system, and the generalized variables in equation (18) are converted into the generalized variables in the vehicle coordinate system using the following relationship.
(18) (18)
式中,为车辆坐标系下的广义坐标;为车辆坐标系下的广义力。In the formula, is the generalized coordinate in the vehicle coordinate system; is the generalized force in the vehicle coordinate system.
至此,得到六自由度车体模型的动力学方程So far, the dynamic equation of the six-degree-of-freedom vehicle body model is obtained.
(19) (19)
式中,,和为系数矩阵,为车辆坐标系下的广义坐标;为车辆坐标系下的广义力。In the formula, , and is the coefficient matrix, is the generalized coordinate in the vehicle coordinate system; is the generalized force in the vehicle coordinate system.
若忽略空气阻力,主要由地面轮胎力和悬架力产生,表示为:If air resistance is ignored, Mainly generated by ground tire force and suspension force, Expressed as:
(20) (20)
式中,为系数矩阵,In the formula, is the coefficient matrix,
为四个车轮在轮胎坐标系和方向的轮胎力,由轮胎模型得到;为四个车轮对应的悬架力,由悬架模型得到。 for the four wheels in the tire coordinate system and The tire force in the direction is obtained from the tire model; The suspension forces corresponding to the four wheels are obtained from the suspension model.
惯性坐标系下车辆的运动通过以下运动学关系得到:The motion of the vehicle in the inertial coordinate system is obtained by the following kinematic relationship:
(21) (twenty one)
式中,,为整车沿轴的纵向、侧向速度;,整车沿轴的纵向、侧向速度;为车辆的横摆角度。In the formula, , for the whole vehicle The longitudinal and lateral speed of the shaft; , vehicle edge The longitudinal and lateral speed of the shaft; is the yaw angle of the vehicle.
4)悬架建模: 4) Suspension modeling:
这里建立悬架模型的目的是求得悬架力和车轮的垂向载荷,并给出簧下质量的垂向运动方程。悬架力包括弹性元件的弹力、阻尼元件的阻尼力和横向稳定杆的垂向作用力,各个车轮对应的悬架力表示为The purpose of establishing the suspension model here is to obtain the suspension force and the vertical load of the wheel, and to give the vertical motion equation of the unsprung mass. The suspension force includes the elastic force of the elastic element, the damping force of the damping element and the vertical force of the stabilizer bar. The suspension force corresponding to each wheel is expressed as
(22) (twenty two)
式中,为弹性元件的刚度系数;为减振器阻尼力,其与控制电流、减振器的相对运动速度有关;为横向稳定杆产生的垂向作用力;为四个车轮的垂向位移;为簧上质量与四个悬架接触点的垂向位移,可由车身俯仰角、侧倾角、以及车辆几何参数算出。In the formula, is the stiffness coefficient of the elastic element; is the damping force of the shock absorber, which is related to the control current , the relative movement speed of the shock absorber related; is the vertical force generated by the stabilizer bar; is the vertical displacement of the four wheels; is the vertical displacement between the sprung mass and the four suspension contact points, which can be determined by the body pitch angle , roll angle , and the vehicle geometry parameters are calculated.
所述减振器阻尼力与控制电流、减振器相对运动速度之间的关系如图4~5所示。The damping force of the shock absorber The relationship between the control current and the relative movement speed of the shock absorber is shown in Figures 4-5.
车轮与地面的接触力为The contact force between the wheel and the ground is
(23) (twenty three)
式中,分别为四个车轮与地面的接触力,即车轮垂向运动的车轮动载荷;分别为各个车轮的刚度系数,为四个车轮对应的路面输入。In the formula, are the contact force between the four wheels and the ground, that is, the wheel dynamic load of the vertical motion of the wheel; are the stiffness coefficients of each wheel, respectively, Enter the road surface corresponding to the four wheels.
在悬架力和车轮与地面接触力的作用下,簧下质量的垂向运动方程为Under the action of the suspension force and the contact force of the wheel and the ground, the vertical motion equation of the unsprung mass is
(24) (twenty four)
车轮垂向载荷由静态法向力、纵向载荷转移量、侧向载荷转移量和轮胎动载荷构成,即The vertical load of the wheel consists of the static normal force, the longitudinal load transfer amount, the lateral load transfer amount and the tire dynamic load, namely
(25) (25)
式中,为四个车轮的垂向载荷;为车辆静止状态下四个车轮的垂向载荷;和分别为由车辆纵向载荷转移和侧向载荷转移引起的车轮垂向载荷变化量;为四个车轮的轮胎动载荷。In the formula, is the vertical load of the four wheels; is the vertical load of the four wheels when the vehicle is stationary; and are the changes in the vertical load of the wheel caused by the longitudinal load transfer and the lateral load transfer of the vehicle, respectively; Tire dynamic load for four wheels.
5)轮胎建模: 5) Tire modeling:
轮胎模型是轮胎六分力与车轮运动参数之间的数学关系描述。本发明用MF轮胎模型得到作用于车体的广义力,其形式为The tire model is the mathematical relationship between the tire six-component force and the wheel motion parameters. The present invention uses the MF tire model to obtain the generalized force acting on the vehicle body in the form of
(26) (26)
易知,轮胎力与车轮垂向载荷、纵向滑动率、轮胎侧偏角、路面附着系数和车轮外倾角有关。Easy to know, tire force vertical load with wheel , vertical sliding rate , Tire Slip Angle , road adhesion coefficient and wheel camber related.
6)驾驶员建模:6) Driver modeling:
仿真时需要对车辆动力学模型的速度和行驶方向进行控制,以保证车辆的速度和行驶轨迹符合期望值。速度控制采用PID控制,即During the simulation, it is necessary to control the speed and driving direction of the vehicle dynamics model to ensure that the speed and driving trajectory of the vehicle meet the expected values. The speed control adopts PID control, namely
(27) (27)
式中,为设定车速;为实际车速;为期望加速度;控制参数,,。In the formula, to set the speed; is the actual speed; is the desired acceleration; control parameter , , .
车辆动力学模型的行驶方向控制采用最优曲率驾驶员模型,根据驾驶员操纵特性,建立驾驶员特性参数和车辆模型参数之间的关系。The driving direction control of the vehicle dynamics model adopts the optimal curvature driver model. According to the driver's handling characteristics, the relationship between the driver's characteristic parameters and the vehicle model parameters is established.
所述I/O数据转换模块包括I/O数据转换卡和CAN转换卡,所述I/O数据转换卡将目标机计算得到的车辆各项动态参数信号从数字量转化为模拟量,其中的车身高度传感器信号和车身垂向加速度传感器信号直接发送DCC控制器,其余信号由CAN转换卡打包为CAN数据发送至网络接口卡,通过CAN总线传到DCC控制器中;I/O数据转换卡同时把电流采样模块输出的模拟量转化为数字量发送目标机,形成闭合回路。The I/O data conversion module includes an I/O data conversion card and a CAN conversion card. The I/O data conversion card converts various dynamic parameter signals of the vehicle calculated by the target computer from digital to analog. The body height sensor signal and the body vertical acceleration sensor signal are directly sent to the DCC controller, and the rest of the signals are packaged by the CAN conversion card as CAN data and sent to the network interface card, and transmitted to the DCC controller through the CAN bus; the I/O data conversion card simultaneously Convert the analog quantity output by the current sampling module into a digital quantity to send the target machine to form a closed loop.
所述监控机通过CAN转换卡对CAN总线上的数据进行实时监控采集,对数据进行后处理和分析。The monitoring machine performs real-time monitoring and collection on the data on the CAN bus through the CAN conversion card, and performs post-processing and analysis on the data.
所述DCC控制器包括MC9S12XDP512最小系统、信号输入模块和输出驱动模块,MC9S12XDP512最小系统包括电源模块、时钟电路、复位电路、BDM接口电路,信号输入模块包括滤波电路模块、分压电路模块和CAN信号收发电路模块,输出驱动模块包括PWM模块,电磁阀驱动电路模块和电流反馈电路模块;所述DCC控制器的输入信号包括车身高度传感器信号、加速度传感器信号、DCC模式选择信号和CAN信号;在DCC系统仿真过程中,给出各个减振器阻尼力的变化、减振器控制电流的变化,实时验证控制策略、调整控制参数直到获得满意控制效果。The DCC controller includes MC9S12XDP512 minimum system, signal input module and output driver module, MC9S12XDP512 minimum system includes power module, clock circuit, reset circuit, BDM interface circuit, signal input module includes filter circuit module, voltage divider circuit module and CAN signal A transceiver circuit module, the output drive module includes a PWM module, a solenoid valve drive circuit module and a current feedback circuit module; the input signal of the DCC controller includes a vehicle height sensor signal, an acceleration sensor signal, a DCC mode selection signal and a CAN signal; in the DCC In the process of system simulation, the change of damping force of each shock absorber and the change of control current of shock absorber are given, the control strategy is verified in real time, and the control parameters are adjusted until a satisfactory control effect is obtained.
所述减振器电磁阀包括四个比例电磁阀,其采用控制芯片输出的PWM与I/O端口进行控制,改变PWM的占空比可控制比例电磁阀的阀芯开度,从而改变减振器输出的阻尼力。The shock absorber solenoid valve includes four proportional solenoid valves, which are controlled by the PWM and I/O ports output by the control chip. Changing the duty cycle of the PWM can control the valve core opening of the proportional solenoid valve, thereby changing the vibration reduction. damper output.
所述电流采样模块包括高精度采样电阻、高阻抗放大器和滤波电路,高精度采样电阻串联在比例电磁阀的驱动电路中,高阻抗放大器放大采样电阻两端的电压,经滤波电路滤波后,输入至I/O数据转换卡中,反馈比例电磁阀当前的工作电流。The current sampling module includes a high-precision sampling resistor, a high-impedance amplifier and a filter circuit. The high-precision sampling resistor is connected in series with the drive circuit of the proportional solenoid valve. The high-impedance amplifier amplifies the voltage across the sampling resistor, and after being filtered by the filter circuit, input to In the I/O data conversion card, the current working current of the proportional solenoid valve is fed back.
所述网络接口卡为多节点CAN通信卡,实现由CAN转换卡到DCC控制器和USBCAN接口卡的CAN信号传输。The network interface card is a multi-node CAN communication card, which realizes the CAN signal transmission from the CAN conversion card to the DCC controller and the USBCAN interface card.
所述USBCAN接口卡对CAN总线上的数据进行实时采集,发送至监控机。The USBCAN interface card collects the data on the CAN bus in real time and sends it to the monitoring machine.
本发明的优越功效在于:The superior effect of the present invention is:
1) 实现了动态底盘控制系统控制器与执行器的硬件在环,对各种控制策略的预测结果更加明确;1) The hardware-in-the-loop of the controller and actuator of the dynamic chassis control system is realized, and the prediction results of various control strategies are more clear;
2) 在动态底盘控制系统控制器开发前期,采用硬件在环仿真试验台,可以对各种控制参数特别是在极端危险工况的控制参数进行优化;2) In the early stage of the development of the dynamic chassis control system controller, the hardware-in-the-loop simulation test bench can be used to optimize various control parameters, especially those in extreme dangerous conditions;
3) 可以测试装配动态底盘控制系统车辆的平顺性、弯道工况的防侧倾稳定性、起步工况的俯仰姿态控制、紧急工况下的轮胎附着特性以及横向稳定性;3) It can test the ride comfort of the vehicle equipped with the dynamic chassis control system, the anti-roll stability in cornering conditions, the pitch attitude control in starting conditions, the tire adhesion characteristics and lateral stability in emergency conditions;
4) 简化试验环境,测试得到的各项性能及获得的优化参数与实车试验比较接近;4) Simplify the test environment, the performance obtained from the test and the optimized parameters obtained are relatively close to the real vehicle test;
5) 以实时处理平台运行仿真模型来模拟车辆运行状态,对汽车动态底盘控制系统硬件进行全面的、系统测试,减少实车路试测试次数,有效降低试验故障风险,缩短开发时间及降低成本。5) Run the simulation model on the real-time processing platform to simulate the running state of the vehicle, conduct a comprehensive and systematic test of the hardware of the vehicle dynamic chassis control system, reduce the number of road tests of the real vehicle, effectively reduce the risk of test failure, shorten the development time and reduce the cost.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1为本发明的原理框图;Fig. 1 is the principle block diagram of the present invention;
图2为本发明宿主机的原理框图;Fig. 2 is the principle block diagram of the host machine of the present invention;
图3为本发明的车体运动学分析示意图;3 is a schematic diagram of the kinematics analysis of the vehicle body according to the present invention;
图4为本发明的前减振器阻尼特性曲线图;Fig. 4 is the damping characteristic curve diagram of the front shock absorber of the present invention;
图5为本发明的后减振器阻尼特性曲线图;Fig. 5 is the damping characteristic curve diagram of the rear shock absorber of the present invention;
图6为本发明CAN转换卡的电路原理框图;Fig. 6 is the circuit principle block diagram of CAN conversion card of the present invention;
图7为本发明DCC控制器的电路原理框图;Fig. 7 is the circuit principle block diagram of the DCC controller of the present invention;
图8为本发明的电流采样模块的电路原理框图;Fig. 8 is the circuit principle block diagram of the current sampling module of the present invention;
图9为本发明的工作流程图。FIG. 9 is a working flow chart of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。The embodiments of the present invention are described in detail below with reference to the accompanying drawings, but the present invention can be implemented in many different ways as defined and covered by the claims.
下面结合附图详细说明本发明的实施例。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1示出了本发明实施例的原理框图。如图1所示,本发明提供了一种汽车动态底盘控制系统硬件在环仿真试验台,包括宿主机1、目标机2、监控机3、I/O数据转换卡4、CAN转换卡5、网络接口卡6、USBCAN接口卡7,BDM下载器8、DCC控制器9、减振器电磁阀10和电流采样模块11。在宿主机1上,基于Matlab/Simulink平台搭建人-车-路闭环数字化仿真模型,通过RTW编译模块转化为可执行的C代码,经由以太网下载到目标机2的CPU中,DCC控制器9通过I/O数据转换卡4与目标机2保持通讯,实时采集目标机中人-车-路闭环数字化模型信息,并控制四个减振器电磁阀10,电流采集模块9实时采集四个减振器电磁阀的控制电流信号,并通过I/O数据转换卡4反馈给目标机2,形成闭环回路。监控机3上装有LabVIEW图形化数据采集软件,通过CAN转换卡5对CAN总线上的数据进行实时监控采集,对数据进行后处理和分析。DCC控制器里面的软件代码可在宿主机1或其他PC机上编写,通过BDM8烧结到DCC控制器9中。FIG. 1 shows a principle block diagram of an embodiment of the present invention. As shown in FIG. 1 , the present invention provides a hardware-in-the-loop simulation test bench for an automotive dynamic chassis control system, including a
基于上述软、硬件构成,建立由DCC控制器进行控制的汽车动态底盘控制系统硬件在环仿真试验台。Based on the above software and hardware components, a hardware-in-the-loop simulation test bench for automotive dynamic chassis control system controlled by DCC controller is established.
如图2所示,所述宿主机1为安装有Matlab/Simulink和Visual C++目标语言编译器软件环境的PC机,在宿主机1上建立人-车-路闭环数字化仿真模型,通过RTW编译模块可转化为可执行的C代码。As shown in Figure 2, the
为使所建立的动力学模型具有代表性,本发明提出一种车辆纵-侧-垂向动力学统一建模思路,在分析车辆多系统耦合的复杂非线性动力学行为特性的基础上,实现车辆纵-侧-垂向动力学非线性模型的数学理论解析和仿真建模,包括以下步骤:1)建模假设;2)动力传动系统建模;3)车体建模;4)悬架建模;5)轮胎建模;6)驾驶员建模。In order to make the established dynamic model representative, the present invention proposes a unified modeling idea of vehicle longitudinal-side-vertical dynamics. On the basis of analyzing the complex nonlinear dynamic behavior characteristics of vehicle multi-system coupling, the Mathematical theoretical analysis and simulation modeling of vehicle longitudinal-side-vertical dynamic nonlinear model, including the following steps: 1) modeling assumptions; 2) powertrain modeling; 3) vehicle body modeling; 4) suspension modeling; 5) tire modeling; 6) driver modeling.
1)建模假设:1) Modeling assumptions:
通常,模型复杂程度越高或自由度数越多,仿真精度越高,但数值运算量也会随之增加并影响仿真实时性。因此,考虑必需的整车动力学耦合因素,进行相应的假设简化是必要的。车辆运动过程中必须考虑的耦合因素有:Generally, the higher the complexity of the model or the more degrees of freedom, the higher the simulation accuracy, but the amount of numerical operations will also increase and affect the real-time simulation. Therefore, considering the necessary vehicle dynamics coupling factors, it is necessary to make corresponding simplifications. The coupling factors that must be considered during vehicle motion are:
1、车轮转向引起的车辆横摆运动存在运动学和动力学相互耦合;2、轮胎与路面之间的相互作用是不容忽视的,其纵向和侧向轮胎力的分布受到附着摩擦椭圆的影响;3、车辆的纵-侧-垂向运动之间存在耦合性,车辆纵向和侧向加速运动会引起车辆垂向载荷转移,从而影响车辆垂向动力学,而垂向载荷的变化会影响轮胎附着特性和侧偏特性,对整车制动性和操稳性产生影响。1. The yaw motion of the vehicle caused by wheel steering is coupled with kinematics and dynamics; 2. The interaction between the tire and the road surface cannot be ignored, and the distribution of the longitudinal and lateral tire forces is affected by the traction ellipse; 3. There is a coupling between the longitudinal-lateral-vertical motion of the vehicle. The longitudinal and lateral acceleration motion of the vehicle will cause the vertical load transfer of the vehicle, thereby affecting the vertical dynamics of the vehicle, and the change of the vertical load will affect the tire adhesion characteristics. and cornering characteristics, which have an impact on the braking performance and handling stability of the vehicle.
为简化建模过程,在充分考虑车辆耦合和强非线性的基础上,作以下假设:In order to simplify the modeling process, the following assumptions are made on the basis of fully considering the vehicle coupling and strong nonlinearity:
1、简化动力传动系统建模过程;2、忽略车轮定位参数不对称的影响,假设悬架中心距和轮距相等;3、假设侧倾中心和俯仰中心都位于汽车纵向平分面上,且侧倾轴线位于俯仰轴线上方;4、忽略簧下质量的侧倾和俯仰运动;5、假设簧下质量和簧上质量在垂直方向是弹性连接的,而在水平方向是刚性连接。1. Simplify the modeling process of the power transmission system; 2. Ignore the influence of the asymmetry of the wheel alignment parameters, and assume that the center distance of the suspension and the wheel distance are equal; The tilt axis is above the pitch axis; 4. Ignore the roll and pitch motion of the unsprung mass; 5. It is assumed that the unsprung mass and the sprung mass are elastically connected in the vertical direction and rigidly connected in the horizontal direction.
2)动力传动系统建模:2) Powertrain modeling:
为全面表征车辆实际工作过程中的发动机非稳态过程,在发动机稳态输出特性基础上加入具有滞后特性的一阶惯性环节,得到发动机的动态扭矩特性,即:In order to fully characterize the unsteady process of the engine in the actual working process of the vehicle, a first-order inertial link with hysteresis characteristics is added to the steady-state output characteristics of the engine, and the dynamic torque characteristics of the engine are obtained, namely:
(1) (1)
式中,为发动机动态输出扭矩,表示发动机的稳态扭矩特性函数,其为发动机转速和节气门开度的非线性函数,为时间常数,这里取。In the formula, is the dynamic output torque of the engine, Represents the steady-state torque characteristic function of the engine, which is the engine speed and throttle opening The nonlinear function of , is the time constant, which is taken here .
发动机输出力矩与输出转速之间的动力学关系为:The dynamic relationship between engine output torque and output speed is:
(2) (2)
式中,为发动机转动部件和离合器部分有效转动惯量;为发动机转动角加速度;为发动机飞轮输出扭矩;为离合器输入力矩。In the formula, Effective moment of inertia for engine rotating parts and clutch parts; is the rotational angular acceleration of the engine; Output torque for the engine flywheel; Input torque to the clutch.
所研究车辆装备双离合自动变速器,建模过程中不考虑双离合器的接合/分离过程,认为发动机的输出扭矩等于变速器的输入扭矩,即The vehicle under study is equipped with a dual-clutch automatic transmission. The engagement/disengagement process of the dual-clutch is not considered in the modeling process, and the output torque of the engine is considered to be equal to the input torque of the transmission, namely
(3) (3)
式中,为某档位变速器转动部件和传动轴有效转动惯量;和为变速器某档位传动角加速度和角速度;为车轮总的驱动扭矩;为变速器速比;为主减速器速比;为传动系统传动效率;为车轮角速度。In the formula, It is the effective moment of inertia of the rotating parts of a certain gear transmission and the transmission shaft; and It is the transmission angular acceleration and angular velocity for a certain gear of the transmission; is the total driving torque of the wheel; is the transmission speed ratio; The speed ratio of the main reducer; is the transmission efficiency of the transmission system; is the wheel angular velocity.
总的驱动力矩同时施加到两前轮,满足,车轮转动动力学方程如下:total drive torque Applied to both front wheels at the same time, satisfying , the wheel rotation dynamics equation is as follows:
(4) (4)
式中,为车轮等效转动惯量;和分别为车轮转动角速度和角加速度;为轮胎纵向力;为轮胎有效半径;和分别为车轮的驱动力矩和制动力矩;为车轮转动阻尼系数;分别对应左前、右前、左后和右后车轮。In the formula, is the equivalent moment of inertia of the wheel; and are the wheel rotational angular velocity and angular acceleration, respectively; is the longitudinal force of the tire; is the effective radius of the tire; and are the driving torque and braking torque of the wheel, respectively; is the wheel rotation damping coefficient; Corresponding to the left front, right front, left rear and right rear wheels, respectively.
3)车体建模3) Body modeling
车体包括簧上质量和簧下质量两部分,本发明基于拉格朗日分析力学建立车辆纵-侧-垂向统一动力学模型。The vehicle body includes two parts, the sprung mass and the unsprung mass. The present invention establishes a longitudinal-side-vertical unified dynamic model of the vehicle based on Lagrangian analytical mechanics.
车辆坐标系的原点与俯仰中心重合,侧倾中心相对于满足关系。簧上质量坐标系的原点与簧上质量质心重合,簧下质量主要对应四个非悬挂质量。惯性坐标系、车辆坐标系和簧上质量坐标系之间可以相互转换。若用方向余弦矩阵表示上述坐标旋转变换,即vehicle coordinate system the origin with pitch center Coincidence, Roll Center relative to Satisfy relation. sprung mass coordinate system the origin Coinciding with the center of mass of the sprung mass, the unsprung mass mainly corresponds to the four unsprung masses. inertial coordinate system , vehicle coordinate system and sprung mass coordinate system can be converted to each other. If the direction cosine matrix is used Represents the above coordinate rotation transformation, that is
(5) (5)
惯性坐标系、车辆坐标系和簧上质量坐标系之间的转换关系为:The transformation relationship between inertial coordinate system, vehicle coordinate system and sprung mass coordinate system is:
(6) (6)
根据前面定义和分析,车体部分共包含6个自由度,即簧下质量和簧上质量共有的纵向、侧向和横摆3个自由度,簧上质量具有的侧倾、俯仰和垂向3个自由度。分别求出簧上质量和簧下质量的平动和转动角速度,然后表示出各自的动能和势能。According to the previous definition and analysis, the body part contains a total of 6 degrees of freedom, namely the longitudinal, lateral and yaw degrees of freedom shared by the unsprung mass and the sprung mass, and the roll, pitch and vertical degrees of the sprung mass. 3 degrees of freedom. Find the translational and rotational angular velocities of the sprung mass and the unsprung mass, respectively, and then express their respective kinetic and potential energies.
根据坐标转换关系,簧上质量质心(簧上质量坐标系原点)在惯性坐标系下相对于点的绝对位置矢量和绝对速度矢量分别为:According to the coordinate transformation relationship, the center of mass of the sprung mass (the origin of the sprung mass coordinate system ) relative to the inertial coordinate system the absolute position vector of the point and the absolute velocity vector They are:
(7) (7)
(8) (8)
式中,为惯性坐标系下点相对于点的位置矢量;为车辆坐标系下点相对于点的位置矢量,表示为:In the formula, In the inertial coordinate system point relative to the position vector of the point; in the vehicle coordinate system point relative to The position vector of the point, expressed as:
(9) (9)
式中,为矢量的分量;为相对垂向距离;为相对垂向距离,。In the formula, as a vector the amount of; for relatively vertical distance; for relatively vertical distance, .
则惯性坐标系下点的平动速度,即Then in the inertial coordinate system The translational velocity of the point, that is
(10) (10)
记簧上质量绕其自身参考坐标轴的角速度为,则The angular velocity of the sprung mass about its own reference coordinate axis is ,but
(11) (11)
簧上质量的动能包括簧上质量的平动和转动两部分,即:The kinetic energy of the sprung mass includes translation and rotation of the sprung mass, namely:
(12) (12)
式中,为簧上质量;为簧上质量绕其质心惯性张量,考虑到簧上质量关于平面对称,则为:In the formula, is the sprung mass; for the sprung mass around its center of mass The inertia tensor, considering the sprung mass about plane symmetry, then for:
(13) (13)
式中,为簧上质量绕质心的转动惯量或惯性积。In the formula, for the sprung mass around the center of mass moment of inertia or product of inertia.
将式(10)(11)(13)代入式(12),得到簧上质量动能:Substitute equation (10) (11) (13) into equation (12) to get the sprung mass kinetic energy :
(14) (14)
同理,簧下质量动能由簧下质量的平动、转动以及四个车轮的跳动构成的,即:In the same way, the kinetic energy of the unsprung mass is composed of the translation, rotation of the unsprung mass and the beating of the four wheels, namely:
(15) (15)
总的动能为簧上质量动能和簧下质量动能之和,即。The total kinetic energy is the sprung mass kinetic energy and unsprung mass kinetic energy the sum, that is .
车体的势能包括簧上质量高度变化产生的重力势能 The potential energy of the car body includes the gravitational potential energy generated by the change in the height of the sprung mass
(16) (16)
式中,为簧上质量质心到非簧载质心的垂向位移;为簧上质量在其平衡点位置时的值。In the formula, is the vertical displacement from the sprung mass center to the unsprung mass center; is the sprung mass at its equilibrium point value of .
将车体总的动能、势能和耗散能量带入拉格朗日方程,再对其求偏导数,即可得到车体的运动方程,车体拉格朗日方程为:Bring the total kinetic energy, potential energy and dissipated energy of the car body into the Lagrangian equation, and then obtain the partial derivative of it, the motion equation of the car body can be obtained. The Lagrangian equation of the car body is:
(17) (17)
式中,为惯性坐标系下的广义坐标;为惯性坐标系下的广义力。In the formula, is the generalized coordinate in the inertial coordinate system; is the generalized force in the inertial coordinate system.
通常车辆的运动习惯于在车辆坐标系下描述,利用下面关系将(18)式中广义变量转换为车辆坐标系下的广义变量。Usually the motion of the vehicle is accustomed to be described in the vehicle coordinate system, and the generalized variables in equation (18) are converted into the generalized variables in the vehicle coordinate system using the following relationship.
(18) (18)
式中,为车辆坐标系下的广义坐标;为车辆坐标系下的广义力。In the formula, is the generalized coordinate in the vehicle coordinate system; is the generalized force in the vehicle coordinate system.
至此,得到六自由度车体模型的动力学方程So far, the dynamic equation of the six-degree-of-freedom vehicle body model is obtained.
(19) (19)
式中,,和为系数矩阵,为车辆坐标系下的广义坐标;为车辆坐标系下的广义力。In the formula, , and is the coefficient matrix, is the generalized coordinate in the vehicle coordinate system; is the generalized force in the vehicle coordinate system.
若忽略空气阻力,主要由地面轮胎力和悬架力产生,表示为:If air resistance is ignored, Mainly generated by ground tire force and suspension force, Expressed as:
(20) (20)
式中,为系数矩阵,In the formula, is the coefficient matrix,
为四个车轮在轮胎坐标系和方向的轮胎力,由轮胎模型得到;为四个车轮对应的悬架力,由悬架模型得到。 for the four wheels in the tire coordinate system and The tire force in the direction is obtained from the tire model; The suspension forces corresponding to the four wheels are obtained from the suspension model.
惯性坐标系下车辆的运动通过以下运动学关系得到:The motion of the vehicle in the inertial coordinate system is obtained by the following kinematic relationship:
(21) (twenty one)
式中,,为整车沿轴的纵向、侧向速度;,整车沿轴的纵向、侧向速度;为车辆的横摆角度。In the formula, , for the whole vehicle The longitudinal and lateral speed of the shaft; , vehicle edge The longitudinal and lateral speed of the shaft; is the yaw angle of the vehicle.
4)悬架建模: 4) Suspension modeling:
这里建立悬架模型的目的是求得悬架力和车轮的垂向载荷,并给出簧下质量的垂向运动方程。悬架力包括弹性元件的弹力、阻尼元件的阻尼力和横向稳定杆的垂向作用力,各个车轮对应的悬架力表示为The purpose of establishing the suspension model here is to obtain the suspension force and the vertical load of the wheel, and to give the vertical motion equation of the unsprung mass. The suspension force includes the elastic force of the elastic element, the damping force of the damping element and the vertical force of the stabilizer bar. The suspension force corresponding to each wheel is expressed as
(22) (twenty two)
式中,为弹性元件的刚度系数;为减振器阻尼力,其与控制电流、减振器的相对运动速度有关;为横向稳定杆产生的垂向作用力;为四个车轮的垂向位移;为簧上质量与四个悬架接触点的垂向位移,可由车身俯仰角、侧倾角、以及车辆几何参数算出。In the formula, is the stiffness coefficient of the elastic element; is the damping force of the shock absorber, which is related to the control current , the relative movement speed of the shock absorber related; is the vertical force generated by the stabilizer bar; is the vertical displacement of the four wheels; is the vertical displacement between the sprung mass and the four suspension contact points, which can be determined by the body pitch angle , roll angle , and the vehicle geometry parameters are calculated.
所述减振器阻尼力与控制电流、减振器相对运动速度之间的关系如图4~5所示。The damping force of the shock absorber The relationship between the control current and the relative movement speed of the shock absorber is shown in Figures 4-5.
车轮与地面的接触力为The contact force between the wheel and the ground is
(23) (twenty three)
式中,分别为四个车轮与地面的接触力,即车轮垂向运动的车轮动载荷;分别为各个车轮的刚度系数,为四个车轮对应的路面输入。In the formula, are the contact force between the four wheels and the ground, that is, the wheel dynamic load of the vertical motion of the wheel; are the stiffness coefficients of each wheel, respectively, Enter the road surface corresponding to the four wheels.
在悬架力和车轮与地面接触力的作用下,簧下质量的垂向运动方程为Under the action of the suspension force and the contact force of the wheel and the ground, the vertical motion equation of the unsprung mass is
(24) (twenty four)
车轮垂向载荷由静态法向力、纵向载荷转移量、侧向载荷转移量和轮胎动载荷构成,即The vertical load of the wheel consists of the static normal force, the longitudinal load transfer amount, the lateral load transfer amount and the tire dynamic load, namely
(25) (25)
式中,为四个车轮的垂向载荷;为车辆静止状态下四个车轮的垂向载荷;和分别为由车辆纵向载荷转移和侧向载荷转移引起的车轮垂向载荷变化量;为四个车轮的轮胎动载荷。In the formula, is the vertical load of the four wheels; is the vertical load of the four wheels when the vehicle is stationary; and are the changes in the vertical load of the wheel caused by the longitudinal load transfer and the lateral load transfer of the vehicle, respectively; Tire dynamic load for four wheels.
5)轮胎建模: 5) Tire modeling:
轮胎模型是轮胎六分力与车轮运动参数之间的数学关系描述。本发明用MF轮胎模型得到作用于车体的广义力,其形式为The tire model is the mathematical relationship between the tire six-component force and the wheel motion parameters. The present invention uses the MF tire model to obtain the generalized force acting on the vehicle body in the form of
(26) (26)
易知,轮胎力与车轮垂向载荷、纵向滑动率、轮胎侧偏角、路面附着系数和车轮外倾角有关。Easy to know, tire force vertical load with wheel , vertical sliding rate , Tire Slip Angle , road adhesion coefficient and wheel camber related.
6)驾驶员建模:6) Driver modeling:
仿真时需要对车辆动力学模型的速度和行驶方向进行控制,以保证车辆的速度和行驶轨迹符合期望值。速度控制采用PID控制,即During the simulation, it is necessary to control the speed and driving direction of the vehicle dynamics model to ensure that the speed and driving trajectory of the vehicle meet the expected values. The speed control adopts PID control, namely
(27) (27)
式中,为设定车速;为实际车速;为期望加速度;控制参数,,。In the formula, to set the speed; is the actual speed; is the desired acceleration; control parameter , , .
车辆动力学模型的行驶方向控制采用最优曲率驾驶员模型,根据驾驶员操纵特性,建立驾驶员特性参数和车辆模型参数之间的关系。The driving direction control of the vehicle dynamics model adopts the optimal curvature driver model. According to the driver's handling characteristics, the relationship between the driver's characteristic parameters and the vehicle model parameters is established.
所述目标机2为研华610H工控机,并通过数据转换模块实现目标机2和DCC控制器9之间的通讯。The
所述数据转换模块包括I/O数据转换卡4(研华PCL-818L和PCL-726)和CAN转换卡5。I/O数据转换卡4将目标机2计算得到的车辆各项动态参数信号从数字量转化为模拟量,其中的车身高度传感器信号和车身垂向加速度传感器信号直接供DCC控制器9接收,其余信号由CAN转换卡5打包为CAN消息发送至网络接口卡6上,通过CAN总线传到DCC控制器9中。I/O数据转换卡4同时把电流采样模块11输出的模拟量转化为数字量供目标机2接收,从而形成闭合回路。The data conversion module includes an I/O data conversion card 4 (Advantech PCL-818L and PCL-726) and a
所述CAN转换卡5的电路原理如图6所示,本发明根据DCC控制器9的信号采集模块输入要求,以Freescale飞思卡尔8位控制芯片为核心设计CAN转换卡,将I/O数据转换卡4输出的车辆各项动态参数信号转换为CAN消息发送至网络接口卡6上,供DCC控制器9和USBCAN接口卡7接收。The circuit principle of the
所述DCC控制器9的电路原理如图7所示,本发明根据DCC系统的特点,以Freescale(飞思卡尔)16位控制芯片MC9S12XDP512为核心,自行开发设计DCC控制器,其输入信号包括车身高度传感器信号、加速度传感器信号、DCC模式选择信号和CAN信号。DCC控制器包括MC9S12XDP512最小系统、信号输入模块和输出驱动模块。MC9S12XDP512最小系统包括电源模块、时钟电路、复位电路、BDM接口电路等组成;信号输入模块包括滤波电路模块、分压电路模块和CAN信号收发电路模块;输出驱动模块包括PWM模块,电磁阀驱动电路模块和电流反馈电路模块。The circuit principle of the
所述减振器电磁阀10包括四个比例电磁阀,采用控制芯片输出的PWM与I/O端口进行控制。以Infineon(英飞凌)的BTS5090作为驱动芯片,通过I/O端口控制,改变PWM的占空比可实现比例电磁阀的阀芯开度,从而改变减振器输出的阻尼力。The shock absorber solenoid valve 10 includes four proportional solenoid valves, which are controlled by the PWM and I/O ports output by the control chip. Using Infineon's BTS5090 as the driver chip, through the I/O port control, changing the duty cycle of the PWM can realize the valve core opening of the proportional solenoid valve, thereby changing the damping force output by the shock absorber.
所述电流采样模块11如图8所示,包括高精度采样电阻、高阻抗放大器和滤波电路。通过在比例电磁阀驱动电路中串联一个高精度采样电阻,并使用高阻抗的差分放大器放大采样电阻两端的电压,再经过RC滤波电路,降低信号中的高频噪声。最后将滤波后的信号输入至宿主机1的I/O数据转换板卡4中,即可确定比例电磁阀当前的工作电流。The
所述网络接口卡6为多节点CAN通信卡,以实现由CAN转换卡5到DCC控制器9和USBCAN接口卡7的CAN信号传输。The
所述USBCAN接口卡7为ZLG USBCAN-II智能CAN接口卡,用于对CAN总线上的消息进行实时采集。The
所述监控机3为装有LabVIEW图形化数据采集软件的PC机,通过USBCAN接口卡7与网络接口卡6相连,实时采集目标机2与DCC控制器9的交互信息,监控试验过程中的异常数据,并保存数据以便进行后处理及分析。The
所述BDM8用于将宿主机1或其他PC机上编写的控制代码烧结到DCC控制器9中,实现对微处理器Flash的读写和擦除操作,并方便对控制代码的运行进行在线跟踪与调试,提升控制器开发效率。The BDM8 is used to sinter the control code written on the
经过以上步骤,建立一个动态底盘控制系统硬件在环仿真试验台,硬件在环仿真试验台就可以运行并对电控单元的控制参数做出评价。人-车-路闭环系统模型在目标机2中运行,DCC控制器9根据目标机2实时给出的车辆信息,如高度传感器信号、加速度传感器信号、DCC模式选择信号、CAN信号等,控制电磁阀10的工作状态,电路采集模块9将此时对应的减振器电流通过数据板卡反馈给目标机2的CPU,监控机3通过USBCAN接口卡7实时判断试验结果。After the above steps, a hardware-in-the-loop simulation test bench for the dynamic chassis control system is established, and the hardware-in-the-loop simulation test bench can run and evaluate the control parameters of the electronic control unit. The human-vehicle-road closed-loop system model runs in the
如图9所示为本发明的工作流程图,硬件在环仿真试验台可以对不同工况和不同模式下的控制效果进行评价,每次仿真结束,都能给出相应的结果进行评价。在DCC系统仿真过程中,能够全面给出各个减振器阻尼力的变化、减振器控制电流的变化等,从而实时验证控制策略、调整控制参数直到获得满意控制效果。Figure 9 shows the working flow chart of the present invention. The hardware-in-the-loop simulation test bench can evaluate the control effect under different working conditions and different modes. After each simulation, the corresponding results can be given for evaluation. In the simulation process of the DCC system, the change of the damping force of each shock absorber and the change of the control current of the shock absorber can be comprehensively given, so as to verify the control strategy in real time and adjust the control parameters until a satisfactory control effect is obtained.
另外,硬件在环仿真试验台还可以实现车辆底盘、轮胎、传动系各部件参数的优化匹配,并可实现车辆在极限危险工况下的控制参数调试,可检测、调试所设计的电子控制单元3的电路故障。In addition, the hardware-in-the-loop simulation test bench can also realize the optimal matching of the parameters of the vehicle chassis, tires, and drive train components, and can realize the debugging of the control parameters of the vehicle under extreme dangerous conditions, and can detect and debug the designed electronic control unit. 3 circuit failure.
由于实现了DCC控制器9及减振器电磁阀的硬件在环,测试得到的各项性能及获得优化参数与实车试验比较接近,从而显著减少实车试验的次数,缩短了开发周期的同时还节省了大量的开发成本。Due to the realization of the hardware-in-the-loop of the
以上所述仅为本发明的优先实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710402031.3A CN107092245B (en) | 2017-06-01 | 2017-06-01 | Hardware-in-loop simulation test bed for automobile dynamic chassis control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710402031.3A CN107092245B (en) | 2017-06-01 | 2017-06-01 | Hardware-in-loop simulation test bed for automobile dynamic chassis control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107092245A CN107092245A (en) | 2017-08-25 |
CN107092245B true CN107092245B (en) | 2020-11-17 |
Family
ID=59639877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710402031.3A Active CN107092245B (en) | 2017-06-01 | 2017-06-01 | Hardware-in-loop simulation test bed for automobile dynamic chassis control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107092245B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107766679B (en) * | 2017-11-15 | 2021-03-02 | 厦门理工学院 | Bus chassis module redesign method based on interface digital expression |
CN109100954A (en) * | 2018-08-06 | 2018-12-28 | 大连理工大学 | A kind of controller hardware assemblage on-orbit platform method for building up |
JP7077895B2 (en) * | 2018-09-21 | 2022-05-31 | トヨタ自動車株式会社 | Operation evaluation device, operation evaluation system, operation evaluation method, and computer program for operation evaluation |
CN109657393B (en) * | 2018-12-28 | 2024-01-12 | 上汽通用五菱汽车股份有限公司 | Simulation platform and simulation method for matching tire with chassis electric control system |
CN109857082B (en) * | 2018-12-29 | 2021-12-07 | 盛瑞传动股份有限公司 | Automatic transmission diagnostic method and apparatus |
CN110674565A (en) * | 2019-08-28 | 2020-01-10 | 同济大学 | An in-the-loop simulation method and platform for a vehicle-road collaborative system |
CN110985566B (en) * | 2019-12-28 | 2021-10-29 | 中国第一汽车股份有限公司 | Vehicle starting control method and device, vehicle and storage medium |
CN111123900A (en) * | 2020-01-21 | 2020-05-08 | 厦门金龙联合汽车工业有限公司 | Hardware-in-loop test system for vehicle controller of four-wheel distributed drive electric bus |
CN114675613A (en) * | 2020-12-24 | 2022-06-28 | 上海保隆汽车科技股份有限公司 | Vehicle intelligence suspension controller test system |
CN113296443B (en) * | 2021-05-24 | 2022-08-26 | 中国汽车工程研究院股份有限公司 | Road noise control analysis system based on chassis parameter model selection |
CN115480550A (en) * | 2021-05-31 | 2022-12-16 | 宇通客车股份有限公司 | Chassis integrated controller test system |
CN113553660A (en) * | 2021-06-30 | 2021-10-26 | 的卢技术有限公司 | Combined simulation method for controlling damping force of automobile wheel-side shock absorber |
CN113791598B (en) * | 2021-07-29 | 2024-04-26 | 哈尔滨理工大学 | Four-wheel moment distribution ring testing device under extreme working condition and torque optimizing method |
CN114312201B (en) * | 2022-02-10 | 2023-07-14 | 同济大学 | Data filtering method for height sensor in electronically controlled air suspension system |
CN115200904B (en) * | 2022-06-24 | 2025-04-18 | 中国第一汽车股份有限公司 | Bench test method, medium and electronic equipment for air suspension system |
CN115452411B (en) * | 2022-09-02 | 2024-04-12 | 合肥工业大学 | Intelligent network connection automobile drive-by-wire chassis all-hardware in-loop coordination control method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308386A (en) * | 2008-07-10 | 2008-11-19 | 同济大学 | Hardware-in-the-loop simulation test bench for integrated controller of automobile chassis |
DE102013203431A1 (en) * | 2013-02-28 | 2014-08-28 | Zf Friedrichshafen Ag | Rotary damper for a vehicle |
CN104748981A (en) * | 2015-04-16 | 2015-07-01 | 福州大学 | New energy vehicle testing system based on driver-vehicle-road closed-loop control |
CN105974821A (en) * | 2016-05-16 | 2016-09-28 | 江苏大学 | Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper |
CN106515716A (en) * | 2016-10-24 | 2017-03-22 | 沈阳工业大学 | Coordinated control device and method for chassis integrated control system of wheel-driven electric vehicle |
-
2017
- 2017-06-01 CN CN201710402031.3A patent/CN107092245B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308386A (en) * | 2008-07-10 | 2008-11-19 | 同济大学 | Hardware-in-the-loop simulation test bench for integrated controller of automobile chassis |
DE102013203431A1 (en) * | 2013-02-28 | 2014-08-28 | Zf Friedrichshafen Ag | Rotary damper for a vehicle |
CN104748981A (en) * | 2015-04-16 | 2015-07-01 | 福州大学 | New energy vehicle testing system based on driver-vehicle-road closed-loop control |
CN105974821A (en) * | 2016-05-16 | 2016-09-28 | 江苏大学 | Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper |
CN106515716A (en) * | 2016-10-24 | 2017-03-22 | 沈阳工业大学 | Coordinated control device and method for chassis integrated control system of wheel-driven electric vehicle |
Non-Patent Citations (2)
Title |
---|
基于dSPACE的液力机械式自动变速器电磁阀控制方法研究;蔡文文等;《汽车技术》;20150124(第1期);第18-20、26页 * |
基于TruckSim的旅游客车制动安全性建模与仿真研究;白会涛;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20170515(第5期);第25-37页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107092245A (en) | 2017-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107092245B (en) | Hardware-in-loop simulation test bed for automobile dynamic chassis control system | |
Masouleh et al. | Optimizing the aero-suspension interactions in a formula one car | |
Kavitha et al. | Adaptive suspension strategy for a double wishbone suspension through camber and toe optimization | |
Yan et al. | Chassis control system development using simulation: software in the loop, rapid prototyping, and hardware in the loop | |
CN105539052A (en) | Controllable suspension sliding mode tracking controller taking vehicle steady state as reference | |
Kikuchi et al. | Model following damping force control for vehicle body motion during transient cornering | |
CN115963836A (en) | Path tracking and vehicle body posture cooperative control method | |
CN113378408B (en) | Optimal control method for whole vehicle coupling of electric control suspension | |
Kanchwala et al. | Pitch reduction and traction enhancement of an EV by real-time brake biasing and in-wheel motor torque control | |
Thommyppillai et al. | Advances in the development of a virtual car driver | |
CN114675613A (en) | Vehicle intelligence suspension controller test system | |
Wright et al. | The case for an irreversible active suspension system | |
HOSSEINIAN AHANGARNEJAD | Integrated control of active vehicle chassis control systems | |
CN114925447B (en) | Method for establishing dynamic model of multi-body system of two-axis electric drive vehicle | |
CN117693458A (en) | Method for determining an indirectly measurable driving state variable of a vehicle | |
Miano et al. | On the integrated design of the tyre-suspension system of a racing car | |
CN108891222B (en) | Method for adjusting state of motor vehicle by electric control suspension system and electric control suspension system | |
Siramdasu | Discrete Tire Model Application for Vehicle Dynamics Performance Enhancement | |
EP4180889B1 (en) | Method for monitoring health status of a chassis system of a vehicle | |
Du et al. | Control strategy for four-wheel steering vehicle based on collaborative simulation | |
AU2020103234A4 (en) | Development and enhancement of a smart and active four-wheel suspension system | |
Knobel et al. | Development and verification of a series car Modelica/Dymola multibody model to investigate vehicle dynamics systems | |
De Bruyne et al. | Improving active suspension performance by means of advanced vehicle state and parameter estimation | |
CN107169154A (en) | A kind of limited-slip differential adjusting process of kart | |
Tzortzis | Development of a novel active camber angle control system applied on prototype electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Ma Chang Inventor after: Qin Yangyang Inventor after: Jin Jie Inventor after: Ju Lijuan Inventor after: Dou Chuanwei Inventor after: Sun Anning Inventor after: Wei Hong Inventor after: Xiong Yunliang Inventor after: Wu Guangqiang Inventor after: Zhang Liangxiu Inventor after: Wang Yu Inventor after: Guo Jiongmin Inventor before: Wu Guangqiang Inventor before: Zhang Liangxiu Inventor before: Wang Yu Inventor before: Guo Jiongmin Inventor before: Qin Yangyang Inventor before: Jin Jie Inventor before: Ju Lijuan |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20171121 Address after: 201805 Shanghai city Jiading District Anting Road No. 123 Applicant after: SAIC VOLKSWAGEN AUTOMOTIVE COMPANY LIMITED Applicant after: Tongji University Address before: 200092 Shanghai City, Yangpu District Siping Road No. 1239 Applicant before: Tongji University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |