CN107086916A - A kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer - Google Patents

A kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer Download PDF

Info

Publication number
CN107086916A
CN107086916A CN201710368880.1A CN201710368880A CN107086916A CN 107086916 A CN107086916 A CN 107086916A CN 201710368880 A CN201710368880 A CN 201710368880A CN 107086916 A CN107086916 A CN 107086916A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mfrac
tau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710368880.1A
Other languages
Chinese (zh)
Other versions
CN107086916B (en
Inventor
杨宁宁
吴朝俊
贾嵘
韩宇超
徐诚
程书灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710368880.1A priority Critical patent/CN107086916B/en
Publication of CN107086916A publication Critical patent/CN107086916A/en
Application granted granted Critical
Publication of CN107086916B publication Critical patent/CN107086916B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Feedback Control In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer, specifically implement according to following steps:Step 1, selection drives chaos system and calculates the amount of state information y of the driving chaos system1,y2,y3;Step 2, the amount of state information x of the system for tracking of the driving chaos system is calculated1,x2,x3;Step 3, error system e is tried to achieve according to the amount of state information of the driving chaos system and its system for tracking1,e2,e3;Step 4, fractional order sliding-mode surface s (t) is set;Step 5, error feedback synchronization control rate u is built1,u2,u3, add adaptation coefficient.It can effectively realize that driving chaos system is synchronous with its system for tracking.

Description

A kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer
Technical field
The invention belongs to autocontrol method technical field, it is related to a kind of chaos based on fractional order adaptive sliding-mode observer System synchronization method.
Background technology
Chaos is that occur it is determined that random motion seemingly in system, is prevalent in natural science and social science In.The research of chaos is the information orderly, with practical value existed behind for discovery chaotic systems behavior, so that real Now to the utilization of chaos.Chaotic Synchronous as chaos applications emphasis problem, because it is in information security fields such as secret communications Huge applications are worth and received much concern.
The synchronization of chaos allows controlled chaos system track according to target chaos system from will be broadly a kind of control of chaos System track motion, is a class control problem.The research of Chaotic Synchronous is not limited to the synchronization between two systems, has been extended to multiple systems Synchronization between system, the i.e. dynamic (dynamical) synchronization of complex network node.In addition, fractional calculus pushing away as integer rank calculus Extensively, the abundant dynamic behavior during original integer level can be united is expanded, reality that can be in truer simulation nature Border system.
Research at this stage is generally basede on integer rank calculus, realizes that Synchronization of Chaotic Systems is slower.
The content of the invention
It is an object of the invention to provide a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer, can have Effect realizes that driving chaos system is synchronous with its system for tracking.
The technical solution adopted in the present invention is, a kind of Synchronization of Chaotic Systems side based on fractional order adaptive sliding-mode observer Method, specifically implements according to following steps:
Step 1, selection drives chaos system and calculates the amount of state information y of the driving chaos system1,y2,y3
Step 2, the amount of state information x of the system for tracking of the driving chaos system is calculated1,x2,x3
Step 3, error system e is tried to achieve according to the amount of state information of the driving chaos system and its system for tracking1,e2,e3
Step 4, fractional order sliding-mode surface s (t) is set, it is ensured that driving chaos system is restrained on this sliding-mode surface;
Step 5, error feedback synchronization control rate u is built1,u2,u3, add adaptation coefficient.
The features of the present invention is also resided in,
The amount of state information y of driving chaos system in step 11,y2,y3Specially:
Wherein, U1To be applied to y1On controlled quentity controlled variable;τ is the function of time after a normalized;U2To be applied to y2 On controlled quentity controlled variable;U3To be applied to y3On controlled quentity controlled variable, m be the mission nonlinear part, q be error system actual exponent number.
The amount of state information x of system for tracking in step 21,x2,x3Specially:
Error system e in step 31,e2,e3Specially:
The setting fractional order sliding-mode surface s (t) of step 4 specific method is:
Step 4.1, the definition of fractional calculus is selected, is specially:
In formula, q is fractional calculus number and meets l-1 < q≤l, and a is the lower bound that initial value t is integration, and Γ () is Gamma functions.
Step 4.2, choose and specify sliding-mode surface, be specially:
Wherein, i=1,2,3, α span is 0-1, and q is the actual exponent number of error system, and sgn is sign function, public D in formulaq-1It is fractional calculus operator, is specifically obtained using the formula in step 4.1, step 4.1 mid-score rank calculus Concrete numerical value is tried to achieve by Oustaloup filtered methods.
Structure error feedback synchronization control rate u described in step 51,u2,u3, adding adaptation coefficient specific method is:
Step 5.1, error feedback synchronization control rate is built:
U (t)=- Bx-g (y)+Ax+f (x)-sgn (ei)|ei|α
Wherein, B and A is driving chaos system and the coefficient matrix of its system for tracking, and g (y) and f (x) are driving chaos system Nonlinear terms part in system, works as i=1, when 2,3, respectively obtains Synchronization Control rate u1,u2,u3
Step 5.2, adaptation coefficient is added in the Synchronization Control rate tried to achieve to step 5.1, system is allowed according to error size Convergence faster, definitionThen,
In formula, θ is adaptation coefficient, n=3.
The beneficial effects of the invention are as follows a kind of method of fractional order sliding formwork control realizes the synchronization of chaos system, Neng Gougen According to control information Real-time Feedback, according to control information self-adaption regulation system, driving chaos system and its system for tracking are realized It is synchronous.
Brief description of the drawings
Fig. 1 for system for tracking in a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer of the present invention with Drive system x1-y1 time domain waveforms;
Fig. 2 for the present invention in a kind of Synchronization of Chaotic Systems system for tracking based on fractional order adaptive sliding-mode observer with Drive system x2-y2 time domain waveforms;
Fig. 3 for the present invention in a kind of Synchronization of Chaotic Systems system for tracking based on fractional order adaptive sliding-mode observer with Drive system x3-y3 time domain waveforms;
Fig. 4 is in a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer of the present invention during error system Domain waveform.
Embodiment
The present invention is described in detail with reference to the accompanying drawings and detailed description.
A kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer of the present invention, specifically according to following step It is rapid to implement:
Q=0.95, m=7 are taken, then:
Step 1, selection drives chaos system and calculates the amount of state information y of the driving chaos system1,y2,y3;Specially:
Wherein, U1To be applied to y1On controlled quentity controlled variable;τ is the function of time after a normalized;U2To be applied to y2 On controlled quentity controlled variable;U3To be applied to y3On controlled quentity controlled variable.
Step 2, the amount of state information x of the system for tracking of the driving chaos system is calculated1,x2,x3;Specially:
Step 3, error system e is tried to achieve according to the amount of state information of the driving chaos system and its system for tracking1,e2,e3; Specially:
Step 4, fractional order sliding-mode surface s (t) is set, it is ensured that driving chaos system is restrained on this sliding-mode surface;Specific method For:
Step 4.1, the definition of fractional calculus is selected, is specially:
In formula, q is fractional calculus number and meets l-1 < q≤l, and a is the lower bound that initial value t is integration, and Γ () is Gamma functions.
Step 4.2, choose and specify sliding-mode surface, be specially:
Wherein, i=1,2,3, α span is 0-1, and q is the actual exponent number of error system, and sgn is sign function, public D in formulaq-1It is fractional calculus operator, is specifically obtained using the formula in step 4.1, step 4.1 mid-score rank calculus Concrete numerical value is tried to achieve by Oustaloup filtered methods.
Step 5, error feedback synchronization control rate u is built1,u2,u3, add adaptation coefficient;Specific method is:
Step 5.1, error feedback synchronization control rate is built:
U (t)=- Bx-g (y)+Ax+f (x)-sgn (ei)|ei|α
Wherein, B and A is driving chaos system and the coefficient matrix of its system for tracking, and g (y) and f (x) are driving chaos system Nonlinear terms part in system, works as i=1, when 2,3, respectively obtains Synchronization Control rate u1,u2,u3
Step 5.2, adaptation coefficient is added in the Synchronization Control rate tried to achieve to step 5.1, system is allowed according to error size Convergence faster, definitionThen,
In formula, θ is adaptation coefficient, n=3.
Q is the actual exponent number of error system in the step 4.2 of the present invention, and q takes 0.95.
According to Liapunov stability law, there is liapunov function positive definite always, for the present invention's Control rate can realize positive definite in taken sliding-mode surface for error system, it was demonstrated that process is as follows:
B in above-mentioned formulaijFor the coefficient matrix of error system, it can be seen that liapunov function meets following relation:
After abbreviation:
It can be seen that the equation perseverance after abbreviation is negative, the derivative of liapunov function is all the time it can be seen from above-mentioned proof Less than zero, therefore system can be stablized on sliding-mode surface.
After Matlab and Simulink emulation, as a result as Figure 1-4, system for tracking and driving chaos system All variables all realize Chaotic Synchronous, and when 20 seconds systems start intervention control rate, system restrained in 2.5 seconds, embodied Fractional order sliding formwork control has preferable performance capabilities.

Claims (6)

1. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer, it is characterised in that specifically according to following Step is implemented:
Step 1, selection, which is driven chaos system and calculated using the system dynamics equation, obtains state of chaotic system information content y1, y2,y3
Step 2, the amount of state information x of the system for tracking of the driving chaos system is calculated1,x2,x3
Step 3, error system e is tried to achieve according to the amount of state information of the driving chaos system and its system for tracking1,e2,e3
Step 4, fractional order sliding-mode surface s (t) is set, it is ensured that driving chaos system is restrained on this sliding-mode surface;
Step 5, error feedback synchronization control rate u is built1,u2,u3, add adaptation coefficient.
2. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer according to claim 1, it is special Levy and be, the amount of state information y of the driving chaos system described in step 11,y2,y3Specially:
<mrow> <mfrac> <mrow> <msub> <mi>dy</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.25</mn> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.65</mn> <mrow> <mo>(</mo> <msup> <msub> <mi>y</mi> <mn>1</mn> </msub> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>y</mi> <mn>3</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.13</mn> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>0.78</mn> <msub> <mi>y</mi> <mn>3</mn> </msub> <mo>+</mo> <mn>65</mn> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;tau;</mi> <mo>+</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mo>;</mo> </mrow>
Wherein, U1To be applied to y1On controlled quentity controlled variable;τ is the function of time after a normalized;U2To be applied to y2On Controlled quentity controlled variable;U3To be applied to y3On controlled quentity controlled variable, q be error system actual exponent number, m be the mission nonlinear part.
3. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer according to claim 2, it is special Levy and be, the amount of state information x of the system for tracking described in step 21,x2,x3Specially:
<mrow> <mfrac> <mrow> <msub> <mi>dx</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.25</mn> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>6.5</mn> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.13</mn> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>0.78</mn> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <mn>65</mn> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;tau;</mi> <mo>.</mo> </mrow>
4. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer according to claim 3, it is special Levy and be, the error system e described in step 31,e2,e3Specially:
<mrow> <mfrac> <mrow> <msub> <mi>de</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>e</mi> <mn>2</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.25</mn> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.65</mn> <msup> <msub> <mi>y</mi> <mn>1</mn> </msub> <mi>m</mi> </msup> <mo>-</mo> <mn>0.65</mn> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>0.58</mn> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow>
<mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mi>q</mi> </msup> <msub> <mi>e</mi> <mn>3</mn> </msub> </mrow> <mrow> <msup> <mi>d&amp;tau;</mi> <mi>q</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mn>0.13</mn> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>0.78</mn> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mo>.</mo> </mrow>
5. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer according to claim 4, it is special Levy and be, the specific method of the setting fractional order sliding-mode surface s (t) described in step 4 is:
Step 4.1, the definition of fractional calculus is selected, is specially:
<mrow> <mmultiscripts> <mi>D</mi> <mi>t</mi> <mi>q</mi> <mi>a</mi> </mmultiscripts> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>-</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <msup> <mi>d</mi> <mi>l</mi> </msup> <mrow> <msup> <mi>dt</mi> <mi>l</mi> </msup> </mrow> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </munderover> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mrow> <mi>q</mi> <mo>-</mo> <mi>l</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> 1
In formula, q is fractional calculus number and meets l-1 < q≤l, and a is the lower bound that initial value t is integration, and Γ () is Gamma Function;
Step 4.2, choose and specify sliding-mode surface, be specially:
<mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>D</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>e</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <mi>s</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mi>&amp;alpha;</mi> </msup> <mi>d</mi> <mi>&amp;tau;</mi> <mo>;</mo> </mrow>
Wherein, i=1,2,3, α span is 0-1, and q is the actual exponent number of error system, during sgn is sign function, formula Dq-1Be fractional calculus operator, specifically obtained using the formula in step 4.1, step 4.1 mid-score rank calculus it is specific Numerical value is tried to achieve by Oustaloup filtered methods.
6. a kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer according to claim 5, it is special Levy and be, the structure error feedback synchronization control rate u described in step 51,u2,u3, adding adaptation coefficient specific method is:
Step 5.1, error feedback synchronization control rate is built:
U (t)=- Bx-g (y)+Ax+f (x)-sgn (ei)|ei|α
Wherein, B and A is driving chaos system and the coefficient matrix of its system for tracking, and g (y) and f (x) is in driving chaos systems Nonlinear terms part, work as i=1, when 2,3, respectively obtain Synchronization Control rate u1,u2,u3
Step 5.2, add adaptation coefficient in the Synchronization Control rate tried to achieve to step 5.1, allow system according to error size faster Convergence, definitionThen,
<mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>B</mi> <mi>x</mi> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <msup> <mo>|</mo> <mi>&amp;alpha;</mi> </msup> <mo>-</mo> <msub> <mi>&amp;mu;K</mi> <mi>i</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>|</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>|</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
In formula, θ is adaptation coefficient, n=3.
CN201710368880.1A 2017-05-23 2017-05-23 Fractional order adaptive sliding mode control-based chaotic system synchronization method Active CN107086916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710368880.1A CN107086916B (en) 2017-05-23 2017-05-23 Fractional order adaptive sliding mode control-based chaotic system synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710368880.1A CN107086916B (en) 2017-05-23 2017-05-23 Fractional order adaptive sliding mode control-based chaotic system synchronization method

Publications (2)

Publication Number Publication Date
CN107086916A true CN107086916A (en) 2017-08-22
CN107086916B CN107086916B (en) 2020-06-26

Family

ID=59607537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710368880.1A Active CN107086916B (en) 2017-05-23 2017-05-23 Fractional order adaptive sliding mode control-based chaotic system synchronization method

Country Status (1)

Country Link
CN (1) CN107086916B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873690A (en) * 2018-08-29 2018-11-23 东北大学 A kind of trace tracking method of the tight feedback chaos system of second order
CN108931917A (en) * 2018-09-04 2018-12-04 东北大学 A kind of tight feedback chaos projective synchronization method of three ranks
CN109067275A (en) * 2018-09-11 2018-12-21 广东工业大学 A kind of permanent-magnetism linear motor chaotic control method based on decoupling self-adaptive sliding formwork
CN109062054A (en) * 2018-09-04 2018-12-21 东北大学 A kind of tight feedback chaos trace tracking method of three ranks
CN110278069A (en) * 2019-02-27 2019-09-24 齐鲁工业大学 A kind of fractional order concealed type chaos system of no equalization point
CN110568759A (en) * 2019-09-26 2019-12-13 南京理工大学 robust synchronization control method of fractional order chaotic system
CN110784301A (en) * 2019-12-06 2020-02-11 西南大学 Safety communication system for chaos synchronization of silicon-based micro-cavities
CN111294198A (en) * 2020-04-01 2020-06-16 上海交通大学 Self-adaptive encryption communication method based on chaotic system
CN112887094A (en) * 2021-02-26 2021-06-01 湖南科技大学 Fractional order chaotic sliding mode synchronous secret communication method based on single chip microcomputer
CN113114453A (en) * 2021-04-16 2021-07-13 安徽大学 Complex network secret communication method based on sliding mode controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108833075B (en) * 2018-06-21 2021-06-11 东北大学 Second-order chaotic projection synchronization method based on nonsingular terminal sliding mode controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218853A (en) * 2014-08-15 2014-12-17 浙江工业大学 Sliding-mode synchronization control method of double-permanent-magnet synchronous motor chaos system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218853A (en) * 2014-08-15 2014-12-17 浙江工业大学 Sliding-mode synchronization control method of double-permanent-magnet synchronous motor chaos system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Z.EMIN,B.A.T.AL ZAHAWI,D.W.AUCKLAND,Y. K. TONG: "Ferroresonance in electromagnetic voltage transformers: A study based on nonlinear dynamics", 《 IEE PROCEEDINGS - GENERATION, TRANSMISSION AND DISTRIBUTION》 *
刘崇新,翟笃庆,董子晗,刘尧: "含有单相铁芯变压器的铁磁混沌电路的分析及控制", 《物理学报》 *
潘光,魏静: "一种分数阶混沌系统同步的自适应滑模控制器设计", 《物理学报》 *
陈向荣,刘崇新,王发强,李永勋: "分数阶Liu混沌系统及其电路实验的研究与控制", 《物理学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873690B (en) * 2018-08-29 2021-06-01 东北大学 Trajectory tracking method of second-order strict feedback chaotic system
CN108873690A (en) * 2018-08-29 2018-11-23 东北大学 A kind of trace tracking method of the tight feedback chaos system of second order
CN108931917A (en) * 2018-09-04 2018-12-04 东北大学 A kind of tight feedback chaos projective synchronization method of three ranks
CN109062054A (en) * 2018-09-04 2018-12-21 东北大学 A kind of tight feedback chaos trace tracking method of three ranks
CN109067275A (en) * 2018-09-11 2018-12-21 广东工业大学 A kind of permanent-magnetism linear motor chaotic control method based on decoupling self-adaptive sliding formwork
CN110278069A (en) * 2019-02-27 2019-09-24 齐鲁工业大学 A kind of fractional order concealed type chaos system of no equalization point
CN110568759A (en) * 2019-09-26 2019-12-13 南京理工大学 robust synchronization control method of fractional order chaotic system
CN110568759B (en) * 2019-09-26 2022-06-28 南京理工大学 Robust synchronization control method of fractional order chaotic system
CN110784301A (en) * 2019-12-06 2020-02-11 西南大学 Safety communication system for chaos synchronization of silicon-based micro-cavities
CN111294198A (en) * 2020-04-01 2020-06-16 上海交通大学 Self-adaptive encryption communication method based on chaotic system
CN112887094A (en) * 2021-02-26 2021-06-01 湖南科技大学 Fractional order chaotic sliding mode synchronous secret communication method based on single chip microcomputer
CN112887094B (en) * 2021-02-26 2022-06-21 湖南科技大学 Fractional order chaos sliding mode synchronous secret communication method based on single chip microcomputer
CN113114453A (en) * 2021-04-16 2021-07-13 安徽大学 Complex network secret communication method based on sliding mode controller

Also Published As

Publication number Publication date
CN107086916B (en) 2020-06-26

Similar Documents

Publication Publication Date Title
CN107086916A (en) A kind of Synchronization of Chaotic Systems based on fractional order adaptive sliding-mode observer
Ahn et al. Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance
CN104218853B (en) Sliding-mode synchronization control method of double-permanent-magnet synchronous motor chaos system
CA2546211A1 (en) Key masking for cryptographic processes
CN106936569A (en) A kind of implementation method of the SM4 algorithm mask S boxes of anti-power consumption attack
CN104407515B (en) LMIs state feedback system control method based on uncertain model
CN104360596B (en) Limited time friction parameter identification and adaptive sliding mode control method for electromechanical servo system
CN103831831A (en) Non-linear teleoperation system position and force tracking and controlling system with time-varying delay
Li et al. A numerical study of the exact evolution equations for surface waves in water of finite depth
CN108931917A (en) A kind of tight feedback chaos projective synchronization method of three ranks
CN105450123A (en) PMSM chaotic system rapid terminal sliding mode control method based on nerve network
CN104866866A (en) Improved natural gradient variable step-size blind source separation algorithm
CN109581875A (en) A kind of unknown time-delay Synchronization of Chaotic Systems control method
CN109946969A (en) A kind of second order chaos locus tracking controlling input-bound
Kuznetsov Example of blue sky catastrophe accompanied by a birth of Smale-Williams attractor
CN104298812A (en) Quick simulation analysis method for radar antenna servo system
CN105785820A (en) Shaping signal control method for voice coil actuator of camera
Wang et al. Chaos control and hybrid projective synchronization of several new chaotic systems
CN107612675A (en) A kind of generalized linear regression method under secret protection
González et al. Some estimates on the Hermite-Hadamard inequality through convex and quasi-convex stochastic processes
Gürbüz et al. Numerical approach of high-order linear delay difference equations with variable coefficients in terms of Laguerre polynomials
Olgac et al. Full-state feedback controller design with “delay scheduling” for cart-and-pendulum dynamics
ES2160645T3 (en) METHOD FOR CALCULATING THE ESTIMATED SPEED VALUE IN A SPEED CONTROL SYSTEM.
Hung et al. Projective synchronization of Chua's chaotic systems with dead-zone in the control input
Nacher et al. A kinetic equation for quantum gases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant