CN107077539A - 导出纳米孔阵列的测量结果 - Google Patents

导出纳米孔阵列的测量结果 Download PDF

Info

Publication number
CN107077539A
CN107077539A CN201580059976.9A CN201580059976A CN107077539A CN 107077539 A CN107077539 A CN 107077539A CN 201580059976 A CN201580059976 A CN 201580059976A CN 107077539 A CN107077539 A CN 107077539A
Authority
CN
China
Prior art keywords
electrical characteristics
previous
nano
pore
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580059976.9A
Other languages
English (en)
Other versions
CN107077539B (zh
Inventor
R.J.A.陈
H.田
S.弗南德斯-戈梅斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Sequencing Solutions Co
Original Assignee
Genia Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genia Technologies Inc filed Critical Genia Technologies Inc
Publication of CN107077539A publication Critical patent/CN107077539A/zh
Application granted granted Critical
Publication of CN107077539B publication Critical patent/CN107077539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Abstract

公开了一种导出基于纳米孔的测序芯片上的纳米孔传感器的测量结果的方法。测量与纳米孔传感器相关联的电特性。处理与纳米孔传感器相关联的电特性。确定用于所述电特性和一个或多个先前的电特性的概要。导出用于所述电特性和一个或多个先前的电特性的概要。确定概要包括确定所述电特性和一个或多个先前的电特性的至少一部分对应于纳米孔传感器处的碱基调用事件。概要表示所述电特性和所述一个或多个先前电特性的所述至少一部分。

Description

导出纳米孔阵列的测量结果
背景技术
半导体行业内的超小型化的进步近年来已使得生物技术能够开始将传统上庞大的传感工具封装到越来越小的外形因数中、封装到所谓的生物芯片上。将期望的是开发的使得其更加稳健、高效且成本有效的用于生物芯片技术。
附图说明
在以下详细描述和附图中公开了本发明的各种实施例。
图1图示出基于纳米孔的测序芯片中的细胞100的实施例。
图2图示出用纳米SBS技术来执行核苷酸测序的细胞200的实施例。
图3图示出用预加载标记来执行核苷酸测序的细胞的实施例。
图4图示出用于用预加载标记的核酸测序的过程400的实施例。
图5图示出在基于纳米孔的测序芯片的细胞中测量的离子电流阻断信号500的实施例。
图6图示出用于导出基于纳米孔的测序芯片上的纳米孔传感器的测量结果的过程600的实施例的流程图。
图7图示出基于纳米孔的测序芯片的细胞中的离子电流阻断信号的测量结果的示例性集合。
图8图示出用于确定基于纳米孔的测序芯片的细胞中的离子电流阻断信号的测量结果的概要的过程800的实施例的流程图。
具体实施方式
可以用许多方式来实现本发明,包括为过程;设备;系统;合成物;体现在计算机可读存储介质上的计算机程序产品;和/或处理器,诸如被配置成执行存储在被耦合到处理器的存储器上的和/或由被耦合到处理器的存储器提供的指令的处理器。在本说明书中,这些实施方式或本发明可以采取的任何其它形式可以称为技术。一般地,在本发明的范围内可以改变所公开过程的步骤的顺序。除非另外说明,可以将被描述为被配置成执行任务的诸如处理器或存储器之类的组件实现为被临时地配置成在给定时间执行任务的一般组件或被制造成执行该任务的特定组件。如本文所使用的,术语‘处理器’指代被配置成处理数据(诸如计算机程序指令)的一个或多个装置、电路和/或处理核。
下面连同图示出本发明的原理的附图一起提供本发明的一个或多个实施例的详细描述。结合此类实施例描述了本发明,但本发明不限于任何实施例。本发明的范围仅仅受到权利要求的限制,并且本发明涵盖许多替换、修改和等同物。在以下描述中阐述了许多特定细节以便提供本发明的透彻理解。这些细节是为了示例的目的而提供的,并且根据权利要求可以在没有这些特定细节中的某些或全部的情况下实践本发明。出于清楚的目的,尚未详细地描述在与本发明相关的技术领域内已知的技术材料,使得不会使本发明不必要地含糊难懂。
在内径方面具有大约一纳米的孔尺寸的纳米孔膜装置在快速核苷酸排序中已显示出前途。当跨浸没在传导流体中的纳米孔施加电势时,可以观察归因于离子跨纳米孔的传导的小离子电流。电流的大小对孔大小敏感。
可以将基于纳米孔的测序芯片用于DNA测序。基于纳米孔的测序芯片结合了被配置为阵列的大量传感器细胞。例如,一百万个细胞的阵列可以包括1000行乘以1000列的细胞。
图1图示出基于纳米孔的测序芯片中的细胞100的实施例。在细胞的表面上形成脂双层102。将包含可溶性蛋白质纳米孔跨膜分子络合物(PNTMC)和感兴趣的被分析物的本体(bulk)电解质114直接地置于细胞的表面上。通过电穿孔向脂双层102中插入单个PNTMC104。阵列中的单独脂双层未被在化学上或在电学上相互连接。因此,阵列中的每个细胞是独立测序机器,从而产生为与PNTMC相关联的单个聚合物分子所独有的数据。PNTMC 104对被分析物进行操作并通过原本不可渗透的脂双层来调制离子电流。
继续参考图1,模拟测量电路112被连接到被电解质108的薄膜覆盖的金属电极110。电解质108的薄膜被离子不可渗透脂双层102与本体电解质114隔离。PNTMC 104穿过脂双层102并提供用于离子电流从本体液体流到金属电极110的唯一路径。金属电极110也被称为工作电极(WE)。细胞还包括相对电极/参考电极(CE/RE)116,其是电化学电位传感器。
在某些实施例中,纳米孔阵列使得能够使用用综合(纳米SBS)技术进行的单分子基于纳米孔的测序来进行并行测序。图2图示出用纳米SBS技术来执行核苷酸测序的细胞200的实施例。在纳米SBS技术中,将要测序的模板202和引物引入到细胞200。向此模板—引物联合体,将四个被不同标记的核苷酸208添加到本体水相。由于正确标记的核苷酸与聚合酶204复合,所以标记的尾部位于纳米孔206的筒(barrel)中。在正确核苷酸的聚合酶催化结合之后,保持在纳米孔206的筒中的标记附着的多磷酸盐产生唯一离子电流阻断信号210,从而由于标记的有区别的化学结构而以电子方式识别添加的碱基(base)。
图3图示出将要用预加载标记来执行核苷酸测序的细胞的实施例。在膜302中形成纳米孔301。酶303(例如,聚合酶,诸如DNA聚合酶)与纳米孔相关联。在某些情况下,聚合酶303被共价地附着到纳米孔301。聚合酶303与要测序的单链核酸分子304相关联。在某些实施例中,单链或双链核酸分子304是环形的。在某些情况下,核酸分子304是线型的。在某些实施例中,核酸引物305被杂交到核酸分子304的一部分。聚合物303使用单链核酸分子304作为模板催化核苷酸306结合到引物305上。核苷酸306包括标记种类(“标记”)307。
图4图示出用于用预加载标记的核酸测序的过程400的实施例。阶段A图示出如图3中描述的组件。阶段C示出了被加载到纳米孔中的标记。“已加载”标记可以是位于和/或保持纳米孔中或其附近达到可感知时间量(例如,0.1毫秒(ms)至1000 ms)的标记。在某些情况下,预加载的标记在被从核苷酸释放之前被加载在纳米孔中。在某些情况下,如果标记在根据核苷酸结合事件被释放之后通过纳米孔(和/或被纳米孔检测到)的概率是适当地高的,例如90%至99%,则标记被预加载。
在阶段A处,被标记核苷酸(四个不同类型中的一个:A、T、G或C)不与聚合酶相关联。在阶段B处,被标记核苷酸与聚合酶相关联。在阶段C处,聚合酶被对接到纳米孔。标记在对接期间被电力(诸如在存在由跨膜和/或纳米孔施加的电压产生的电场的情况下产生的力)拉入纳米孔中。
相关联的被标记核苷酸中的某些与单链核酸分子进行碱基配对(例如,A与T以及G与C)。然而,相关联的被标记核苷酸中的某些未与单链核酸分子进行碱基配对。这些未配对核苷酸通常在比对于其而言正确配对核苷酸保持与聚合酶相关联的时间尺度短的时间尺度内被聚合酶拒绝。由于未配对核苷酸仅短暂地与聚合酶相关联,所以如图4中所示的过程400通常不进行超过阶段D。例如,未配对核苷酸在阶段B处或者在过程进入阶段C之后不久被聚合酶拒绝。
在聚合酶被对接到纳米孔之前,通过纳米孔的电流为~30皮安(pA)。在阶段C处,流过纳米孔的电流为约6 pA、8 pA、10 pA或12 pA,每个安培数对应于被标记核苷酸的四个类型中的一个。聚合酶经历异构化和转磷酸反应以将核苷酸结合到生长的核酸分子中并释放标记分子。在阶段D处,被释放标记通过纳米孔。标记被纳米孔检测到。特别地,由于标记被保持在纳米孔中,所以由于标记的有区别的化学结构而产生唯一离子电流阻断信号(例如,参见图2中的信号210),从而以电子方式识别添加的碱基。重复该循环(即,阶段A至E或阶段A至F)允许核酸分子的测序。
在某些情况下,未被结合到生长的核酸分子中的被标记核苷酸也将通过纳米孔,如在图4的阶段F中看到的。未被结合的核苷酸在某些情况下可以被纳米孔检测到,但是所述方法提供了用于至少部分地基于对于其而言在纳米孔中检测到核苷酸的时间来区别被结合核苷酸和未被结合核苷酸的手段。被绑定到未被结合核苷酸的标记快速地通过纳米孔并在短时间段(例如,小于10ms)内被检测到,而被绑定到所结合的核苷酸的标记被加载到纳米孔中并在长时间段(例如,至少10ms)内被检测。
图5图示出在基于纳米孔的测序芯片的细胞中测量的离子电流阻断信号500的实施例。例如,在其中每个细胞用如图2中所示的纳米SBS技术来执行核苷酸测序的实施例中,离子电流阻断信号500是被测信号,因为不同的标记附着多磷酸盐被保持在纳米孔206的筒中。
如图5中所示,y轴是测得的离子电流阻断信号,并且x轴是时间。当聚合酶未被对接到纳米孔时,纳米孔被称为处于开放通道状态。当在纳米孔处存在开放通道时,通过纳米孔的电流为~30 pA。当聚合酶被对接到纳米孔时,流过纳米孔的电流为约6 pA、8 pA、10 pA或12 pA,每个安培数对应于四个类型的被标记核苷酸中的一个:A、T、G或C。虽然四个电流水平(~6 pA、~8 pA、~10 pA以及~12 pA)可以根据不同的地点而变化,在量值方面可以随时间推移而漂移,并且可以具有与其相关联的变化的噪声量,但四个电流水平相互分开,并且相互可区别开。因此,在进行调整以补偿量值方面的随时间推移的漂移和与测量电流相关联的噪声之后,可以使用四个有区别的电流水平作为用于识别四个不同类型的被标记核苷酸的特征(signature)电流水平。例如,可以通过将信号与特征电流水平匹配而从离子电流阻断信号500检测到的事件包括被标记核苷酸A、C、G、C、T和G的检测,如图5中所示。检测A、C、G、C、T或G在下文中称为碱基调用,并且检测被标记核苷酸的事件(例如,检测A)称为碱基调用事件。
在某些实施例中,离子电流被每个细胞中的模拟测量电路112(参见图1)读取,转换成数字信息并传输到芯片之外,并且可以由计算机在芯片外面执行碱基调用。在某些实施例中,现场可编程门阵列(FPGA)或专用集成电路(ASIC)接收所传输的数据,处理该数据,并且将该数据从芯片转发出来至计算机,在那里可以执行碱基调用技术。然而,由于基于纳米孔的测序芯片被缩放以包括越来越多的细胞,向和从基于纳米孔的测序芯片的聚合传输数据速率可以增加至不可达到的速率。例如,如果单个细胞以8比特/样本每秒产生10000个样本,则具有一千万个细胞的基于纳米孔的测序芯片将每秒产生约100吉字节的数据。并且如果基于纳米孔的测序芯片运行达约三十分钟,则数据的总量将累积到约200万亿字节。
可以用许多方式来减少基于纳米孔的测序芯片的聚合传输数据速率。在某些实施例中,可以使用数字压缩技术来压缩关于基于纳米孔的测序芯片的数据中的某些,并且然后可以以较低的传输速率将压缩数据从芯片传输出来,如下面将更详细地描述的。
在某些实施例中,通过在时域中对数据群组进行滤波来实现数据缩减。静态和动态校准帮助实现片上的数据压缩和滤波。使用校准来解决许多存储器和无存储器效应,特别是但不限于:阵列和细胞水平的硅过程变化、电极变化、脂类和生物化学特性以及样本之间的变化、温度和电压变化效应、关于序列的系统存储器效应、最优读出窗口以及遍及整个测序循环的老化效应。
校准允许电学水平的动态确立和识别以及遍及整个样本测序循环的对准/跟踪,因此滤波/压缩方案保持完全有效且准确。其还允许确定最优读取参数和时间,并且识别原本不能通过简单地看已滤波/已压缩数据来理解的样本中的不规则性。
校准策略包括静态和动态技术、基于细胞和基于阵列的随机采样、与数据捕捉并行地使用边带信号、RAW数据捕捉以及基于开放通道水平的外推。
在某些实施例中,可以在基于纳米孔的测序芯片上(例如,使用碱基调用技术)处理数据中的某些。然后可以将已处理数据从芯片传输出来,例如传输至计算机以用于进行进一步处理。替换地,已处理数据可以被基于纳米孔的测序芯片使用以用于检测事件并响应于检测到的事件而生成控制信号。生成的控制信号可以被作为输入控制信号反馈到单独细胞或细胞群组中。由于某些检测和判定是在芯片上进行的,所以需要将较少的数据发送到芯片之外以用于进一步处理,并且可以将较少的控制数据传输到芯片,并且还可以减少用于生成控制数据的响应时间。
图6图示出用于导出基于纳米孔的测序芯片上的纳米孔传感器的测量结果的过程600的实施例的流程图。在602处,测量与基于纳米孔的测序芯片的细胞中的纳米孔传感器相关联的电特性。与纳米孔传感器相关联的电特性可以是任何可测量电参数或多个任何可测量电参数。在某些实施例中,测量的与纳米孔传感器相关联的电特性包括电流。例如,返回参考图2,在正确的核苷酸的聚合酶催化结合之后,保持在纳米孔206的筒中的标记附着多磷酸盐产生可以测量的唯一离子电流阻断信号210。在某些实施例中,可以测量与纳米孔传感器相关联的其它类型的电特性,包括与纳米孔传感器或纳米孔传感器的各部分或者细胞相关联的电压、电容或电阻。
在604处,处理与纳米孔传感器相关联的电特性。在某些实施例中,纳米孔传感器电特性的处理包括减少与测量结果相关联的噪声。例如,可以通过对测量结果求平均值来减少噪声。还可以通过滤波技术来减少噪声。在某些实施例中,处理包括监视并补偿电特性在量值方面随时间推移的漂移,使得可以使用电特性的有区别的水平作为用于识别不同类型的被标记核苷酸的特征水平。在某些实施例中,可以调整电特性的测量结果以补偿漂移效应。在某些实施例中,可以动态地调整用于识别不同类型的被标记核苷酸的特征水平以补偿被测量的电特性的漂移。用于识别特定类型的被标记核苷酸的特征水平可以包括一对上阈值和下阈值。例如,如果电特性落在上阈值水平和下阈值水平内,则可以将其映射到特定特征水平及其相应碱基调用事件(例如,检测A、C、G或T)。
在某些实施例中,可以在基于纳米孔的测序芯片上执行漂移效应的修正。在某些实施例中,可以在基于纳米孔的测序芯片外面执行漂移效应的修正。例如,外部计算机可以接收并监视离子电流测量结果,并确定随时间推移的漂移效应的修正量。外部计算机可以向基于纳米孔的测序芯片发送控制信号以动态地修正漂移效应。
在某些实施例中,可以在细胞水平执行漂移效应的修正。每个细胞包括用以如上所述地监视和补偿漂移效应的逻辑组件。在某些实施例中,可以在基于纳米孔的测序芯片的不同区域内独立地执行漂移效应的修正。这是因为漂移量可以在芯片的不同区域内变化。每个区域可以包括用以共同地监视和补偿该区域内的细胞的漂移效应的逻辑组件。
在606处,确定用于所述电特性和一个或多个先前的电特性的概要。在608处,从基于纳米孔的测序芯片导出用于所述电特性和一个或多个先前电特性的概要。导出的概要可以被计算机使用以用于进一步处理。如下面将更详细地描述的,该概要从电特性的测量结果提取使得能够检测碱基调用事件的信息并排除对碱基调用无用的信息。该概要是电特性的压缩,并且比电特性的测量结果更紧凑。结果,导出该概要(与导出测量结果相反)降低基于纳米孔的测序芯片的聚合传输数据速率。在某些实施例中,电特性的概要是已处理电特性的子集。
图7图示出基于纳米孔的测序芯片的细胞中的离子电流阻断信号的测量结果的示例性集合。y轴是测得的离子电流阻断信号,并且x轴是时间。下面将使用如图7中所示的测量结果的集合作为说明性示例来讨论用以确定用于测量数据的概要的不同方式。
图8图示出用于确定基于纳米孔的测序芯片的细胞中的离子电流阻断信号的某些测量结果的概要的过程800的实施例的流程图。在某些实施例中,过程800是在图6的步骤606处执行的过程。
在802处,确定所述电特性和一个或多个先前的电特性的至少一部分对应于纳米孔传感器处的碱基调用事件。例如,如图7中所示,可以将测量结果704确定为对应于检测类型G的被标记核苷酸的碱基调用事件,因为可以将测量结果映射到10 pA的特征水平。同样地,可以将测量结果706和708确定为对应于再次地检测类型G的被标记核苷酸的两个附加碱基调用事件。
可以使用许多准则来确定多个测量结果对应于单个碱基调用事件。例如,如果用纳米SBS技术来执行核苷酸测序,则所知的是两个碱基调用事件被开放通道状态相互分离,其具有明显更高的特征电流水平(~30 pA)。因此,可以将在阈值水平702以上的测量结果确定为对应于开放通道状态。虽然这些测量结果可能未提供对碱基调用有用的附加信息,但其可以用来将测量结果的各段分离。例如,可以将测量结果710和712之间的测量结果(即,测量结果704)确定为对应于单个碱基调用事件,并且可以将测量结果712和714之间的测量结果(即,测量结果706)确定为对应于另一碱基调用事件。
继续参考图8,在804处,确定表示所述电特性和一个或多个先前的电特性的至少一部分的概要。在某些实施例中,所述概要包括量值参数和时间参数。例如,量值参数可以是电特性的平均量值,并且时间参数可以是测量结果的持续时间。例如,参考图7,表示测量结果704的第一参数是10 pA且第二参数是57 ms。同样地,表示测量结果706和708的参数分别是(10 pA,48 ms)和(10 pA,8 ms)。压缩之前的原始测量结果包括每个为一个字节的79个测量结果。在压缩之后,表示测量结果的概要被减少至6个字节的数据。因此,压缩比大于10:1。
在某些实施例中,概要是通过行程编码(run-length encoding)确定的。例如,可以用单个量值和连续测量结果的计数来表示被映射到某个阈值的连续测量结果。
在某些实施例中,所述概要是通过在某个水平对测量结果的持续时间进行编码而确定的。例如,可以用单个量值和连续测量结果的持续时间来表示被映射到某个阈值的连续测量结果。
在某些实施例中,所述概要是通过对碱基调用事件的开始进行编码而确定的。例如,可以使用开放通道状态之后的第一测量结果(参见测量结果716)来表示碱基调用事件。
在某些实施例中,在过程600的步骤606处执行碱基调用。所述概要包括碱基调用事件。例如,用于图7中所示的测量结果的概要是(G,G,G)。
虽然已出于理解清楚的目的相当详细地描述了前述实施例,但本发明不限于所提供的细节。存在实现本发明的许多替换方式。公开的实施例是说明性而非限制性的。

Claims (22)

1.一种导出基于纳米孔的测序芯片上的纳米孔传感器的测量结果的方法,包括:
测量与所述纳米孔传感器相关联的电特性;
处理与所述纳米孔传感器相关联的电特性;
确定用于所述电特性和一个或多个先前的电特性的概要;以及
导出用于所述电特性和一个或多个先前的电特性的概要。
2.权利要求1的方法,其中,确定所述概要包括:
确定所述电特性和所述一个或多个先前电特性的至少一部分对应于所述纳米孔传感器处的碱基调用事件;以及
确定表示所述电特性和所述一个或多个先前电特性的所述至少一部分的概要。
3.权利要求2的方法,其中,确定所述概要还包括:
确定所述一个或多个先前的电特性的其余部分对应于所述纳米孔传感器处的开放通道状态事件。
4.权利要求3的方法,其中,确定所述一个或多个先前的电特性的其余部分对应于所述纳米孔传感器处的开放通道状态事件是至少部分地基于所述一个或多个先前的电特性的其余部分具有在阈值水平以上的量值。
5.权利要求2的方法,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
用量值参数和时间参数来表示所述电特性和所述一个或多个先前的电特性的所述至少一部分,其中,所述时间参数对应于所述电特性和所述一个或多个先前电特性的所述至少一部分的持续时间。
6.权利要求2的方法,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
表示所述电特性和所述一个或多个先前电特性的所述至少一部分,使得用单个量值和所述连续电特性的计数来表示被映射到阈值水平的连续电特性。
7.权利要求2的方法,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
表示所述电特性和所述一个或多个先前电特性的所述至少一部分,使得用单个量值和所述连续电特性的持续时间来表示被映射到阈值水平的连续电特性。
8.权利要求1的方法,其中,确定所述概要包括:
从所述电特性和所述一个或多个先前的电特性提取使得能够检测碱基调用事件的信息。
9.权利要求1的方法,其中,确定所述概要包括:
关于所述电特性和所述一个或多个先前的电特性执行碱基调用。
10.权利要求1的方法,其中,所述电特性包括以下各项中的一个:与所述纳米孔传感器或所述纳米孔传感器的各部分相关联的电流、电压、电阻以及电容。
11.权利要求1的方法,其中,处理与所述纳米孔传感器相关联的所述电特性包括:
补偿所述电特性的量值随时间推移的漂移,使得可以使用有区别的量值水平作为用于识别所述纳米孔传感器处的不同碱基调用事件的特征水平。
12.一种基于纳米孔的测序芯片,包括:
细胞阵列,其中,细胞包括纳米孔传感器;
电路,其被配置成:
测量与所述纳米孔传感器相关联的电特性;
处理与所述纳米孔传感器相关联的电特性;
确定用于所述电特性和一个或多个先前的电特性的概要;以及
导出用于所述电特性和一个或多个先前的电特性的概要。
13.权利要求12的基于纳米孔的测序芯片,其中,确定所述概要包括:
确定所述电特性和所述一个或多个先前电特性的至少一部分对应于所述纳米孔传感器处的碱基调用事件;以及
确定表示所述电特性和所述一个或多个先前电特性的所述至少一部分的概要。
14.权利要求13的基于纳米孔的测序芯片,其中,确定所述概要还包括:
确定所述一个或多个先前的电特性的其余部分对应于所述纳米孔传感器处的开放通道状态事件。
15.权利要求14的基于纳米孔的测序芯片,其中,确定所述一个或多个先前的电特性的其余部分对应于所述纳米孔传感器处的开放通道状态事件是至少部分地基于所述一个或多个先前的电特性的其余部分具有在阈值水平以上的量值。
16.权利要求13的基于纳米孔的测序芯片,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
用量值参数和时间参数来表示所述电特性和所述一个或多个先前的电特性的所述至少一部分,其中,所述时间参数对应于所述电特性和所述一个或多个先前电特性的所述至少一部分的持续时间。
17.权利要求13的基于纳米孔的测序芯片,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
表示所述电特性和所述一个或多个先前电特性的所述至少一部分,使得用单个量值和所述连续电特性的计数来表示被映射到阈值水平的连续电特性。
18.权利要求13的基于纳米孔的测序芯片,其中,确定表示所述电特性和所述一个或多个先前的电特性的所述至少一部分的所述概要包括:
表示所述电特性和所述一个或多个先前电特性的所述至少一部分,使得用单个量值和所述连续电特性的持续时间来表示被映射到阈值水平的连续电特性。
19.权利要求12的基于纳米孔的测序芯片,其中,确定所述概要包括:
从所述电特性和所述一个或多个先前的电特性提取使得能够检测碱基调用事件的信息。
20.权利要求12的基于纳米孔的测序芯片,其中,确定所述概要包括:
关于所述电特性和所述一个或多个先前的电特性执行碱基调用。
21.权利要求12的基于纳米孔的测序芯片,其中,所述电特性包括以下各项中的一个:与所述纳米孔传感器或所述纳米孔传感器的各部分相关联的电流、电压、电阻以及电容。
22.权利要求12的基于纳米孔的测序芯片,其中,处理与所述纳米孔传感器相关联的所述电特性包括:
补偿所述电特性的量值随时间推移的漂移,使得可以使用有区别的量值水平作为用于识别所述纳米孔传感器处的不同碱基调用事件的特征水平。
CN201580059976.9A 2014-11-05 2015-11-01 导出纳米孔阵列的测量结果的方法以及测序芯片 Active CN107077539B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/534,042 US10060903B2 (en) 2014-11-05 2014-11-05 Exporting measurements of nanopore arrays
US14/534042 2014-11-05
PCT/US2015/058531 WO2016073318A1 (en) 2014-11-05 2015-11-01 Exporting measurements of nanopore arrays

Publications (2)

Publication Number Publication Date
CN107077539A true CN107077539A (zh) 2017-08-18
CN107077539B CN107077539B (zh) 2021-11-09

Family

ID=55852392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580059976.9A Active CN107077539B (zh) 2014-11-05 2015-11-01 导出纳米孔阵列的测量结果的方法以及测序芯片

Country Status (6)

Country Link
US (4) US10060903B2 (zh)
EP (1) EP3215971B1 (zh)
JP (2) JP2017534889A (zh)
CN (1) CN107077539B (zh)
CA (1) CA2966601C (zh)
WO (1) WO2016073318A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603562B2 (en) 2018-05-22 2023-03-14 Axbio Inc. Methods, systems, and compositions for nucleic acid sequencing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060903B2 (en) * 2014-11-05 2018-08-28 Genia Technologies, Inc. Exporting measurements of nanopore arrays
WO2017223515A1 (en) 2016-06-23 2017-12-28 F. Hoffman-La Roche Ag Formation and calibration of nanopore sequencing cells
CN116515973A (zh) 2016-12-15 2023-08-01 豪夫迈·罗氏有限公司 自适应纳米孔信号压缩
EP3682020A4 (en) * 2017-09-15 2021-06-02 Illumina, Inc. SEQUENCE DETECTION SYSTEM
WO2019129555A1 (en) 2017-12-28 2019-07-04 F. Hoffmann-La Roche Ag Measuring and removing noise in stochastic signals from a nanopore dna sequencing system driven by an alternating signal

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099951A1 (en) * 2000-11-27 2003-05-29 Mark Akeson Methods and devices for characterizing duplex nucleic acid molecules
JP2005304439A (ja) * 2004-04-26 2005-11-04 Sanyo Electric Co Ltd 検体保存機器の集中管理システム
CN1932039A (zh) * 2006-09-21 2007-03-21 上海交通大学 外切酶-纳米孔的单分子核酸测序方法
CN101688705A (zh) * 2007-06-22 2010-03-31 高级技术材料公司 用于太阳能式吸附制冷系统的部件及其制造方法
US20110142291A1 (en) * 2009-12-16 2011-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Processing Digital Image and Computer Readable Recording Medium
US20120020537A1 (en) * 2010-01-13 2012-01-26 Francisco Garcia Data processing system and methods
JP2012526556A (ja) * 2009-05-12 2012-11-01 ダニエル ワイ−チョン ソウ 分子の解析と識別のための方法及び装置
CN103282518A (zh) * 2010-12-17 2013-09-04 纽约哥伦比亚大学理事会 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
CN103503043A (zh) * 2011-01-24 2014-01-08 吉尼亚科技公司 用于从传感器阵列传送信息的系统
US20140134616A1 (en) * 2012-11-09 2014-05-15 Genia Technologies, Inc. Nucleic acid sequencing using tags
CN103842519A (zh) * 2011-04-04 2014-06-04 哈佛大学校长及研究员协会 通过局部电位测量进行的纳米孔感测

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629398B2 (en) 2001-07-12 2003-10-07 Illinois Tool Works, Inc. Strapping machine with improved refeed
US20070048745A1 (en) 2005-08-30 2007-03-01 Joyce Timothy H Systems and methods for partitioned nanopore analysis of polymers
GB0523282D0 (en) * 2005-11-15 2005-12-21 Isis Innovation Methods using pores
US20110005918A1 (en) * 2007-04-04 2011-01-13 Akeson Mark A Compositions, devices, systems, and methods for using a nanopore
EP3144672B1 (en) * 2007-11-21 2018-08-22 Cosmosid Inc. Genome identification system
GB0724736D0 (en) * 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
WO2011097028A1 (en) * 2010-02-08 2011-08-11 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
US9005425B2 (en) * 2010-03-05 2015-04-14 University Of Utah Research Foundation Detection of nucleic acid lesions and adducts using nanopores
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
US8594951B2 (en) * 2011-02-01 2013-11-26 Life Technologies Corporation Methods and systems for nucleic acid sequence analysis
WO2013154999A2 (en) * 2012-04-09 2013-10-17 The Trustees Of Columbia University In The City Of New York Method of preparation of nanopore and uses thereof
GB201222928D0 (en) * 2012-12-19 2013-01-30 Oxford Nanopore Tech Ltd Analysis of a polynucleotide
US10060903B2 (en) * 2014-11-05 2018-08-28 Genia Technologies, Inc. Exporting measurements of nanopore arrays

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099951A1 (en) * 2000-11-27 2003-05-29 Mark Akeson Methods and devices for characterizing duplex nucleic acid molecules
JP2005304439A (ja) * 2004-04-26 2005-11-04 Sanyo Electric Co Ltd 検体保存機器の集中管理システム
CN1932039A (zh) * 2006-09-21 2007-03-21 上海交通大学 外切酶-纳米孔的单分子核酸测序方法
CN101688705A (zh) * 2007-06-22 2010-03-31 高级技术材料公司 用于太阳能式吸附制冷系统的部件及其制造方法
JP2012526556A (ja) * 2009-05-12 2012-11-01 ダニエル ワイ−チョン ソウ 分子の解析と識別のための方法及び装置
US20110142291A1 (en) * 2009-12-16 2011-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Processing Digital Image and Computer Readable Recording Medium
US20120020537A1 (en) * 2010-01-13 2012-01-26 Francisco Garcia Data processing system and methods
CN103282518A (zh) * 2010-12-17 2013-09-04 纽约哥伦比亚大学理事会 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
CN103503043A (zh) * 2011-01-24 2014-01-08 吉尼亚科技公司 用于从传感器阵列传送信息的系统
CN103842519A (zh) * 2011-04-04 2014-06-04 哈佛大学校长及研究员协会 通过局部电位测量进行的纳米孔感测
US20140134616A1 (en) * 2012-11-09 2014-05-15 Genia Technologies, Inc. Nucleic acid sequencing using tags

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAMILLE RAILLON等: "Fast and automatic processing of multi-level events in nanopore translocation experiments", 《NANOSCALE》 *
张得芳等: "第三代测序技术及其应用", 《中国生物工程杂志》 *
张文毓: "纳米生物传感器的研究进展", 《传感器世界》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603562B2 (en) 2018-05-22 2023-03-14 Axbio Inc. Methods, systems, and compositions for nucleic acid sequencing

Also Published As

Publication number Publication date
WO2016073318A1 (en) 2016-05-12
EP3215971A4 (en) 2018-08-15
US20190064141A1 (en) 2019-02-28
US10060903B2 (en) 2018-08-28
EP3215971A1 (en) 2017-09-13
CA2966601C (en) 2023-11-21
CA2966601A1 (en) 2016-05-12
US20200292522A1 (en) 2020-09-17
JP2021056242A (ja) 2021-04-08
US10677776B2 (en) 2020-06-09
JP7236429B2 (ja) 2023-03-09
US11549935B2 (en) 2023-01-10
US10429375B2 (en) 2019-10-01
EP3215971B1 (en) 2023-03-01
JP2017534889A (ja) 2017-11-24
US20180328910A1 (en) 2018-11-15
US20160123923A1 (en) 2016-05-05
CN107077539B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
US20220034839A1 (en) Nanopore-based sequencing with varying voltage stimulus
CN107077539A (zh) 导出纳米孔阵列的测量结果
US20200124559A1 (en) Nanopore-based sequencing with varying voltage stimulus
EP3295187B1 (en) Apparatus and methods for measuring an electrical current
US11029306B2 (en) Nanopore-based sequencing using voltage mode with hybrid mode stimuli
CN107530673A (zh) 印刷电极
CN111108383A (zh) 用于在线双层电容监视的方法
KR20180119176A (ko) 반도체 2d 결정 물질을 이용한 dna의 전기화학적 검출방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240422

Address after: California, USA

Patentee after: Roche sequencing solutions Co.

Country or region after: U.S.A.

Address before: California, USA

Patentee before: GENIA TECHNOLOGIES, Inc.

Country or region before: U.S.A.