CN107085942A - A traffic flow prediction method, device and system based on wolf pack algorithm - Google Patents

A traffic flow prediction method, device and system based on wolf pack algorithm Download PDF

Info

Publication number
CN107085942A
CN107085942A CN201710495064.7A CN201710495064A CN107085942A CN 107085942 A CN107085942 A CN 107085942A CN 201710495064 A CN201710495064 A CN 201710495064A CN 107085942 A CN107085942 A CN 107085942A
Authority
CN
China
Prior art keywords
wolf
traffic flow
neural network
wavelet neural
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710495064.7A
Other languages
Chinese (zh)
Other versions
CN107085942B (en
Inventor
蔡延光
刘惠灵
蔡颢
黄何列
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710495064.7A priority Critical patent/CN107085942B/en
Publication of CN107085942A publication Critical patent/CN107085942A/en
Application granted granted Critical
Publication of CN107085942B publication Critical patent/CN107085942B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Economics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Biophysics (AREA)
  • Human Resources & Organizations (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The embodiment of the invention discloses a kind of traffic flow forecasting method based on wolf pack algorithm, apparatus and system, including obtain traffic flow data;Traffic flow data progress is handled using the wavelet neural network forecasting traffic flow model pre-established and obtains forecasting traffic flow result;Wherein, wavelet neural network forecasting traffic flow model is formed based on wolf pack Algorithm for Training, and its training process is to calculate initialization wavelet neural network parameter according to historical data and wolf pack algorithm;Initialization wavelet neural network parameter is trained using wavelet neural network and historical data and obtains wavelet neural network forecasting traffic flow model.It can be seen that, the embodiment of the present invention improves predetermined speed and precision of prediction to a certain extent when the wavelet neural network forecasting traffic flow model gone out using the initialization wavelet neural network parameter training obtained based on wolf pack algorithm is predicted to traffic flow.

Description

一种基于狼群算法的交通流预测方法、装置及系统A traffic flow prediction method, device and system based on wolf pack algorithm

技术领域technical field

本发明实施例涉及道路交通技术领域,特别是涉及一种基于狼群算法的交通流预测方法、装置及系统。The embodiments of the present invention relate to the technical field of road traffic, in particular to a traffic flow prediction method, device and system based on wolf pack algorithm.

背景技术Background technique

在对道路的交通流进行预测时,通常会受到诸如路况、时间点、天气变化等因素的影响,从而导致道路交通流数据具有高度不确定性,并且规律不明显。现有技术中,在对道路的交通流进行预测时采用传统的小波神经网络方法来训练小波神经网络的网络参数,但是,由于采用传统小波神经网络训练网络参数时采用的方法是与基本BP神经网络相同的梯度下降法,并且梯度下降法具有单向性,且随机生成相关的网络参数,使网络参数在优化的过程中极其容易陷入局部极小值,从而使交通流的预测速度和预测精度降低。When predicting road traffic flow, it is usually affected by factors such as road conditions, time points, weather changes, etc., resulting in high uncertainty in road traffic flow data, and the law is not obvious. In the prior art, the traditional wavelet neural network method is used to train the network parameters of the wavelet neural network when the traffic flow of the road is predicted. The same gradient descent method for the network, and the gradient descent method is unidirectional, and the relevant network parameters are randomly generated, so that the network parameters are extremely easy to fall into the local minimum during the optimization process, so that the traffic flow prediction speed and prediction accuracy reduce.

因此,如何提供一种解决上述技术问题的基于狼群算法的交通流预测方法、装置及系统成为本领域的技术人员目前需要解决的问题。Therefore, how to provide a wolf pack algorithm-based traffic flow prediction method, device and system that solves the above technical problems has become a problem that those skilled in the art need to solve.

发明内容Contents of the invention

本发明实施例的目的是提供一种基于狼群算法的交通流预测方法、装置及系统,在使用过程在一定程度上提高了预测速度和预测精度。The purpose of the embodiment of the present invention is to provide a traffic flow prediction method, device and system based on wolf pack algorithm, which improves the prediction speed and prediction accuracy to a certain extent during the use process.

为解决上述技术问题,本发明实施例提供了一种基于狼群算法的交通流预测方法,所述方法包括:In order to solve the above technical problems, an embodiment of the present invention provides a traffic flow prediction method based on wolf pack algorithm, the method comprising:

获取交通流数据;Obtain traffic flow data;

采用预先建立的小波神经网络交通流预测模型对所述交通流数据进行处理得到交通流预测结果;其中,所述小波神经网络交通流预测模型是基于狼群算法训练而成的,其训练过程为:Using the pre-established wavelet neural network traffic flow prediction model to process the traffic flow data to obtain the traffic flow prediction result; wherein, the wavelet neural network traffic flow prediction model is trained based on the wolf pack algorithm, and the training process is as follows: :

依据历史数据以及狼群算法计算出初始化小波神经网络参数;Calculate the initial wavelet neural network parameters based on historical data and wolf pack algorithm;

采用小波神经网络以及所述历史数据对所述初始化小波神经网络参数进行训练得到所述小波神经网络交通流预测模型。The wavelet neural network traffic flow prediction model is obtained by using the wavelet neural network and the historical data to train the initialized wavelet neural network parameters.

可选的,所述依据历史数据以及狼群算法计算出初始化小波神经网络参数的过程具体为:Optionally, the process of calculating and initializing wavelet neural network parameters based on historical data and wolf pack algorithm is specifically:

依据历史数据将各个网络参数编码为各个个体狼,每个所述个体狼的位置与每个所述网络参数一一对应;encoding each network parameter into each individual wolf according to the historical data, and the position of each individual wolf corresponds to each network parameter;

依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置;Finding the position of the optimized head wolf from each of the individual wolves according to preset control parameters and corresponding strategies;

将所述位置进行解码得到与所述位置对应的网络参数,并将所述网络参数作为初始化小波神经网络参数。The position is decoded to obtain network parameters corresponding to the position, and the network parameters are used as initial wavelet neural network parameters.

可选的,所述预设控制参数包括个体狼的总数量、最大迭代次数、最大游走次数、预设数量以及预设距离;Optionally, the preset control parameters include the total number of individual wolves, the maximum number of iterations, the maximum number of walks, the preset number and the preset distance;

所述依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置的过程具体为:The process of finding the position of the optimized alpha wolf from each of the individual wolves according to the preset control parameters and corresponding strategies is specifically as follows:

S2121:选取除头狼外的预设数量的狼作为探狼,执行由万有引力定律优化策略改进的游走行为,并将当前狼群中猎物气味浓度最大的狼所对应的位置作为探狼的游走方向;S2121: Select a preset number of wolves other than the head wolf as wolf detectors, execute the walking behavior improved by the optimization strategy of the law of universal gravitation, and use the position corresponding to the wolf with the highest prey odor concentration in the current pack of wolves as the wolf detector wander. walk direction;

S2122:更新探狼的位置,并直至探狼的猎物气味浓度大于所述头狼的猎物气味浓度或当前游走次数达到最大游走次数时,将相应的探狼的位置代替所述头狼的位置,所述探狼成为新的头狼;S2122: Update the position of the wolf detection, and until the prey odor concentration of the wolf detection is greater than the prey odor concentration of the head wolf or the current number of wandering reaches the maximum number of travels, replace the corresponding wolf detection position with that of the head wolf position, the detective wolf becomes the new head wolf;

S2123:通过所述新的头狼召唤猛狼,并采用混沌初始化对获取的猛狼变量进行处理,得到初始化猛狼的位置;S2123: Summon ferocious wolves through the new alpha wolf, and process the acquired wolf variables by using chaotic initialization to obtain the position of the initialized ferocious wolf;

S2124:依据初始化猛狼的位置产生猛狼新个体的位置,计算所述猛狼新个体的猎物气味浓度,并当所述猎物气味浓度大于所述新的头狼的猎物气味浓度时,将所述猛狼新个体的位置代替所述头狼的位置;直至猛狼新个体与头狼之间的距离小于预设距离;S2124: Generate the position of the new wolf individual according to the position of the initialized wolf, calculate the prey odor concentration of the new wolf individual, and when the prey odor concentration is greater than the prey odor concentration of the new head wolf, calculate the The position of the new wolf individual replaces the position of the head wolf; until the distance between the new wolf individual and the head wolf is less than the preset distance;

S2125:执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新;S2125: Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf;

S2126:按照“胜者为王”规则更新头狼的位置,再按照“强者生存”机制和“强者生存,弱肉强食”的原则对狼群进行群体更新;S2126: Update the position of the wolf pack according to the "winner is king" rule, and then update the wolf pack according to the "survival of the strong" mechanism and the principle of "survival of the strong, the jungle of the jungle";

S2127:判断头狼与猎物之间是否达到预设精度或当前迭代次数大于最大迭代次数,如果是,则将所述头狼作为优化后的头狼,并输出所述优化后的头狼的位置;否则,返回S2121。S2127: Determine whether the preset accuracy is reached between the alpha wolf and the prey or the current number of iterations is greater than the maximum number of iterations, if so, use the alpha wolf as the optimized alpha wolf, and output the position of the optimized alpha wolf ; Otherwise, return to S2121.

可选的,所述更新探狼的位置的过程具体为:Optionally, the process of updating the location of the wolf detection is specifically:

依据第一计算关系式对所述探狼的位置进行更新;所述第一计算关系式为:The position of the wolf detection is updated according to the first calculation relation; the first calculation relation is:

其中,所述x′i表示第i只探狼更新后的位置;所述xi表示第i只探狼的当前位置,所述xk表示第k只探狼的位置,所述rand(0,1)表示服从0到1的均匀分布函数,所述xbest表示当前猎物气味浓度最大的位置,所述Yik表示第i只探狼相对第k只探狼的猎物气味浓度函数; Wherein, the x′ i represents the updated position of the i-th wolf detector; the x i represents the current position of the i-th wolf detector, the x k represents the position of the k-th wolf detector, and the rand(0 , 1) represents a uniform distribution function from 0 to 1, the x best represents the position where the current prey odor concentration is the largest, and the Y ik represents the prey odor concentration function of the i-th wolf relative to the k-th wolf;

所述Yik依据第二计算关系式得到,所述第二计算关系式为:其中,所述G表示万有引力常数;所述Y(xi)表示第i只探狼的猎物气味浓度,所述Y(xk)表示第k只探狼的猎物气味浓度。The Y ik is obtained according to the second calculation relational expression, and the second calculation relational expression is: Wherein, the G represents the gravitational constant; the Y( xi ) represents the prey odor concentration of the i-th wolf detection, and the Y(x k ) represents the prey odor concentration of the k-th wolf detection.

可选的,所述依据初始化猛狼的位置产生猛狼新个体的位置的过程具体为:Optionally, the process of generating the position of the new wolf individual according to the position of the initialized wolf is specifically as follows:

依据初始化猛狼的位置以及第三计算关系式得到猛狼新个体的位置,所述第三计算关系式为:Obtain the position of the new individual of the wolf according to the position of the initialization wolf and the third calculation relation, and the third calculation relation is:

x′n=Yi+Ri(2xn,k-1),其中,所述xn′为猛狼新个体的位置,所述xn,k表示第k次迭代时猛狼新个体的位置;所述Yi为猎物的气味浓度;所述Ri为奔袭区域半径;x' n =Y i +R i (2x n,k -1), wherein, the x n 'is the position of the new wolf individual, and the x n,k represents the position of the new wolf individual at the kth iteration Position; said Y i is the odor concentration of the prey; said R i is the radius of the attack area;

所述xn,k依据第四计算关系式得到,所述第四计算关系式为xn,k+1=μxn,k(1-xn,k),其中,n∈[1,N],所述N表示所述个体狼的总数量,所述μ表示混沌状态的控制参数,所述k表示迭代次数。The x n,k is obtained according to the fourth calculation relational expression, and the fourth calculation relational expression is x n,k+1 =μx n,k (1-x n,k ), wherein, n∈[1,N ], the N represents the total number of individual wolves, the μ represents the control parameters of the chaotic state, and the k represents the number of iterations.

可选的,所述执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新的过程具体为:Optionally, the process of executing the siege behavior optimized by the inertia weight adaptive strategy and updating the position of the head wolf is as follows:

执行惯性权重自适策略优化的围攻行为,并依据第五计算关系式对头狼的位置进行更新,所述第五计算关系式为其中,所述Mk表示迭代次数为k使猎物的位置,所述stepc表示猛狼的攻击步长,所述γ表示惯性权重;所述γ依据第六计算关系式得到,所述第六计算关系式为:Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf according to the fifth calculation relation, the fifth calculation relation is Wherein, said M k represents the position of the prey when the number of iterations is k, said step c represents the attack step size of the wolf, and said γ represents the inertia weight; said γ is obtained according to the sixth calculation relational formula, and the sixth The calculation relation is:

其中,所述γmax表示最大惯性权重;所述γmin表示最小惯性权重,所述Zmax表示所述最大迭代次数,所述z表示当前迭代次数。 Wherein, the γ max represents the maximum inertial weight; the γ min represents the minimum inertial weight, the Z max represents the maximum number of iterations, and the z represents the current number of iterations.

为解决上述技术问题,本发明实施例提供了一种基于狼群算法的交通流预测装置,所述装置包括:In order to solve the above technical problems, an embodiment of the present invention provides a traffic flow prediction device based on wolf pack algorithm, the device includes:

获取模块,用于获取交通流数据;An acquisition module, configured to acquire traffic flow data;

处理模块,用于采用预先建立的小波神经网络交通流预测模型对所述交通流数据进行处理得到交通流预测结果;其中,所述小波神经网络交通流预测模型包括:A processing module, configured to process the traffic flow data using a pre-established wavelet neural network traffic flow prediction model to obtain a traffic flow prediction result; wherein the wavelet neural network traffic flow prediction model includes:

计算模块,用于依据历史数据以及狼群算法计算出初始化小波神经网络参数;Calculation module, used to calculate the initial wavelet neural network parameters according to historical data and wolf pack algorithm;

训练模块,用于采用小波神经网络以及所述历史数据对所述初始化小波神经网络参数进行训练得到所述小波神经网络交通流预测模型。The training module is configured to use the wavelet neural network and the historical data to train the parameters of the initialized wavelet neural network to obtain the traffic flow prediction model of the wavelet neural network.

可选的,所述计算模块包括:Optionally, the calculation module includes:

个体狼编码单元,用于依据历史数据将各个网络参数编码为各个个体狼,每个所述个体狼的位置与每个所述网络参数一一对应;An individual wolf encoding unit, configured to encode each network parameter into each individual wolf according to historical data, and the position of each individual wolf is in one-to-one correspondence with each of the network parameters;

头狼寻到单元,用于依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置;The head wolf finding unit is used to find the optimized position of the head wolf from each of the individual wolves according to preset control parameters and corresponding strategies;

解码单元,用于将所述位置进行解码得到与所述位置对应的网络参数,并将所述网络参数作为初始化小波神经网络参数。A decoding unit, configured to decode the position to obtain a network parameter corresponding to the position, and use the network parameter as an initialization wavelet neural network parameter.

为解决上述技术问题,本发明实施例提供了一种基于狼群算法的交通流预测系统,包括如上述所述的基于狼群算法的交通流预测装置。In order to solve the above technical problems, an embodiment of the present invention provides a traffic flow prediction system based on the wolf pack algorithm, including the traffic flow prediction device based on the wolf pack algorithm as described above.

本发明实施例提供了一种基于狼群算法的交通流预测方法、装置及系统,包括:获取交通流数据;采用预先建立的小波神经网络交通流预测模型对交通流数据进行处理得到交通流预测结果;其中,小波神经网络交通流预测模型是基于狼群算法训练而成的,其训练过程为依据历史数据以及狼群算法计算出初始化小波神经网络参数;采用小波神经网络以及历史数据对初始化小波神经网络参数进行训练得到小波神经网络交通流预测模型。The embodiment of the present invention provides a traffic flow prediction method, device and system based on wolf pack algorithm, including: obtaining traffic flow data; using a pre-established wavelet neural network traffic flow prediction model to process the traffic flow data to obtain traffic flow prediction Results; Among them, the wavelet neural network traffic flow prediction model is trained based on the wolf pack algorithm, and the training process is to calculate the initial wavelet neural network parameters based on historical data and wolf pack algorithm; use wavelet neural network and historical data to initialize wavelet The neural network parameters are trained to obtain the wavelet neural network traffic flow prediction model.

可见,本发明实施例在对交通流进行预测时采用的小波神经网络交通流预测模型的初始化小波神经网络参数是依据历史数据以及狼群算法计算得到的,由于狼群算法具有搜索能力强、搜索范围广的特点,因此在很大程度上能收敛于全局最优解,故利用基于狼群算法得到的初始化小波神经网络参数训练出的小波神经网络交通流预测模型在对交通流进行预测时,在一定程度上提高了预测速度和预测精度。It can be seen that the initial wavelet neural network parameters of the wavelet neural network traffic flow prediction model adopted in the embodiments of the present invention when predicting traffic flow are calculated based on historical data and the wolf pack algorithm. Because of its wide range, it can converge to the global optimal solution to a large extent. Therefore, when the wavelet neural network traffic flow prediction model trained by the initial wavelet neural network parameters based on the wolf pack algorithm is used to predict the traffic flow, To a certain extent, the prediction speed and prediction accuracy are improved.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the prior art and the accompanying drawings that need to be used in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1为本发明实施例提供的一种基于狼群算法的交通流预测方法的流程示意图;Fig. 1 is a schematic flow chart of a traffic flow prediction method based on wolf pack algorithm provided by an embodiment of the present invention;

图2采用本发明实施例所提供的基于狼群算法的交通流预测方法的高速公路交通流预测仿真示意图;Fig. 2 adopts the expressway traffic flow prediction simulation schematic diagram of the traffic flow prediction method based on wolf pack algorithm provided by the embodiment of the present invention;

图3为采用现有技术中的小波神经网络的交通流预测方法的高速公路交通流预测仿真示意图;Fig. 3 is the expressway traffic flow prediction emulation schematic diagram that adopts the traffic flow prediction method of the wavelet neural network in the prior art;

图4为本发明实施例提供的一种基于狼群算法的交通流预测装置的结构示意图;FIG. 4 is a schematic structural diagram of a traffic flow prediction device based on wolf pack algorithm provided by an embodiment of the present invention;

图5为本发明实施例提供的一种小波神经网络交通流预测模型的结构示意图。FIG. 5 is a schematic structural diagram of a wavelet neural network traffic flow prediction model provided by an embodiment of the present invention.

具体实施方式detailed description

本发明实施例提供了一种基于狼群算法的交通流预测方法、装置及系统,在使用过程在一定程度上提高了预测速度和预测精度。The embodiment of the present invention provides a traffic flow prediction method, device and system based on wolf pack algorithm, which improves the prediction speed and prediction accuracy to a certain extent during the use process.

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

请参照图1,图1为本发明实施例提供的一种基于狼群算法的交通流预测方法的流程示意图。该方法包括:Please refer to FIG. 1 . FIG. 1 is a schematic flowchart of a traffic flow prediction method based on wolf pack algorithm provided by an embodiment of the present invention. The method includes:

S11:获取交通流数据;S11: Obtain traffic flow data;

S12:采用预先建立的小波神经网络交通流预测模型对交通流数据进行处理得到交通流预测结果;其中,小波神经网络交通流预测模型是基于狼群算法训练而成的,其训练过程为:S12: Use the pre-established wavelet neural network traffic flow prediction model to process the traffic flow data to obtain the traffic flow prediction result; wherein, the wavelet neural network traffic flow prediction model is trained based on the wolf pack algorithm, and the training process is as follows:

S21:依据历史数据以及狼群算法计算出初始化小波神经网络参数;S21: Calculate the initial wavelet neural network parameters based on historical data and wolf pack algorithm;

S22:采用小波神经网络以及历史数据对初始化小波神经网络参数进行训练得到小波神经网络交通流预测模型。S22: Using the wavelet neural network and historical data to train the initial wavelet neural network parameters to obtain a wavelet neural network traffic flow prediction model.

需要说明的是,获取道路(例如高速公路)的交通流数据,依据这些交通流数据通过预先建立好的小波神经网络交通流预测模型进行交通流预测。本发明实施例中用来训练小波神经网络交通流预测模型的初始化小波神经网络参数(例如,小波神经网络连接权值以及阈值参数等)是通过狼群算法计算得出的,例如,可以预先从交通数据控制中心获取历史数据(也即历史交通流数据),并采用狼群算法进行计算处理,从而得到初始化小波神经网络参数,再利用将历史数据及初始化小波神经网络参数输入至小波神经网络中进行训练得到小波神经网络交通流预测模型。It should be noted that the traffic flow data of roads (such as expressways) are obtained, and the traffic flow prediction is carried out through the pre-established wavelet neural network traffic flow prediction model based on these traffic flow data. The initial wavelet neural network parameters (for example, wavelet neural network connection weights and threshold parameters, etc.) used to train the wavelet neural network traffic flow prediction model in the embodiment of the present invention are calculated by the wolf pack algorithm, for example, can be obtained from The traffic data control center obtains historical data (that is, historical traffic flow data), and uses the wolf pack algorithm for calculation and processing, thereby obtaining the initial wavelet neural network parameters, and then uses the historical data and initial wavelet neural network parameters to be input into the wavelet neural network. The wavelet neural network traffic flow prediction model is obtained through training.

具体的,在实际应用中,例如对于某段高速公路的交通流的预测,可以先从该高速公路对应的交通数据控制中心的数据库中获取交通流数据,并可以将选取预测断面2016年5月份31天共2976个交通流数据作为实验用数据。为了使预测结果更加精确,还可以将获取的原始交通流数据进行数据处理包括数据降噪,异常数据识别与修复以及归一化处理后将其中一部分交通流数据(例如,将该月中前24天共2016个交通流数据)作为历史数据,将这部分历史数据通过相空间重构后作为训练样本,即对这些历史数据采用狼群算法进行训练,得到初始化小波神经网络参数,将另一部分数据(即最后7天中的672个交通流数据)进行相空间重构后作为测试样本(即作为用于预测的交通流数据)。也就是,采用前24天的历史数据训练初始化小波神经网络参数构建小波神经网络交通流预测模型,再通过构件好的小波神经网络交通流预测模型对后7天的交通流量实行单点单步预测,以得到预测结果。Specifically, in practical applications, for example, for the traffic flow prediction of a certain expressway, the traffic flow data can be obtained from the database of the traffic data control center corresponding to the expressway, and the selected forecast section in May 2016 can be A total of 2976 traffic flow data in 31 days are used as experimental data. In order to make the prediction results more accurate, the acquired original traffic flow data can also be processed, including data noise reduction, abnormal data identification and repair, and after normalization processing, a part of the traffic flow data (for example, the first 24 A total of 2016 traffic flow data per day) is used as historical data, and this part of historical data is reconstructed through phase space as training samples, that is, the wolf pack algorithm is used to train these historical data, and the initial wavelet neural network parameters are obtained, and the other part of data is (that is, 672 traffic flow data in the last 7 days) are used as test samples after phase space reconstruction (that is, as traffic flow data for prediction). That is, use the historical data of the first 24 days to train and initialize the wavelet neural network parameters to construct the wavelet neural network traffic flow forecasting model, and then implement single-point and single-step forecasting for the traffic flow of the next 7 days through the well-built wavelet neural network traffic flow forecasting model , to get the predicted result.

当然,上述只是举例说明,在实际应用中历史数据和预测数据可以采用同一组历史交通流数据,也可以是不同的历史交通流数据,具体采用哪些交通流数据作为历史数据和预测数据可以根据实际情况而定,本发明实施例对此不做特殊的限定,能实现本发明实施例的目的即可。Of course, the above is just an example. In practical applications, historical data and forecast data can use the same set of historical traffic flow data, or different historical traffic flow data. The specific traffic flow data to be used as historical data and forecast data can be based on actual It depends on the situation, and the embodiment of the present invention does not make any special limitation thereto, as long as the purpose of the embodiment of the present invention can be achieved.

本发明实施例提供了一种基于狼群算法的交通流预测方法,包括:获取交通流数据;采用预先建立的小波神经网络交通流预测模型对交通流数据进行处理得到交通流预测结果;其中,小波神经网络交通流预测模型是基于狼群算法训练而成的,其训练过程为依据历史数据以及狼群算法计算出初始化小波神经网络参数;采用小波神经网络以及历史数据对初始化小波神经网络参数进行训练得到小波神经网络交通流预测模型。The embodiment of the present invention provides a traffic flow prediction method based on wolf pack algorithm, including: obtaining traffic flow data; using a pre-established wavelet neural network traffic flow prediction model to process the traffic flow data to obtain a traffic flow prediction result; wherein, The wavelet neural network traffic flow prediction model is trained based on the wolf pack algorithm. The training process is to calculate the initial wavelet neural network parameters based on historical data and wolf pack algorithm; use the wavelet neural network and historical data to initialize the wavelet neural network parameters. A wavelet neural network traffic flow prediction model is obtained through training.

可见,本发明实施例在对交通流进行预测时采用的小波神经网络交通流预测模型的初始化小波神经网络参数是依据历史数据以及狼群算法计算得到的,由于狼群算法具有搜索能力强、搜索范围广的特点,因此在很大程度上能收敛于全局最优解,故利用基于狼群算法得到的初始化小波神经网络参数训练出的小波神经网络交通流预测模型在对交通流进行预测时,在一定程度上提高了预测速度和预测精度。It can be seen that the initial wavelet neural network parameters of the wavelet neural network traffic flow prediction model adopted in the embodiments of the present invention when predicting traffic flow are calculated based on historical data and the wolf pack algorithm. Because of its wide range, it can converge to the global optimal solution to a large extent. Therefore, when the wavelet neural network traffic flow prediction model trained by the initial wavelet neural network parameters based on the wolf pack algorithm is used to predict the traffic flow, To a certain extent, the prediction speed and prediction accuracy are improved.

本发明实施例公开了一种基于狼群算法的交通流预测方法,相对于上一实施例,本实施例对技术方案作了进一步的说明和优化。The embodiment of the present invention discloses a traffic flow prediction method based on wolf pack algorithm. Compared with the previous embodiment, this embodiment further explains and optimizes the technical solution.

需要说明的是,在训练小波神经网络交通流预测模型之前,需要预先设置所输入的交通流数据或历史数据的长度以及模型的控制参数。例如,可以将输入长度设为TFS(正整数),则输入长度为TFS的交通流数据(或交通流时间序列)为c={c(i)|i=1,2,,TFS};It should be noted that before training the wavelet neural network traffic flow prediction model, the length of the input traffic flow data or historical data and the control parameters of the model need to be set in advance. For example, the input length can be set as TFS (positive integer), then the traffic flow data (or traffic flow time series) whose input length is TFS is c={c(i)|i=1,2,,TFS};

所设置的控制参数可以包括:Input,即输入层神经元个数;Hidden,即小波层神经元个数;Ouput,即输出层神经元个数,其中,Input≤TFS。The set control parameters may include: Input, that is, the number of neurons in the input layer; Hidden, that is, the number of neurons in the wavelet layer; Ouput, that is, the number of neurons in the output layer, where Input≤TFS.

此外,还需要建立小波神经网络高速公路交通流预测模型:In addition, it is also necessary to establish a wavelet neural network expressway traffic flow prediction model:

其中,o表示小波神经网络交通流输出;wij表示连接第i个输入与第j个小波元的连接权值;(F(1),F(2),,F(Input))为所输入的交通流数据(即相空间重构交通流输入数据);vij表示连接小波层与输出层的权值;bj表示第j个平移系数;aj表示第j个伸缩系数;L表示小波基函数,并且其中,t为时间单位秒。本发明实施例中,通过计算出初始化小波神经网络参数wij,vij,aj,bj(i=1,2,…,Input;j=1,2,…,Output),即可进一步得到小波神经网络交通流预测模型,并用于对交通流的预测。具体的:Among them, o represents the traffic flow output of the wavelet neural network; w ij represents the connection weight of the i-th input and the j-th wavelet element; (F(1),F(2),,F(Input)) is the input traffic flow data (namely phase space reconstructed traffic flow input data); v ij represents the weight connecting the wavelet layer and the output layer; b j represents the jth translation coefficient; a j represents the jth expansion coefficient; L represents the wavelet basis functions, and Among them, t is the time unit second. In the embodiment of the present invention, by calculating the initialization wavelet neural network parameters w ij , v ij , a j , b j (i=1,2,...,Input; j=1,2,...,Output), further The wavelet neural network traffic flow prediction model is obtained and used to predict traffic flow. specific:

在上一实施例的S21中,依据历史数据以及狼群算法计算出初始化小波神经网络参数的过程,具体可以为:In S21 of the previous embodiment, the process of calculating the initial wavelet neural network parameters based on historical data and wolf pack algorithm can be specifically:

S211:依据历史数据将各个网络参数编码为各个个体狼,每个个体狼的位置与每个网络参数一一对应;S211: Encode each network parameter into each individual wolf according to the historical data, and the position of each individual wolf corresponds to each network parameter;

具体的,编码个体狼是将各个网络参数wij,vij,aj,bj(i=1,2,…,Input;j=1,2,…,Output)进行编码,其中,第i个D维个体狼的位置为xi=(wij,vij,aj,bj)T,即,每个个体狼的位置与相应的网络参数一一对应,并且D表示的是小波神经网络参数个数总和。Specifically, encoding individual wolves is to encode each network parameter w ij , v ij , a j , b j (i=1,2,...,Input; j=1,2,...,Output), where the i-th The position of each D-dimensional individual wolf is x i =(w ij ,v ij ,a j ,b j ) T , that is, the position of each individual wolf is in one-to-one correspondence with the corresponding network parameters, and D represents the wavelet The sum of the number of neural network parameters.

S212:依据预设控制参数以及相应策略从各个个体狼中找到优化后的头狼所在的位置;S212: Find the optimized position of the head wolf from each individual wolf according to the preset control parameters and corresponding strategies;

需要说明的是,预先进行控制参数的设置,得到各个预设控制参数,预设控制参数可以包括,个体狼的总数量N(也即探狼、猛狼以及头狼的总数目)、最大迭代次数Zmax、最大游走次数Tmax、预设数量h(即探狼个数)以及预设距离(即猛狼与头狼之间的最小距离Hnear)。还可以用T表示当前游走次数;用Yi表示当前狼的猎物气味浓度(也即当前狼检测到的猎物气味浓度);用Ylead表示头狼的猎物气味浓度;用z表示当前代数迭代次数。It should be noted that the preset control parameters are obtained by setting the control parameters in advance. The preset control parameters can include the total number of individual wolves N (that is, the total number of detective wolves, ferocious wolves, and alpha wolves), the maximum iteration The number of times Z max , the maximum number of walks T max , the preset number h (that is, the number of wolves detected) and the preset distance (that is, the minimum distance H near between the ferocious wolf and the head wolf). You can also use T to represent the current number of walks; use Y i to represent the current wolf's prey odor concentration (that is, the prey odor concentration detected by the current wolf); use Y lead to represent the prey odor concentration of the head wolf; use z to represent the current algebraic iteration frequency.

则,上述S212中依据预设控制参数以及相应策略从各个个体狼中找到优化后的头狼所在的位置的过程,具体可以为:Then, in the above S212, according to the preset control parameters and the corresponding strategies, the process of finding the optimized position of the head wolf from each individual wolf can be specifically as follows:

需要说明的是,首先需要确定狼群的游走策略,即选取除头狼外的预设数量的狼作为探狼,执行由万有引力定律优化策略改进的游走行为。具体如S2121-S2122:It should be noted that the walking strategy of the pack of wolves needs to be determined first, that is, a preset number of wolves other than the head wolf should be selected as scouting wolves, and the walking behavior improved by the optimization strategy of the law of universal gravitation should be implemented. Specifically, such as S2121-S2122:

S2121:选取除头狼外的预设数量的狼作为探狼,执行由万有引力定律优化策略改进的游走行为,并将当前狼群中猎物气味浓度最大的狼所对应的位置作为探狼的游走方向;S2122:更新探狼的位置,并直至探狼的猎物气味浓度大于头狼的猎物气味浓度(即Yi>Ylead)或当前游走次数T达到最大游走次数Tmax时,将相应的探狼的位置代替头狼的位置,探狼成为新的头狼;S2121: Select a preset number of wolves other than the head wolf as wolf detectors, execute the walking behavior improved by the optimization strategy of the law of universal gravitation, and use the position corresponding to the wolf with the highest prey odor concentration in the current pack of wolves as the wolf detector wander. Walking direction; S2122: update the position of the wolf detection, and until the prey odor concentration of the detection wolf is greater than the prey odor concentration of the head wolf (ie Y i >Y lead ) or when the current number of travels T reaches the maximum number of travels T max , the The position of the corresponding Detective Wolf replaces the position of the Head Wolf, and the Detective Wolf becomes the new Head Wolf;

可选的,本发明实施例中的预设控制参数可以包括个体狼的总数量、最大迭代次数、最大游走次数、预设数量以及预设距离;Optionally, the preset control parameters in the embodiment of the present invention may include the total number of individual wolves, the maximum number of iterations, the maximum number of walks, the preset number, and the preset distance;

当然,预设控制参数不仅限于包括上述几种参数,还可以包括其他的参数,具体的可以根据实际情况而定,本发明实施例对此不做特殊的限定,能实现本发明实施例的目的即可。Of course, the preset control parameters are not limited to the above-mentioned parameters, but may also include other parameters, which may be determined according to the actual situation. The embodiment of the present invention does not specifically limit this, and the purpose of the embodiment of the present invention can be achieved. That's it.

进一步的,在S2122中更新探狼的位置的过程,具体可以为:Further, the process of updating the location of the wolf detection in S2122 may specifically be:

依据第一计算关系式对探狼的位置进行更新;第一计算关系式为:The position of the wolf detection is updated according to the first calculation relation; the first calculation relation is:

其中,x′i表示第i只探狼更新后的位置;xi表示第i只探狼的当前位置,xk表示第k只探狼的位置,rand(0,1)表示服从0到1的均匀分布函数,xbest表示当前猎物气味浓度最大的位置,Yik表示第i只探狼相对第k只探狼的猎物气味浓度函数; Among them, x′i represents the updated position of the i-th wolf detection; x i represents the current position of the i-th detection wolf; x k represents the position of the k-th detection wolf; The uniform distribution function of , x best represents the position where the current prey odor concentration is the largest, and Y ik represents the prey odor concentration function of the i-th wolf relative to the k-th wolf;

Yik依据第二计算关系式得到,第二计算关系式为:其中,G表示万有引力常数;Y(xi)表示第i只探狼的猎物气味浓度(也即,小波神经网络训练输出值与其期望值的误差为目标函数值),Y(xk)表示第k、只探狼的猎物气味浓度。Y ik is obtained according to the second calculation relation, which is: Among them, G represents the gravitational constant; Y(x i ) represents the prey odor concentration of the i-th wolf detection (that is, the error between the training output value of the wavelet neural network and its expected value is the objective function value), Y(x k ) represents the k-th , Only detect the concentration of prey odor of wolves.

需要说明的是,上述的Y(xi)可以由目标函数式得到,并且狼群中探狼位置的平均值满足式。It should be noted that the above Y( xi ) can be expressed by the objective function Obtained, and the average value of the wolf detection position in the wolf pack satisfies Mode.

在确定了狼群的游走策略后,接着需要确定狼群的奔袭策略,通过上边产生的新的头狼召唤猛狼,使猛狼执行混沌策略优化奔袭行为,具体如S2123-S2124:After determining the roaming strategy of the wolves, it is then necessary to determine the running strategy of the wolves, and call the wolves through the new head wolf generated above, so that the wolves execute the chaotic strategy to optimize the running behavior, as in S2123-S2124:

S2123:通过新的头狼召唤猛狼,并采用混沌初始化对获取的猛狼变量进行处理,得到初始化猛狼的位置;S2123: Summon the wolf through the new head wolf, and use the chaotic initialization to process the obtained wolf variable to obtain the position of the initialized wolf;

S2124:依据初始化猛狼的位置产生猛狼新个体的位置,计算猛狼新个体的猎物气味浓度,并当猎物气味浓度大于新的头狼的猎物气味浓度时,将猛狼新个体的位置代替头狼的位置;直至猛狼新个体与头狼之间的距离小于预设距离;S2124: Generate the position of the new wolf individual according to the position of the initialized wolf, calculate the prey odor concentration of the new wolf individual, and replace the position of the new wolf individual when the prey odor concentration is greater than the prey odor concentration of the new head wolf The position of the head wolf; until the distance between the new wolf and the head wolf is less than the preset distance;

进一步的,在S2124中依据初始化猛狼的位置产生猛狼新个体的位置的过程,具体可以为:Further, in S2124, the process of generating the position of the new wolf individual according to the position of the initialized wolf can be specifically as follows:

依据初始化猛狼的位置以及第三计算关系式得到猛狼新个体的位置,第三计算关系式为:The position of the new individual of the wolf is obtained according to the position of the initialized wolf and the third calculation relation. The third calculation relation is:

x′n=Yi+Ri(2xn,k-1),其中,xn′为猛狼新个体的位置,xn,k表示第k次迭代时猛狼新个体的位置Yi为猎物的气味浓度;Ri为奔袭区域半径;x′ n =Y i +R i (2x n,k -1), where x n ′ is the position of the new wolf individual, and x n,k represents the position Y i of the new wolf individual at the kth iteration. The odor concentration of the prey; R i is the radius of the attack area;

其中,xn,k可以依据第四计算关系式得到,第四计算关系式为xn,k+1=μxn,k(1-xn,k),其中,n∈[1,N],N表示个体狼的总数量,μ表示混沌状态的控制参数,k表示迭代次数。Wherein, x n, k can be obtained according to the fourth calculation relation, and the fourth calculation relation is x n, k+1 = μ x n , k (1-x n, k ), wherein, n∈[1, N] , N represents the total number of individual wolves, μ represents the control parameters of the chaotic state, and k represents the number of iterations.

具体的,该过程也即,将变量xn混沌映射到优化变量x′n,x′n在以转变为头狼的狼所在处的猎物浓度气味Yi为中心,以Ri为半径的奔袭区域上,计算猎物气味浓度Y(x′n),并且更新在混沌迭代过程中的最大猎物气味浓度Ybest(x′n),如果当前狼的猎物气味浓度大于头狼的猎物气味浓度,则替换头狼。直到猛狼与头狼之间的距离小于预设距离HnearSpecifically, the process is to map the variable x n chaotically to the optimized variable x′ n , where x′ n runs with the prey concentration and smell Y i as the center and R i as the radius In the region, calculate the prey odor concentration Y(x′ n ), and update the maximum prey odor concentration Y best (x′ n ) in the chaotic iteration process. If the current wolf’s prey odor concentration is greater than the prey odor concentration of the head wolf, then Replace the alpha wolf. Until the distance between the ferocious wolf and the alpha wolf is less than the preset distance H near .

需要说明的是,本发明实施例中的μ的取值可以为4,当μ取4时可以完全进入混沌状态。当然,在实际应用中,μ的取值不仅限于取4,也可以为其他的数值,其具体数值可以根据实际情况而定,本发明实施例对此不做特殊的限定,能实现本发明实施例的目的即可。It should be noted that the value of μ in the embodiment of the present invention may be 4, and when μ is 4, the state of chaos may be completely entered. Of course, in practical applications, the value of μ is not limited to 4, but can also be other values. For example purposes.

在确定了狼群的奔袭策略后,接着需要确定狼群的围攻策略,执行惯性权重自适策略优化的围攻行为,具体如S2125:After determining the attack strategy of the wolves, it is necessary to determine the siege strategy of the wolves and implement the siege behavior optimized by the inertia weight adaptive strategy, as in S2125:

S2125:执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新;S2125: Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf;

进一步的,在S2125中执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新的过程,具体可以为:Further, in S2125, the siege behavior optimized by the inertial weight adaptive strategy is executed, and the process of updating the position of the head wolf can be specifically as follows:

执行惯性权重自适策略优化的围攻行为,并依据第五计算关系式对头狼的位置进行更新,第五计算关系式为其中,Mk表示迭代次数为k使猎物的位置,stepc表示猛狼的攻击步长,γ表示惯性权重;γ依据第六计算关系式得到,第六计算关系式为:Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf according to the fifth calculation relation, the fifth calculation relation is Among them, M k represents the position of the prey when the number of iterations is k, step c represents the attack step size of the wolf, and γ represents the inertia weight; γ is obtained according to the sixth calculation relation, which is:

其中,γmax表示最大惯性权重;γmin表示最小惯性权重,Zmax表示最大迭代次数,z表示当前迭代次数。 Among them, γ max represents the maximum inertia weight; γ min represents the minimum inertia weight, Z max represents the maximum number of iterations, and z represents the current number of iterations.

S2126:按照“胜者为王”规则更新头狼的位置,再按照“强者生存”机制和“强者生存,弱肉强食”的原则对狼群进行群体更新;S2126: Update the position of the wolf pack according to the "winner is king" rule, and then update the wolf pack according to the "survival of the strong" mechanism and the principle of "survival of the strong, the jungle of the jungle";

具体的,在对狼群进行群体更新时,可以将距离猎物(目标函数值)最远的P匹狼淘汰掉并随机产生P匹狼,以对狼群进行更新。其中,P∈[N/(2β),N/β],β为更新比例因子。Specifically, when updating the wolf pack, the P wolves farthest from the prey (objective function value) can be eliminated and P wolves can be randomly generated to update the wolf pack. Among them, P∈[N/(2β),N/β], β is the update scaling factor.

S2127:判断头狼与猎物之间是否达到预设精度或当前迭代次数大于最大迭代次数,如果是,则将头狼作为优化后的头狼,并输出优化后的头狼的位置;否则,返回S2121。S2127: Determine whether the preset accuracy is reached between the alpha wolf and the prey or the current number of iterations is greater than the maximum number of iterations, if yes, use the alpha wolf as the optimized alpha wolf, and output the position of the optimized alpha wolf; otherwise, return S2121.

S213:将位置进行解码得到与位置对应的网络参数,并将网络参数作为初始化小波神经网络参数。S213: Decode the position to obtain a network parameter corresponding to the position, and use the network parameter as an initialization wavelet neural network parameter.

具体的,由于狼群中每个个体狼的位置与网络参数一一对应,所以当找到优化后的头狼后,对优化后的头狼的位置进行解码即可得到初始化小波神经网络参数。Specifically, since the position of each individual wolf in the wolf pack is in one-to-one correspondence with the network parameters, when the optimized alpha wolf is found, the initial wavelet neural network parameters can be obtained by decoding the optimized alpha wolf position.

需要说明的是,在计算出初始化小波神经网络参数后,可以采用小波神经网络以及历史数据对初始化小波神经网络参数进行训练得到小波神经网络交通流预测模型。即S22的过程具体如下:It should be noted that after the initial wavelet neural network parameters are calculated, the wavelet neural network and historical data can be used to train the initial wavelet neural network parameters to obtain the wavelet neural network traffic flow prediction model. That is, the process of S22 is as follows:

S221:根据Input个输入层神经元,利用G-P算法重构交通流序列相空间(即输入Input历史数据(即交通流序列)预测第Input+1交通流时间序列)得到训练输入样本以及训练输出样本。S221: According to the Input neurons in the input layer, use the G-P algorithm to reconstruct the traffic flow sequence phase space (that is, input the Input historical data (that is, the traffic flow sequence) to predict the Input+1th traffic flow time sequence) to obtain training input samples and training output samples .

S222:建立训练目标函数其中E表示小波神经网络交通流预测期望值与网络实际输出值的均方误差函数;sp表示训练样本组数;sj表示第j个交通流期望值输出。S222: Establish a training objective function Among them, E represents the mean square error function between the expected value of the wavelet neural network traffic flow prediction and the actual output value of the network; sp represents the number of training sample groups; s j represents the output of the expected value of the jth traffic flow.

S223:如果|E|大于设定值,则如按照式 以及更新小波神经网络参数,跳至S222,以修正小波神经网络参数;其中η为小波神经网络学习因子。S223: If |E| is greater than the set value, if according to formula as well as Update the wavelet neural network parameters, skip to S222, to correct the wavelet neural network parameters; where η is the wavelet neural network learning factor.

把训练好的小波神经网络参数wij,vij,aj,bj(i=1,2,…,Input;j=1,2,…,Output)代入预测小波神经网络,可以得到小波神经网络交通流预测模型,并利用获取的交通流数据以及计算关系式得到小波神经网络预测输出。Substituting the trained wavelet neural network parameters w ij , v ij , a j , b j (i=1,2,…,Input; j=1,2,…,Output) into the predicted wavelet neural network, the wavelet neural network can be obtained Network traffic flow forecasting model, and use the acquired traffic flow data and calculation relation Obtain the predicted output of the wavelet neural network.

另外,请参照图2和图3,图2为采用本发明实施例所提供的基于狼群算法的交通流预测方法的高速公路交通流预测仿真示意图,图3为采用现有技术中的小波神经网络的交通流预测方法的高速公路交通流预测仿真示意图。图2中的IWN-WNN表示基于狼群算法的小波神经网络预测方法;图3中的WNN表示基于小波神经网络的预测方法。由图2和图3可知,本发明实施例所提供的基于狼群算法的交通流预测方法的精确度更高,预测效果更好。In addition, please refer to FIG. 2 and FIG. 3. FIG. 2 is a schematic diagram of expressway traffic flow prediction simulation using the wolf pack algorithm-based traffic flow prediction method provided by the embodiment of the present invention. FIG. Schematic diagram of expressway traffic flow forecasting simulation of network traffic flow forecasting method. IWN-WNN in Fig. 2 represents the wavelet neural network prediction method based on wolf pack algorithm; WNN in Fig. 3 represents the prediction method based on wavelet neural network. It can be seen from FIG. 2 and FIG. 3 that the traffic flow prediction method based on the wolf pack algorithm provided by the embodiment of the present invention has higher accuracy and better prediction effect.

相应的,本发明实施例公开了一种基于狼群算法的交通流预测装置。具体请参照图4图4为本发明实施例提供的一种基于狼群算法的交通流预测装置的结构示意图。在上述实施例的基础上:Correspondingly, the embodiment of the present invention discloses a traffic flow prediction device based on wolf pack algorithm. Please refer to FIG. 4 for details. FIG. 4 is a schematic structural diagram of a traffic flow prediction device based on wolf pack algorithm provided by an embodiment of the present invention. On the basis of above-mentioned embodiment:

该装置包括:The unit includes:

获取模块1,用于获取交通流数据;Obtaining module 1, used to obtain traffic flow data;

处理模块2,用于采用预先建立的小波神经网络交通流预测模型对交通流数据进行处理得到交通流预测结果;其中,小波神经网络交通流预测模型包括:The processing module 2 is used to process the traffic flow data by using the pre-established wavelet neural network traffic flow prediction model to obtain the traffic flow prediction result; wherein, the wavelet neural network traffic flow prediction model includes:

计算模块,用于依据历史数据以及狼群算法计算出初始化小波神经网络参数;Calculation module, used to calculate the initial wavelet neural network parameters according to historical data and wolf pack algorithm;

训练模块,用于采用小波神经网络以及历史数据对初始化小波神经网络参数进行训练得到小波神经网络交通流预测模型。The training module is used to use the wavelet neural network and historical data to train the initial wavelet neural network parameters to obtain the wavelet neural network traffic flow prediction model.

需要说明的是,本发明实施例提供的一种基于狼群算法的交通流预测系统,在使用过程中可以在一定程度上提高了预测速度和预测精度。It should be noted that the traffic flow prediction system based on the wolf pack algorithm provided by the embodiment of the present invention can improve the prediction speed and prediction accuracy to a certain extent during use.

另外,对于本发明实施例中所涉及到的基于狼群算法的交通流预测方法的具体介绍,请参照上述方法实施例,本申请在此不再赘述。In addition, for the specific introduction of the traffic flow prediction method based on the wolf pack algorithm involved in the embodiment of the present invention, please refer to the above method embodiment, and the present application will not repeat it here.

在上述实施例的基础上,请参照图5,图5为本发明实施例提供的一种小波神经网络交通流预测模型的结构示意图。On the basis of the above embodiments, please refer to FIG. 5 , which is a schematic structural diagram of a wavelet neural network traffic flow prediction model provided by an embodiment of the present invention.

可选的,计算模块包括:Optionally, computing modules include:

个体狼编码单元,用于依据历史数据将各个网络参数编码为各个个体狼,每个个体狼的位置与每个网络参数一一对应;The individual wolf encoding unit is used to encode each network parameter into each individual wolf according to historical data, and the position of each individual wolf corresponds to each network parameter;

头狼寻到单元,用于依据预设控制参数以及相应策略从各个个体狼中找到优化后的头狼所在的位置;The head wolf finds the unit, which is used to find the optimized position of the head wolf from each individual wolf according to the preset control parameters and corresponding strategies;

解码单元,用于将位置进行解码得到与位置对应的网络参数,并将网络参数作为初始化小波神经网络参数。The decoding unit is used to decode the position to obtain network parameters corresponding to the position, and use the network parameters as initial wavelet neural network parameters.

为解决上述技术问题,本发明实施例提供了一种基于狼群算法的交通流预测系统,包括如上述的基于狼群算法的交通流预测装置。In order to solve the above-mentioned technical problems, an embodiment of the present invention provides a traffic flow prediction system based on wolf pack algorithm, including the above-mentioned traffic flow prediction device based on wolf pack algorithm.

需要说明的是,本发明实施例提供的一种基于狼群算法的交通流预测系统,在使用过程中可以在一定程度上提高了预测速度和预测精度。It should be noted that the traffic flow prediction system based on the wolf pack algorithm provided by the embodiment of the present invention can improve the prediction speed and prediction accuracy to a certain extent during use.

另外,对于本发明实施例中所涉及到的基于狼群算法的交通流预测方法的具体介绍,请参照上述方法实施例,本申请在此不再赘述。In addition, for the specific introduction of the traffic flow prediction method based on the wolf pack algorithm involved in the embodiment of the present invention, please refer to the above method embodiment, and the present application will not repeat it here.

还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should also be noted that in this specification, relative terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations There is no such actual relationship or order between the operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (9)

1.一种基于狼群算法的交通流预测方法,其特征在于,所述方法包括:1. a traffic flow forecasting method based on wolf pack algorithm, is characterized in that, described method comprises: 获取交通流数据;Obtain traffic flow data; 采用预先建立的小波神经网络交通流预测模型对所述交通流数据进行处理得到交通流预测结果;其中,所述小波神经网络交通流预测模型是基于狼群算法训练而成的,其训练过程为:Using the pre-established wavelet neural network traffic flow prediction model to process the traffic flow data to obtain the traffic flow prediction result; wherein, the wavelet neural network traffic flow prediction model is trained based on the wolf pack algorithm, and the training process is as follows: : 依据历史数据以及狼群算法计算出初始化小波神经网络参数;Calculate the initial wavelet neural network parameters based on historical data and wolf pack algorithm; 采用小波神经网络以及所述历史数据对所述初始化小波神经网络参数进行训练得到所述小波神经网络交通流预测模型。The wavelet neural network traffic flow prediction model is obtained by using the wavelet neural network and the historical data to train the initialized wavelet neural network parameters. 2.根据权利要求1所述的基于狼群算法的交通流预测方法,其特征在于,所述依据历史数据以及狼群算法计算出初始化小波神经网络参数的过程具体为:2. the traffic flow prediction method based on wolf pack algorithm according to claim 1, is characterized in that, described according to historical data and wolf pack algorithm calculates the process that initializes wavelet neural network parameter to be specifically: 依据历史数据将各个网络参数编码为各个个体狼,每个所述个体狼的位置与每个所述网络参数一一对应;encoding each network parameter into each individual wolf according to the historical data, and the position of each individual wolf corresponds to each network parameter; 依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置;Finding the position of the optimized head wolf from each of the individual wolves according to preset control parameters and corresponding strategies; 将所述位置进行解码得到与所述位置对应的网络参数,并将所述网络参数作为初始化小波神经网络参数。The position is decoded to obtain network parameters corresponding to the position, and the network parameters are used as initial wavelet neural network parameters. 3.根据权利要求2所述的基于狼群算法的交通流预测方法,其特征在于,3. the traffic flow prediction method based on wolf pack algorithm according to claim 2, is characterized in that, 所述预设控制参数包括个体狼的总数量、最大迭代次数、最大游走次数、预设数量以及预设距离;The preset control parameters include the total number of individual wolves, the maximum number of iterations, the maximum number of walks, the preset number and the preset distance; 所述依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置的过程具体为:The process of finding the position of the optimized alpha wolf from each of the individual wolves according to the preset control parameters and corresponding strategies is specifically as follows: S2121:选取除头狼外的预设数量的狼作为探狼,执行由万有引力定律优化策略改进的游走行为,并将当前狼群中猎物气味浓度最大的狼所对应的位置作为探狼的游走方向;S2121: Select a preset number of wolves other than the head wolf as wolf detectors, execute the walking behavior improved by the optimization strategy of the law of universal gravitation, and use the position corresponding to the wolf with the highest prey odor concentration in the current pack of wolves as the wolf detector wander. walk direction; S2122:更新探狼的位置,并直至探狼的猎物气味浓度大于所述头狼的猎物气味浓度或当前游走次数达到最大游走次数时,将相应的探狼的位置代替所述头狼的位置,所述探狼成为新的头狼;S2122: Update the position of the wolf detection, and until the prey odor concentration of the wolf detection is greater than the prey odor concentration of the head wolf or the current number of wandering reaches the maximum number of travels, replace the corresponding wolf detection position with that of the head wolf position, the detective wolf becomes the new head wolf; S2123:通过所述新的头狼召唤猛狼,并采用混沌初始化对获取的猛狼变量进行处理,得到初始化猛狼的位置;S2123: Summon ferocious wolves through the new alpha wolf, and process the acquired wolf variables by using chaotic initialization to obtain the position of the initialized ferocious wolf; S2124:依据初始化猛狼的位置产生猛狼新个体的位置,计算所述猛狼新个体的猎物气味浓度,并当所述猎物气味浓度大于所述新的头狼的猎物气味浓度时,将所述猛狼新个体的位置代替所述头狼的位置;直至猛狼新个体与头狼之间的距离小于预设距离;S2124: Generate the position of the new wolf individual according to the position of the initialized wolf, calculate the prey odor concentration of the new wolf individual, and when the prey odor concentration is greater than the prey odor concentration of the new head wolf, calculate the The position of the new wolf individual replaces the position of the head wolf; until the distance between the new wolf individual and the head wolf is less than the preset distance; S2125:执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新;S2125: Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf; S2126:按照“胜者为王”规则更新头狼的位置,再按照“强者生存”机制和“强者生存,弱肉强食”的原则对狼群进行群体更新;S2126: Update the position of the wolf pack according to the "winner is king" rule, and then update the wolf pack according to the "survival of the strong" mechanism and the principle of "survival of the strong, the jungle of the jungle"; S2127:判断头狼与猎物之间是否达到预设精度或当前迭代次数大于最大迭代次数,如果是,则将所述头狼作为优化后的头狼,并输出所述优化后的头狼的位置;否则,返回S2121。S2127: Determine whether the preset accuracy is reached between the alpha wolf and the prey or the current number of iterations is greater than the maximum number of iterations, if so, use the alpha wolf as the optimized alpha wolf, and output the position of the optimized alpha wolf ; Otherwise, return to S2121. 4.根据权利要求3所述的基于狼群算法的交通流预测方法,其特征在于,所述更新探狼的位置的过程具体为:4. the traffic flow prediction method based on wolf pack algorithm according to claim 3, is characterized in that, the process of described updating the position of wolf detection is specifically: 依据第一计算关系式对所述探狼的位置进行更新;所述第一计算关系式为:The position of the wolf detection is updated according to the first calculation relation; the first calculation relation is: 其中,所述x′i表示第i只探狼更新后的位置;所述xi表示第i只探狼的当前位置,所述xk表示第k只探狼的位置,所述rand(0,1)表示服从0到1的均匀分布函数,所述xbest表示当前猎物气味浓度最大的位置,所述Yik表示第i只探狼相对第k只探狼的猎物气味浓度函数; Wherein, the x′ i represents the updated position of the i-th wolf detector; the x i represents the current position of the i-th wolf detector, the x k represents the position of the k-th wolf detector, and the rand(0 , 1) represents a uniform distribution function from 0 to 1, the x best represents the position where the current prey odor concentration is the largest, and the Y ik represents the prey odor concentration function of the i-th wolf relative to the k-th wolf; 所述Yik依据第二计算关系式得到,所述第二计算关系式为:其中,所述G表示万有引力常数;所述Y(xi)表示第i只探狼的猎物气味浓度,所述Y(xk)表示第k只探狼的猎物气味浓度。The Y ik is obtained according to the second calculation relational expression, and the second calculation relational expression is: Wherein, the G represents the gravitational constant; the Y( xi ) represents the prey odor concentration of the i-th wolf detection, and the Y(x k ) represents the prey odor concentration of the k-th wolf detection. 5.根据权利要求3所述的基于狼群算法的交通流预测方法,其特征在于,所述依据初始化猛狼的位置产生猛狼新个体的位置的过程具体为:5. the traffic flow prediction method based on wolf pack algorithm according to claim 3, is characterized in that, the process of generating the position of the new individual of fierce wolf according to the position of initialization fierce wolf is specifically: 依据初始化猛狼的位置以及第三计算关系式得到猛狼新个体的位置,所述第三计算关系式为:Obtain the position of the new individual of the wolf according to the position of the initialization wolf and the third calculation relation, and the third calculation relation is: xn′=Yi+Ri(2xn,k-1),其中,所述x′n为猛狼新个体的位置,所述xn,k表示第k次迭代时猛狼新个体的位置;所述Yi为猎物的气味浓度;所述Ri为奔袭区域半径;x n ′=Y i +R i (2x n,k -1), wherein, the x′ n is the position of the new wolf individual, and the x n,k represents the position of the new wolf individual at the kth iteration Position; said Y i is the odor concentration of the prey; said R i is the radius of the attack area; 所述xn,k依据第四计算关系式得到,所述第四计算关系式为xn,k+1=μxn,k(1-xn,k),其中,n∈[1,N],所述N表示所述个体狼的总数量,所述μ表示混沌状态的控制参数,所述k表示迭代次数。The x n,k is obtained according to the fourth calculation relational expression, and the fourth calculation relational expression is x n,k+1 =μx n,k (1-x n,k ), wherein, n∈[1,N ], the N represents the total number of individual wolves, the μ represents the control parameters of the chaotic state, and the k represents the number of iterations. 6.根据权利要求3所述的基于狼群算法的交通流预测方法,其特征在于,所述执行惯性权重自适策略优化的围攻行为,并对头狼的位置进行更新的过程具体为:6. the traffic flow prediction method based on wolf pack algorithm according to claim 3, is characterized in that, the siege behavior of described execution inertial weight self-adaptive strategy optimization, and the process that the position of head wolf is updated is specifically: 执行惯性权重自适策略优化的围攻行为,并依据第五计算关系式对头狼的位置进行更新,所述第五计算关系式为其中,所述Mk表示迭代次数为k使猎物的位置,所述stepc表示猛狼的攻击步长,所述γ表示惯性权重;所述γ依据第六计算关系式得到,所述第六计算关系式为:Execute the siege behavior optimized by the inertia weight adaptive strategy, and update the position of the head wolf according to the fifth calculation relation, the fifth calculation relation is Wherein, said M k represents the position of the prey when the number of iterations is k, said step c represents the attack step size of the wolf, and said γ represents the inertia weight; said γ is obtained according to the sixth calculation relational formula, and the sixth The calculation relation is: 其中,所述γmax表示最大惯性权重;所述γmin表示最小惯性权重,所述Zmax表示所述最大迭代次数,所述z表示当前迭代次数。 Wherein, the γ max represents the maximum inertial weight; the γ min represents the minimum inertial weight, the Z max represents the maximum number of iterations, and the z represents the current number of iterations. 7.一种基于狼群算法的交通流预测装置,其特征在于,所述装置包括:7. A traffic flow prediction device based on wolf pack algorithm, characterized in that, said device comprises: 获取模块,用于获取交通流数据;An acquisition module, configured to acquire traffic flow data; 处理模块,用于采用预先建立的小波神经网络交通流预测模型对所述交通流数据进行处理得到交通流预测结果;其中,所述小波神经网络交通流预测模型包括:A processing module, configured to process the traffic flow data using a pre-established wavelet neural network traffic flow prediction model to obtain a traffic flow prediction result; wherein the wavelet neural network traffic flow prediction model includes: 计算模块,用于依据历史数据以及狼群算法计算出初始化小波神经网络参数;Calculation module, used to calculate the initial wavelet neural network parameters according to historical data and wolf pack algorithm; 训练模块,用于采用小波神经网络以及所述历史数据对所述初始化小波神经网络参数进行训练得到所述小波神经网络交通流预测模型。The training module is configured to use the wavelet neural network and the historical data to train the parameters of the initialized wavelet neural network to obtain the traffic flow prediction model of the wavelet neural network. 8.根据权利要求7所述的基于狼群算法的交通流预测装置,其特征在于,所述计算模块包括:8. the traffic flow forecasting device based on wolf pack algorithm according to claim 7, is characterized in that, described calculating module comprises: 个体狼编码单元,用于依据历史数据将各个网络参数编码为各个个体狼,每个所述个体狼的位置与每个所述网络参数一一对应;An individual wolf encoding unit, configured to encode each network parameter into each individual wolf according to historical data, and the position of each individual wolf is in one-to-one correspondence with each of the network parameters; 头狼寻到单元,用于依据预设控制参数以及相应策略从各个所述个体狼中找到优化后的头狼所在的位置;The head wolf finding unit is used to find the optimized position of the head wolf from each of the individual wolves according to preset control parameters and corresponding strategies; 解码单元,用于将所述位置进行解码得到与所述位置对应的网络参数,并将所述网络参数作为初始化小波神经网络参数。A decoding unit, configured to decode the position to obtain a network parameter corresponding to the position, and use the network parameter as an initialization wavelet neural network parameter. 9.一种基于狼群算法的交通流预测系统,其特征在于,包括如权利要求7或8所述的基于狼群算法的交通流预测装置。9. A traffic flow forecasting system based on wolf pack algorithm, characterized in that it comprises the traffic flow forecasting device based on wolf pack algorithm according to claim 7 or 8.
CN201710495064.7A 2017-06-26 2017-06-26 Traffic flow prediction method, device and system based on wolf colony algorithm Active CN107085942B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710495064.7A CN107085942B (en) 2017-06-26 2017-06-26 Traffic flow prediction method, device and system based on wolf colony algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710495064.7A CN107085942B (en) 2017-06-26 2017-06-26 Traffic flow prediction method, device and system based on wolf colony algorithm

Publications (2)

Publication Number Publication Date
CN107085942A true CN107085942A (en) 2017-08-22
CN107085942B CN107085942B (en) 2021-01-26

Family

ID=59607222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710495064.7A Active CN107085942B (en) 2017-06-26 2017-06-26 Traffic flow prediction method, device and system based on wolf colony algorithm

Country Status (1)

Country Link
CN (1) CN107085942B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688702A (en) * 2017-08-24 2018-02-13 西安理工大学 A Simulation Method of River Flood Discharge Evolution Law Based on Wolf Pack Algorithm
CN107917734A (en) * 2017-11-29 2018-04-17 国网吉林省电力有限公司信息通信公司 Cable's Fault Forecasting Methodology based on temperature and resistance
CN108422997A (en) * 2018-05-15 2018-08-21 南京航空航天大学 A kind of automobile active safety cooperative control system and method based on wolf pack algorithm
CN108491923A (en) * 2018-04-10 2018-09-04 吉林大学 Based on the pest image-recognizing method for improving wolf pack algorithm optimization Bayesian network
CN108898223A (en) * 2018-07-11 2018-11-27 国家海洋技术中心 A kind of ocean observation device operating status method for detecting abnormality and device
CN108918137A (en) * 2018-06-08 2018-11-30 华北水利水电大学 Fault Diagnosis of Gear Case devices and methods therefor based on improved WPA-BP neural network
CN109347900A (en) * 2018-08-23 2019-02-15 东华理工大学 Adaptive evolution method of cloud service system based on improved wolf pack algorithm
CN110444022A (en) * 2019-08-15 2019-11-12 平安科技(深圳)有限公司 The construction method and device of traffic flow data analysis model
CN110824293A (en) * 2019-10-15 2020-02-21 淮阴工学院 A power grid fault diagnosis method based on multi-feature fusion parameters based on wolf pack algorithm
CN111259498A (en) * 2020-01-14 2020-06-09 重庆大学 Thermal Error Modeling Method and Thermal Error Compensation System of Axle System Based on LSTM Neural Network
CN111768622A (en) * 2020-06-23 2020-10-13 南通大学 A Short-term Traffic Prediction Method Based on Improved Grey Wolf Algorithm
CN111964574A (en) * 2020-06-23 2020-11-20 安徽理工大学 3D laser target ball center fitting method based on weight selection iterative wolf pack algorithm
CN112365705A (en) * 2020-08-27 2021-02-12 招商局重庆交通科研设计院有限公司 Method for determining road traffic volume
CN112463337A (en) * 2020-12-08 2021-03-09 内蒙古大学 Workflow task migration method used in mobile edge computing environment
CN117373263A (en) * 2023-12-08 2024-01-09 深圳市永达电子信息股份有限公司 Traffic flow prediction method and device based on quantum pigeon swarm algorithm

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646178A (en) * 2013-12-18 2014-03-19 中国石油大学(华东) Multi-objective optimization method based on improved gravitation search algorithm
CN103678649A (en) * 2013-12-20 2014-03-26 上海电机学院 Traffic path searching system and method based on cloud self-adaptation particle swarm optimization
CN103972908A (en) * 2014-05-23 2014-08-06 国家电网公司 Multi-target reactive power optimization method based on adaptive chaos particle swarm algorithm
CN104008118A (en) * 2013-04-23 2014-08-27 江南大学 Method for improving population diversity in gravitational search algorithm
CN104821082A (en) * 2015-04-29 2015-08-05 电子科技大学 Short-time traffic flow prediction method based on integrated evaluation
CN105281847A (en) * 2015-09-14 2016-01-27 杭州电子科技大学 Deception jamming identification method based on model parameter identification
CN105469611A (en) * 2015-12-24 2016-04-06 大连理工大学 Short-term traffic flow prediction model method
CN105513350A (en) * 2015-11-30 2016-04-20 华南理工大学 Time-phased multi-parameter short-term traffic flow prediction method based on time-space characteristics
CN106447024A (en) * 2016-08-31 2017-02-22 上海电机学院 Particle swarm improved algorithm based on chaotic backward learning

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008118A (en) * 2013-04-23 2014-08-27 江南大学 Method for improving population diversity in gravitational search algorithm
CN103646178A (en) * 2013-12-18 2014-03-19 中国石油大学(华东) Multi-objective optimization method based on improved gravitation search algorithm
CN103678649A (en) * 2013-12-20 2014-03-26 上海电机学院 Traffic path searching system and method based on cloud self-adaptation particle swarm optimization
CN103972908A (en) * 2014-05-23 2014-08-06 国家电网公司 Multi-target reactive power optimization method based on adaptive chaos particle swarm algorithm
CN104821082A (en) * 2015-04-29 2015-08-05 电子科技大学 Short-time traffic flow prediction method based on integrated evaluation
CN105281847A (en) * 2015-09-14 2016-01-27 杭州电子科技大学 Deception jamming identification method based on model parameter identification
CN105513350A (en) * 2015-11-30 2016-04-20 华南理工大学 Time-phased multi-parameter short-term traffic flow prediction method based on time-space characteristics
CN105469611A (en) * 2015-12-24 2016-04-06 大连理工大学 Short-term traffic flow prediction model method
CN106447024A (en) * 2016-08-31 2017-02-22 上海电机学院 Particle swarm improved algorithm based on chaotic backward learning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李常洪等: "基于狼群算法优化的BP神经网络", 《科技创新与生产力》 *
王健等: "BP与小波神经网络短时交通流预测对比研究", 《科技视界》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688702A (en) * 2017-08-24 2018-02-13 西安理工大学 A Simulation Method of River Flood Discharge Evolution Law Based on Wolf Pack Algorithm
CN107688702B (en) * 2017-08-24 2020-11-17 西安理工大学 Lane colony algorithm-based river channel flood flow evolution law simulation method
CN107917734A (en) * 2017-11-29 2018-04-17 国网吉林省电力有限公司信息通信公司 Cable's Fault Forecasting Methodology based on temperature and resistance
CN107917734B (en) * 2017-11-29 2020-12-29 国网吉林省电力有限公司信息通信公司 Optical cable fault prediction method based on temperature and resistance
CN108491923A (en) * 2018-04-10 2018-09-04 吉林大学 Based on the pest image-recognizing method for improving wolf pack algorithm optimization Bayesian network
CN108422997A (en) * 2018-05-15 2018-08-21 南京航空航天大学 A kind of automobile active safety cooperative control system and method based on wolf pack algorithm
CN108918137A (en) * 2018-06-08 2018-11-30 华北水利水电大学 Fault Diagnosis of Gear Case devices and methods therefor based on improved WPA-BP neural network
CN108898223A (en) * 2018-07-11 2018-11-27 国家海洋技术中心 A kind of ocean observation device operating status method for detecting abnormality and device
CN109347900A (en) * 2018-08-23 2019-02-15 东华理工大学 Adaptive evolution method of cloud service system based on improved wolf pack algorithm
CN109347900B (en) * 2018-08-23 2020-12-11 东华理工大学 Adaptive evolution method of cloud service system based on improved wolf pack algorithm
CN110444022A (en) * 2019-08-15 2019-11-12 平安科技(深圳)有限公司 The construction method and device of traffic flow data analysis model
CN110824293A (en) * 2019-10-15 2020-02-21 淮阴工学院 A power grid fault diagnosis method based on multi-feature fusion parameters based on wolf pack algorithm
CN111259498A (en) * 2020-01-14 2020-06-09 重庆大学 Thermal Error Modeling Method and Thermal Error Compensation System of Axle System Based on LSTM Neural Network
CN111768622A (en) * 2020-06-23 2020-10-13 南通大学 A Short-term Traffic Prediction Method Based on Improved Grey Wolf Algorithm
CN111964574A (en) * 2020-06-23 2020-11-20 安徽理工大学 3D laser target ball center fitting method based on weight selection iterative wolf pack algorithm
CN112365705A (en) * 2020-08-27 2021-02-12 招商局重庆交通科研设计院有限公司 Method for determining road traffic volume
CN112365705B (en) * 2020-08-27 2022-05-27 招商局重庆交通科研设计院有限公司 Method for determining road traffic volume
CN112463337A (en) * 2020-12-08 2021-03-09 内蒙古大学 Workflow task migration method used in mobile edge computing environment
CN112463337B (en) * 2020-12-08 2024-02-02 内蒙古大学 Workflow task migration method used in mobile edge computing environment
CN117373263A (en) * 2023-12-08 2024-01-09 深圳市永达电子信息股份有限公司 Traffic flow prediction method and device based on quantum pigeon swarm algorithm
CN117373263B (en) * 2023-12-08 2024-03-08 深圳市永达电子信息股份有限公司 Traffic flow prediction method and device based on quantum pigeon swarm algorithm

Also Published As

Publication number Publication date
CN107085942B (en) 2021-01-26

Similar Documents

Publication Publication Date Title
CN107085942A (en) A traffic flow prediction method, device and system based on wolf pack algorithm
CN107103397A (en) A kind of traffic flow forecasting method based on bat algorithm, apparatus and system
US11574164B2 (en) Neural network cooperation
CN107463966B (en) A radar one-dimensional range image target recognition method based on double deep neural network
KR102410820B1 (en) Method and apparatus for recognizing based on neural network and for training the neural network
Shamim et al. A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels
KR20180129211A (en) Method and apparatus for quantizing data in a neural network
CN104978611A (en) Neural network photovoltaic power generation output prediction method based on grey correlation analysis
CN108764520A (en) A kind of water quality parameter prediction technique based on multilayer circulation neural network and D-S evidence theory
CN103226741A (en) Urban water supply network tube explosion prediction method
CN106529185B (en) A combined prediction method and system for displacement of ancient buildings
CN111860787A (en) A short-term prediction method and device for coupled directed graph structure traffic data containing missing data
CN107085941A (en) A traffic flow forecasting method, device and system
CN103778482A (en) Aquaculture dissolved oxygen short-term prediction method based on multi-scale analysis
Zhu et al. Short-term traffic flow prediction with wavelet and multi-dimensional taylor network model
CN102567781A (en) Network behavior prediction method based on neural network
Sugiartawan et al. Time series data prediction using elman recurrent neural network on tourist visits in tanah lot tourism object
CN105824783B (en) A Parameter Identification Method for Nonlinear Damping System Based on Bacterial Foraging Hybrid Bee Colony Algorithm
CN116310542A (en) An Image Classification Method Based on Improved Cross-Entropy Loss Function
Stinis Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning
Springer et al. Robust parameter estimation of chaotic systems
CN107480786A (en) Recognition with Recurrent Neural Network track likelihood probability computational methods based on output state limitation
Ch et al. Modeling uncertainty analysis in flow and solute transport model using adaptive neuro fuzzy inference system and particle swarm optimization
Liu et al. Physics-informed neural network for nonlinear structural system identification
CN110533905A (en) A kind of method of forecasting traffic flow, system and equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant