CN107084725A - A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process - Google Patents

A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process Download PDF

Info

Publication number
CN107084725A
CN107084725A CN201710345926.8A CN201710345926A CN107084725A CN 107084725 A CN107084725 A CN 107084725A CN 201710345926 A CN201710345926 A CN 201710345926A CN 107084725 A CN107084725 A CN 107084725A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
destination
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710345926.8A
Other languages
Chinese (zh)
Inventor
张瑜
朱汉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Ebit Automation Equipment Co Ltd
Original Assignee
Chengdu Ebit Automation Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Ebit Automation Equipment Co Ltd filed Critical Chengdu Ebit Automation Equipment Co Ltd
Priority to CN201710345926.8A priority Critical patent/CN107084725A/en
Publication of CN107084725A publication Critical patent/CN107084725A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

The invention discloses a kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process that can quickly determine waypoint location.Multi-rotor unmanned aerial vehicle electric inspection process three-dimensional flight course planning method, by setting up course line drawing board;Then set up steel tower and overlook drawing-board coordinate system;It is then determined that the horizontal longitude and latitude position of destination (X, Y) and the destination position platform-lens direction;Destination elevation information H is determined again;Task attribute configuration, which is carried out, to the destination that three dimensional local information is determined obtains course data;Obtained course data is finally imported into map.Multi-rotor unmanned aerial vehicle electric inspection process three-dimensional flight course planning method is using steel tower as object, the three dimensional local information of destination can be quickly obtained by calculating, so as to solve during electric inspection process, conventional ground station can not efficiently accomplish the problems such as three-dimensional flight course planning of electric inspection process and complicated planning.It is adapted in the popularization and application of unmanned air vehicle technique field.

Description

A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process
Technical field
The present invention relates to unmanned air vehicle technique field, especially a kind of three-dimensional flight course planning side of multi-rotor unmanned aerial vehicle electric inspection process Method.
Background technology
With the introducing of new technology, new method and new management philosophy, unmanned plane is progressively paid attention to and starts to answer For patrolling transmission line operation, the deficiency of Traditional Man tour is compensate for a certain extent, it is particularly artificial in high mountain etc. It is difficult to become apparent up to regional advantages.Wherein, multi-rotor unmanned aerial vehicle flying speed is slow, can be to specific with spot hover function Make an inspection tour target and carry out details observation, be conducive to disfigurement discovery.
At present, many rotor transmission line of electricity electric inspection process processes mainly have two ways:Driver's manual manipulation mode and Course line pattern.Patrol mode under manual mode fully relies on manipulation hand and drives unmanned plane by visually judging unmanned plane position; Under the pattern of course line, operating personnel need to shift to an earlier date is based on mapping course line in earth station, treats unmanned plane after the completion of the upload of course line Flight plan is performed according to course line.
Currently, the electric inspection process process under the pattern of course line, staff's planning course line fully relies on map planning.Due to iron Electric inspection process flight course planning under the special applications scene of tower inspection, this pattern has the following characteristics that and defect:
(1) there is more destination in the additional smaller range of steel tower, it is desirable to need to add near steel tower when planning course line Crypto set destination.By map resolution ratio is relatively low and satellite map projects institute extremely, the flight course planning pattern of map is based entirely on The error cooked up is very big, it is impossible to meet electricity needs, it is often necessary to which correct course line can just be obtained once by continuing to optimize course line;
(2) height change is more.Destination of the electric inspection process application requirement near steel tower is distributed in different height position, is based on The position that effectively can not be quickly needed under plane map or Google Earth puppet 3D patterns.
The content of the invention
The technical problems to be solved by the invention, which are to provide, a kind of can quickly determine the multi-rotor unmanned aerial vehicle of waypoint location Electric inspection process three-dimensional flight course planning method.
The technical solution adopted for the present invention to solve the technical problems is:Multi-rotor unmanned aerial vehicle electric inspection process three-dimensional course line Planing method, comprises the following steps:
S1, set up course line drawing board;Orthogonal projection is carried out to iron tower of power transmission line and obtains steel tower vertical view drawing-board and steel tower side View drawing board;
S2, set up steel tower overlook drawing-board coordinate system;Diagonal line intersection point using steel tower four column foot points A, B, C, D is picture Plate coordinate origin o, using latitude direction as drawing board coordinate system transverse axis, using longitudinal as the drawing board coordinate system longitudinal axis;
Overlooked in steel tower in drawing-board coordinate system, origin o coordinate is (xo, yo):
Wherein, (xa, ya)、(xb, yb)、(xc, yc)、(xd, yd) be respectively in column foot point A, B, C, D under gps coordinate system Coordinate;
Overlooked in steel tower in drawing-board coordinate system, column foot point A, B, C, D coordinate are:
S3, the horizontal longitude and latitude position for determining destination (X, Y) and the destination position platform-lens direction;The boat The horizontal longitude and latitude position of point is by h, DA, DB, DEIt is determined that, the destination position platform-lens are towards by the relative head of platform-lens The angle, θ of direction is determined;
H simultaneously represents destination distance Iron column foot end distance,
Wherein, L=(DA+DB+DAB)/2,
DARepresent the distance between destination and column foot point A, DA=[(X-XA)2+(Y-YA)2]1/2
DBRepresent the distance between destination and column foot point B, DB=[(X-XB)2+(Y-YB)2]1/2
DERepresent distance of the destination apart from column foot point A Yu pin point B lines midpoint:
DE=[(X-XE)2+(Y-YE)2]1/2
DABRepresent the distance between column foot point A and pin point B, DAB=[(XA-XB)2+(YA-YB)2]1/2
θ=90- alpha-betas, wherein
Cos α=(DB 2+DE 2-DBE 2)/2DBDE
Cos β=(DB 2+DBE 2-DE 2)/2DBDBE
S4, the elevation information H for determining destination (X, Y);Using steel tower side view drawing-board as scale, in steel tower side view drawing-board Directly read destination height H;
S5, to determine three dimensional local information destination (X, Y) carry out task attribute configuration obtain course data;
S6, by obtained course data import map.
Beneficial effects of the present invention:The multi-rotor unmanned aerial vehicle electric inspection process three-dimensional flight course planning method using steel tower as object, Can quickly obtain the three dimensional local information of destination by calculating, so as to solve during electric inspection process, conventional ground station without Method efficiently accomplishes the problems such as three-dimensional flight course planning of electric inspection process and complicated planning.
Brief description of the drawings
Fig. 1 is iron tower of power transmission line exploded view;
Fig. 2 is that steel tower overlooks drawing-board schematic diagram;
Fig. 3 is steel tower side view drawing-board schematic diagram;
Fig. 4 is that steel tower overlooks drawing-board coordinate system and mathematical modeling.
Embodiment
The three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process of the present invention, comprises the following steps:
S1, set up course line drawing board;Orthogonal projection is carried out to iron tower of power transmission line and obtains steel tower vertical view drawing-board and steel tower side View drawing board;Steel tower is decomposed into top view and side view two parts, is respectively used to determine that the horizontal longitude and latitude of destination and height are believed Breath, Fig. 1 is iron tower of power transmission line exploded view;Fig. 2 is that steel tower overlooks drawing-board schematic diagram;Fig. 3 illustrates for steel tower side view drawing-board Figure;
S2, set up steel tower overlook drawing-board coordinate system;As shown in figure 4, due to each steel tower distributing position and towards having Institute is different, and the relative position relation of steel tower and unmanned plane can not be effectively obtained in gps coordinate system.Therefore, the present invention is with iron Tower is object, the diagonal line intersection point using steel tower four column foot points A, B, C, D as drawing board coordinate origin o, using latitude direction as Drawing board coordinate system transverse axis, using longitudinal as the drawing board coordinate system longitudinal axis;
Overlooked in steel tower in drawing-board coordinate system, origin o coordinate is (xo, yo):
Wherein, (xa, ya)、(xb, yb)、(xc, yc)、(xd, yd) be respectively in column foot point A, B, C, D under gps coordinate system Coordinate;
Overlooked in steel tower in drawing-board coordinate system, column foot point A, B, C, D coordinate are:
S3, the horizontal longitude and latitude position for determining destination (X, Y) and the destination position platform-lens direction;The boat The horizontal longitude and latitude position of point is by h, DA, DB, DEIt is determined that, the destination position platform-lens are towards by the relative head of platform-lens The angle, θ of direction is determined;
H simultaneously represents destination distance Iron column foot end distance,
Wherein, L=(DA+DB+DAB)/2,
DARepresent the distance between destination and column foot point A, DA=[(X-XA)2+(Y-YA)2]1/2
DBRepresent the distance between destination and column foot point B, DB=[(X-XB)2+(Y-YB)2]1/2
DEDistance of the destination apart from column foot point A Yu pin point B lines midpoint is represented, E represents AB midpoints:
DE=[(X-XE)2+(Y-YE)2]1/2
DABRepresent the distance between column foot point A and pin point B, DAB=[(XA-XB)2+(YA-YB)2]1/2
θ=90- alpha-betas, wherein
Cos α=(DB 2+DE 2-DBE 2)/2DBDE
Cos β=(DB 2+DBE 2-DE 2)/2DBDBE
S4, the elevation information H for determining destination (X, Y);Using steel tower side view drawing-board as scale, in steel tower side view drawing-board Directly read destination height H, and Dynamic Announce destination height and insulator height and position relation;
S5, to determine three dimensional local information destination (X, Y) carry out task attribute configuration obtain course data;
S6, by obtained course data import map.
Multi-rotor unmanned aerial vehicle electric inspection process three-dimensional flight course planning method quick can be obtained using steel tower as object by calculating To the three dimensional local information of destination, so as to solve during electric inspection process, conventional ground station can not efficiently accomplish electric inspection process The problems such as three-dimensional flight course planning and complicated planning.

Claims (1)

1. a kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process, it is characterised in that comprise the following steps:
S1, set up course line drawing board;Orthogonal projection is carried out to iron tower of power transmission line and obtains steel tower vertical view drawing-board and steel tower side view Drawing board;
S2, set up steel tower overlook drawing-board coordinate system;Sat by drawing board of steel tower four column foot points A, B, C, D diagonal line intersection point Mark system origin o, using latitude direction as drawing board coordinate system transverse axis, using longitudinal as the drawing board coordinate system longitudinal axis;
Overlooked in steel tower in drawing-board coordinate system, origin o coordinate is (xo,yo):
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>x</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>a</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <msub> <mi>y</mi> <mi>c</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, (xa,ya)、(xb,yb)、(xc,yc)、(xd,yd) it is respectively seat in column foot point A, B, C, D under gps coordinate system Mark;
Overlooked in steel tower in drawing-board coordinate system, column foot point A, B, C, D coordinate are:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>A</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>x</mi> <mi>a</mi> <mo>-</mo> <mi>x</mi> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mi>a</mi> <mo>-</mo> <mi>y</mi> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>B</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>x</mi> <mi>b</mi> <mo>-</mo> <mi>x</mi> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mi>b</mi> <mo>-</mo> <mi>y</mi> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>x</mi> <mi>c</mi> <mo>-</mo> <mi>x</mi> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mi>c</mi> <mo>-</mo> <mi>y</mi> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>D</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>x</mi> <mi>d</mi> <mo>-</mo> <mi>x</mi> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mi>d</mi> <mo>-</mo> <mi>y</mi> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
S3, the horizontal longitude and latitude position for determining destination (X, Y) and the destination position platform-lens direction;The destination water Mean longitude Position Latitude is by h, DA, DB, DEIt is determined that, the destination position platform-lens are towards by the relative head direction of platform-lens Angle, θ determine;
H simultaneously represents destination distance Iron column foot end distance,
Wherein, L=(DA+DB+DAB)/2,
DARepresent the distance between destination and column foot point A, DA=[(X-XA)2+(Y-YA)2]1/2
DBRepresent the distance between destination and column foot point B, DB=[(X-XB)2+(Y-YB)2]1/2
DERepresent distance of the destination apart from column foot point A Yu pin point B lines midpoint:
DE=[(X-XE)2+(Y-YE)2]1/2
DABRepresent the distance between column foot point A and pin point B, DAB=[(XA-XB)2+(YA-YB)2]1/2
θ=90- alpha-betas, wherein
Cos α=(DB 2+DE 2-DBE 2)/2DBDE
Cos β=(DB 2+DBE 2-DE 2)/2DBDBE
S4, the elevation information H for determining destination (X, Y);Using steel tower side view drawing-board as scale, in steel tower side view drawing-board directly Read destination height H;
S5, to determine three dimensional local information destination (X, Y) carry out task attribute configuration obtain course data;
S6, by obtained course data import map.
CN201710345926.8A 2017-05-17 2017-05-17 A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process Pending CN107084725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710345926.8A CN107084725A (en) 2017-05-17 2017-05-17 A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710345926.8A CN107084725A (en) 2017-05-17 2017-05-17 A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process

Publications (1)

Publication Number Publication Date
CN107084725A true CN107084725A (en) 2017-08-22

Family

ID=59608210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710345926.8A Pending CN107084725A (en) 2017-05-17 2017-05-17 A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process

Country Status (1)

Country Link
CN (1) CN107084725A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168554A (en) * 2017-11-20 2018-06-15 国网山东省电力公司莱芜供电公司 A kind of quick planing method of unmanned plane power-line patrolling system map
CN108413964A (en) * 2018-03-08 2018-08-17 云南电网有限责任公司电力科学研究院 A kind of unmanned plane polling transmission line path planning method and system
CN108594847A (en) * 2018-03-27 2018-09-28 广东电网有限责任公司 A kind of autocontrol method of power transmission line unmanned machine laser radar modeling
CN108983809A (en) * 2018-07-16 2018-12-11 福州日兆信息科技有限公司 The method and unmanned plane of accurate identification positioning surrounding based on unmanned plane
CN109087312A (en) * 2018-07-25 2018-12-25 深圳高科新农技术有限公司 A kind of unmanned plane course line automatic planning and system
CN109141434A (en) * 2018-09-21 2019-01-04 国网电力科学研究院武汉南瑞有限责任公司 A kind of unmanned plane patrolled and examined track acquisition methods based on laser point cloud data
CN109239721A (en) * 2018-09-04 2019-01-18 广东电网有限责任公司 A kind of inclination of transmission line tower degree automatic measurement system and its measurement method
CN109460054A (en) * 2018-09-11 2019-03-12 成都优艾维智能科技有限责任公司 A kind of autonomous method for inspecting of unmanned plane for single time anchor support of direct current
CN109901623A (en) * 2019-04-11 2019-06-18 株洲时代电子技术有限公司 Bridge pier shaft inspection flight course planning method
CN111091622A (en) * 2019-12-16 2020-05-01 广州地理研究所 Unmanned aerial vehicle inspection route construction method
CN111402447A (en) * 2020-03-25 2020-07-10 南方电网海南数字电网研究院有限公司 Power grid line inspection method, server, system and storage medium
CN111781954A (en) * 2020-08-26 2020-10-16 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle inspection control method and device
CN111814691A (en) * 2020-07-10 2020-10-23 广东电网有限责任公司 Space expansion display method and device for transmission tower image
CN111982123A (en) * 2020-08-26 2020-11-24 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle inspection route planning method and device
CN112904896A (en) * 2021-01-21 2021-06-04 中国南方电网有限责任公司超高压输电公司柳州局 Unmanned aerial vehicle autonomous driving route multiplexing method
CN115793716A (en) * 2023-02-13 2023-03-14 成都翼比特自动化设备有限公司 Automatic optimization method and system for unmanned aerial vehicle air route

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011163143A1 (en) * 2010-06-21 2011-12-29 Optimal Ranging, Inc. Uav power line position and load parameter estimation
CN104298248A (en) * 2014-10-08 2015-01-21 南京航空航天大学 Accurate visual positioning and orienting method for rotor wing unmanned aerial vehicle
CN104865971A (en) * 2015-05-26 2015-08-26 广西大学 Power transmission line inspection unmanned plane control method and unmanned plane
CN205158443U (en) * 2015-09-23 2016-04-13 上海电巴新能源科技有限公司 Iron tower structure system of patrolling and examining of power supply line
CN106403948A (en) * 2015-07-27 2017-02-15 国家电网公司 Three-dimensional flight track planning method for electric transmission line inspection unmanned aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011163143A1 (en) * 2010-06-21 2011-12-29 Optimal Ranging, Inc. Uav power line position and load parameter estimation
CN104298248A (en) * 2014-10-08 2015-01-21 南京航空航天大学 Accurate visual positioning and orienting method for rotor wing unmanned aerial vehicle
CN104865971A (en) * 2015-05-26 2015-08-26 广西大学 Power transmission line inspection unmanned plane control method and unmanned plane
CN106403948A (en) * 2015-07-27 2017-02-15 国家电网公司 Three-dimensional flight track planning method for electric transmission line inspection unmanned aerial vehicle
CN205158443U (en) * 2015-09-23 2016-04-13 上海电巴新能源科技有限公司 Iron tower structure system of patrolling and examining of power supply line

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168554B (en) * 2017-11-20 2020-05-08 国网山东省电力公司莱芜供电公司 Rapid map planning method for unmanned aerial vehicle power line patrol system
CN108168554A (en) * 2017-11-20 2018-06-15 国网山东省电力公司莱芜供电公司 A kind of quick planing method of unmanned plane power-line patrolling system map
CN108413964A (en) * 2018-03-08 2018-08-17 云南电网有限责任公司电力科学研究院 A kind of unmanned plane polling transmission line path planning method and system
CN108594847A (en) * 2018-03-27 2018-09-28 广东电网有限责任公司 A kind of autocontrol method of power transmission line unmanned machine laser radar modeling
CN108983809A (en) * 2018-07-16 2018-12-11 福州日兆信息科技有限公司 The method and unmanned plane of accurate identification positioning surrounding based on unmanned plane
CN109087312A (en) * 2018-07-25 2018-12-25 深圳高科新农技术有限公司 A kind of unmanned plane course line automatic planning and system
CN109087312B (en) * 2018-07-25 2022-04-26 深圳高科新农技术有限公司 Automatic planning method and system for unmanned aerial vehicle air route
CN109239721A (en) * 2018-09-04 2019-01-18 广东电网有限责任公司 A kind of inclination of transmission line tower degree automatic measurement system and its measurement method
CN109460054A (en) * 2018-09-11 2019-03-12 成都优艾维智能科技有限责任公司 A kind of autonomous method for inspecting of unmanned plane for single time anchor support of direct current
CN109141434A (en) * 2018-09-21 2019-01-04 国网电力科学研究院武汉南瑞有限责任公司 A kind of unmanned plane patrolled and examined track acquisition methods based on laser point cloud data
CN109901623B (en) * 2019-04-11 2022-03-15 株洲时代电子技术有限公司 Method for planning inspection route of pier body of bridge
CN109901623A (en) * 2019-04-11 2019-06-18 株洲时代电子技术有限公司 Bridge pier shaft inspection flight course planning method
CN111091622A (en) * 2019-12-16 2020-05-01 广州地理研究所 Unmanned aerial vehicle inspection route construction method
CN111091622B (en) * 2019-12-16 2022-07-01 广东省科学院广州地理研究所 Unmanned aerial vehicle inspection route construction method
CN111402447A (en) * 2020-03-25 2020-07-10 南方电网海南数字电网研究院有限公司 Power grid line inspection method, server, system and storage medium
CN111814691A (en) * 2020-07-10 2020-10-23 广东电网有限责任公司 Space expansion display method and device for transmission tower image
CN111814691B (en) * 2020-07-10 2022-01-21 广东电网有限责任公司 Space expansion display method and device for transmission tower image
CN111781954A (en) * 2020-08-26 2020-10-16 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle inspection control method and device
CN111982123A (en) * 2020-08-26 2020-11-24 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle inspection route planning method and device
CN111781954B (en) * 2020-08-26 2023-02-21 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle inspection control method and device
CN111982123B (en) * 2020-08-26 2023-10-31 云南电网有限责任公司迪庆供电局 Unmanned aerial vehicle routing planning method and device
CN112904896A (en) * 2021-01-21 2021-06-04 中国南方电网有限责任公司超高压输电公司柳州局 Unmanned aerial vehicle autonomous driving route multiplexing method
CN112904896B (en) * 2021-01-21 2022-11-04 中国南方电网有限责任公司超高压输电公司柳州局 Unmanned aerial vehicle autonomous driving route multiplexing method
CN115793716A (en) * 2023-02-13 2023-03-14 成都翼比特自动化设备有限公司 Automatic optimization method and system for unmanned aerial vehicle air route
CN115793716B (en) * 2023-02-13 2023-05-09 成都翼比特自动化设备有限公司 Automatic optimization method and system for unmanned aerial vehicle route

Similar Documents

Publication Publication Date Title
CN107084725A (en) A kind of three-dimensional flight course planning method of multi-rotor unmanned aerial vehicle electric inspection process
CN109934920B (en) High-precision three-dimensional point cloud map constructing method based on low-cost equipment
CN106441242B (en) A kind of interactive plotting method based on laser point cloud and full-view image
CN104501803B (en) Method for geological navigation and geological mapping through portable intelligent device based on Andriod
CN111724477A (en) Method for constructing multi-level three-dimensional terrain model through multi-source data fusion
CN102538770B (en) Low altitude photography image control point arranging method
CN102645203B (en) Power line crossover measurement method based on airborne laser radar data
CN101339244B (en) On-board SAR image automatic target positioning method
CN108180921B (en) AR-HUD navigation system using GPS data and navigation method thereof
CN103728637A (en) Farmland operation area boundary point and unmanned helicopter position point drawing method
CN106292698A (en) Accurate operation method and system for plant protection unmanned aerial vehicle
CN107490364A (en) A kind of wide-angle tilt is imaged aerial camera object positioning method
CN109163715B (en) Electric power station selection surveying method based on unmanned aerial vehicle RTK technology
CN102967311A (en) Navigational positioning method based on sky polarization distribution model matching
CN105758386A (en) Laser point cloud and aerial image integrated building three-dimensional modeling method
CN104457735A (en) 4D trajectory displaying method based on World Wind
CN108375985A (en) A kind of soil three-dimensional planning and designing platform and its design method
CN108594857A (en) It takes photo by plane system and its implementation for the multi-rotor unmanned aerial vehicle of traffic design
CN104977005B (en) Marine mobile platform is accurately stood a navigation system
CN106023207A (en) City component collecting method based on double panoramas of mobile measuring system
CN104063499A (en) Space vector POI extracting method based on vehicle-mounted space information collection
CN109444915A (en) A kind of danger zone pre-judging method based on laser radar data
Wen et al. Study on the key technology and application of UAV surveying and mapping data processing
CN107796388A (en) A kind of relative attitude measuring method based on inertial technology
CN116339383A (en) Unmanned aerial vehicle-based autonomous planning method for routing inspection route of distribution network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170822