CN107070338A - Driving system for electric vehicles - Google Patents

Driving system for electric vehicles Download PDF

Info

Publication number
CN107070338A
CN107070338A CN201710241272.4A CN201710241272A CN107070338A CN 107070338 A CN107070338 A CN 107070338A CN 201710241272 A CN201710241272 A CN 201710241272A CN 107070338 A CN107070338 A CN 107070338A
Authority
CN
China
Prior art keywords
mrow
comparator
msub
rotor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710241272.4A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710241272.4A priority Critical patent/CN107070338A/en
Publication of CN107070338A publication Critical patent/CN107070338A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Abstract

The invention discloses a kind of driving system for electric vehicles, including DC/DC converter units, inverter, permagnetic synchronous motor, Cark conversion modules, Park conversion modules, rotor-position sensor, Fractional Order PID adjuster, current regulator, Park inverse transform modules and Pulse width modulation module;The input of the rotor-position sensor connects the rotor parameter output end of permagnetic synchronous motor, and the rotor-position output end of rotor-position sensor connects the rotor position data input of Park conversion modules;The rotor velocity data output end of rotor-position sensor connects the reverse input end of first comparator, and the positive input of first comparator is connected with rotational speed setup signal;The output end of first comparator is connected with the input of Fractional Order PID adjuster.The present invention improves system control effect.

Description

Driving system for electric vehicles
Technical field
Generally the present invention relates to vehicle, more particularly to a kind of driving system for electric vehicles.
Background technology
Electric vehicle, such as electric automobile, are increasingly favored by people.The driving of current electric automobile is typically used The pattern of battery+magneto, control system is controlled using open/close.For opened loop control, vehicle (speed) is no It can accurately follow given, be phased out.In closed-loop control, current general using velocity close-loop control mode, it is used The deviation of given speed and actual speed is adjusted traditional PID regulator, according to the defeated of adjustment output control inverter Go out.This control mode, system response time is slow, easily occurs overshoot during adjustment, actual speed is around setting value long-time Vibration, so results in the driver during vehicle speed-raising and feels speed wobble.In addition, current electric vehicle is general The output voltage of battery is boosted by the way of (boost) is boosted in copped wave, this mode switch pipe loss is big, power Factor is low.
The content of the invention
For the defect of prior art, the invention provides a kind of driving system for electric vehicles.
A kind of driving system for electric vehicles, including DC/DC converter units, inverter, permagnetic synchronous motor, Cark become mold changing Block, Park conversion modules, rotor-position sensor, Fractional Order PID adjuster, current regulator, Park inverse transform modules, He Mai Rush width modulation module;The input of the rotor-position sensor connects the rotor parameter output end of permagnetic synchronous motor, turns The rotor-position output end of sub- position sensor connects the rotor position data input of Park conversion modules;Rotor position sensing The rotor velocity data output end of device connects the reverse input end of first comparator, and the positive input of first comparator is with turning Fast Setting signal is connected;The output end of first comparator is connected with the input of Fractional Order PID adjuster, Fractional Order PID regulation The output end of device connects the positive input of the second comparator, the reverse input end of the second comparator and the q of Park conversion modules Shaft current output end is connected;I.e. d shaft currents set-point perseverance is the positive input of zero, d shaft currents set-point and the 3rd comparator It is connected, the reverse input end of the 3rd comparator is connected with the d shaft current output ends of Park conversion modules;Second comparator and the 3rd The output end of comparator is connected with current regulator, and the output end of current regulator passes through Park inverse transform modules and pulse width Modulation module is connected, and Pulse width modulation module exports modulated signal to inverter, and inverter receives the defeated of DC/DC converter units Go out voltage Vo, the IGBT beaten according to modulated signal in opening/closing inverter, so as to export the voltage signal of variable frequency to permanent magnetism Motor;Rotor position, the actual speed ω m of permagnetic synchronous motor are gathered by rotor-position sensor, passes through current sensor Wherein two-phase ia, ib of inverter output is gathered, ia, ib are converted and Park conversion by Clark, obtained permagnetic synchronous motor and exist Equivalent current id and iq under dq axis coordinate systems;First comparator is by rotary speed setting valueIt is compared with actual speed ω m, Deviation signal is adjusted by Fractional Order PID adjuster, the output valve of Fractional Order PID adjuster as q axles given value of current value D shaft current set-pointsSecond comparator to iq withBe compared, the 3rd comparator to id withIt is compared, the second ratio Comparative result compared with device and the 3rd comparator sends into current regulator, is obtained after being adjusted by current regulator under dq axis coordinate systems Q shaft voltage set-pointsWith d shaft voltage set-pointsPark inverse transform modules pairWithCarry out after Park inverse transformations, It is sequentially output to Pulse width modulation module and inverter, so as to obtain the three-phase input voltage of permagnetic synchronous motor, driving is forever Magnetic-synchro motor operation;The DC/DC converter units use semi-active bridge DC-DC converter, are made up of input side and outlet side; It is high-frequency ac square-wave voltage that input side, which is used for the DC voltage conversion of input, is transferred to electric energy from primary side by transformer Secondary;Outlet side is used to realize carries out shaping to the alternating voltage of transformer secondary, realizes that rated voltage is exported;Input side is by four Individual controlled tr tube constitutes full-bridge circuit, outlet side by two controlled tr tubes and two diodes and output capacitance into,
Input side and outlet side are connected by transformer;The current regulator is used to calculate q shaft voltage set-pointsAnd d Shaft voltage set-pointSecond comparator and the deviation signal of the 3rd comparator output are respectively fed to d axles pi regulator and q axles PI Adjuster, the output voltage of d axle pi regulators is Ud, the output voltage of q axle pi regulators is Uq, Ud、Uq、VoSend into voltage limit Ring, is obtainedWithBy the 4th comparator to UqWithIt is compared, obtains deviation △ Uq, △ UqThrough ratio module 1/Kqp The integration module in q axle pi regulators is admitted to, to △ UqCarry out PI regulations so thatPass through the 5th comparison module pair UdWithIt is compared, obtains deviation △ Ud, △ UdThe integration module in d axle pi regulators is admitted to through ratio module 1/Kdp, To △ UdCarry out PI regulations so that
The beneficial effects of the invention are as follows:Using rotating speed outer shroud, the double-closed-loop control structure of current inner loop, rotating speed can be quick Follow given, improve system response time;Using semi-active bridge DC/DC converters, reduce present in DC/DC converters Reactive power, reduces the loss of switching tube, improves the reliability of DC/DC converters;By using Fractional Order PID so that system Bigger adjustable range is provided with, Control platform more more preferable than traditional PI D and stronger robustness is obtained;Added in electric current loop Amplitude limit and closed loop feedback link, it is ensured that motor even running, it is to avoid ovennodulation occurs in motor.
Brief description of the drawings
Fig. 1 is present system overall structure diagram;
Fig. 2 is the structural representation of drive system of the present invention;
Fig. 3 is the structural representation of DC/DC converter units;
Fig. 4 is DC/DC converter unit workflow diagrams;
Fig. 5 is the structural representation of Fractional Order PID;
Fig. 6 is that Fractional Order PID adjusts flow chart;
Fig. 7 is the structural representation of current regulation unit;
Fig. 8 is that control result of the present invention compares figure.
Embodiment
In order to facilitate the understanding of the purposes, features and advantages of the present invention, below in conjunction with the accompanying drawings to the present invention Embodiment be described in detail, make the above and other purpose of the present invention, feature and advantage will become apparent from.Complete Identical reference indicates identical part in portion's accompanying drawing.Not deliberately accompanying drawing drawn to scale, it is preferred that emphasis is show this hair Bright purport.
Explained first with reference to 1 pair of system architecture of the invention of accompanying drawing.The invention provides a kind of electric vehicle drivetrain System, system includes:DC/DC converter units, inverter, magneto, MCU (main control unit), and position detecting circuit, electric current Detect circuit etc..DC/DC converter units are connected with battery, the output ends of DC/DC converter units connection inverter, inverter with forever Magneto is connected, and drives vehicle to run by magneto.Detect the input of DC/DC converter units respectively by voltage sensor Voltage Vin and output voltage Vo, output voltage ia, ib of inverter are detected by current sensor, is detected by Hall element The actual speed ω of magnetomAnd rotor-position, these detect that signals are admitted to MCU, and MCU distinguishes according to these detection signals To DC/DC converter units and inverter output drive signal G1, G2, so as to adjust the output of DC/DC converter units and inverter.
Whole system is run by one piece of MCU processors control, and various pieces coordinated operation, human-computer exchange part can be used LCD and button realize (not shown).IGBT turn-on frequency in MCU control inverters, so as to realize permagnetic synchronous motor Coil magnetic field order change motor operating;Hall position detection electric circuit inspection is not turned on the Zero change of coil counter electromotive force Judge the position of magnetic pole of rotor, controlled motor is run according to the rotating speed of setting;Current detection circuit by detecting electricity in real time The phase current of machine coil, and be compared with electric machine theory model in MCU processors, realize the closed-loop control of motor, Yi Jishi Overvoltage, the overcurrent protection of existing motor.
The control structure to drive system in the present invention is described in detail below, refers to Fig. 2.Drive system uses rotating speed The double circle structure of outer shroud, current inner loop, it includes Cark conversion modules, Park conversion modules, rotor-position sensor, fraction Rank PID regulator, current regulator, Park inverse transform modules, Pulse width modulation module and inverter.
Wherein, the input of rotor-position sensor connects the rotor parameter output end of permagnetic synchronous motor, rotor-position The rotor-position output end of sensor connects the rotor position data input of Park conversion modules;Turn of rotor-position sensor Sub- angular velocity data output end connects the reverse input end of first comparator, the positive input and rotational speed setup of first comparator Signal is connected, and rotational speed setup signal can be provided by gas pedal.The output end of first comparator and Fractional Order PID adjuster Input is connected.The output end of Fractional Order PID adjuster connects the positive input of the second comparator, the second comparator it is reverse Input is connected with the q shaft current output ends of Park conversion modules.Controlled in the present invention using d shaft currents perseverance zero, i.e. d shaft currents Set-point perseverance is zero, and this set-point is connected with the positive input of the 3rd comparator, the reverse input end of the 3rd comparator with The d shaft currents output end of Park conversion modules is connected.The output end of second comparator and the 3rd comparator and current regulator phase Even, the output end of current regulator is connected by Park inverse transform modules with Pulse width modulation module, pulse width modulation mould Block exports modulated signal to inverter, and inverter receives the output voltage Vo of DC/DC converter units, opened according to modulated signal/ The IGBT closed in inverter, so as to export the voltage signal of variable frequency to magneto.
Rotor position, the actual speed ω m of permagnetic synchronous motor are gathered by rotor-position sensor, is passed by electric current Wherein two-phase ia, ib of sensor collection inverter output, ia, ib are converted and Park conversion by Clark, obtain permanent magnet synchronous electric Equivalent current id and iq of the machine under dq axis coordinate systems.First comparator is by rotary speed setting valueCompared with actual speed ω m Adjusted compared with, deviation signal by Fractional Order PID adjuster, the output valve of Fractional Order PID adjuster as q axles given value of current valueD shaft current set-points
Second comparator to iq withBe compared, the 3rd comparator to id withIt is compared, the second comparator and The comparative result feeding current regulator of three comparators, obtains the q axles electricity under dq axis coordinate systems after being adjusted by current regulator Press set-pointWith d shaft voltage set-pointsPark inverse transform modules pairWithCarry out after Park inverse transformations, be sequentially output To Pulse width modulation module and inverter, so as to obtain the three-phase input voltage of permagnetic synchronous motor, permanent magnet synchronous electric is driven Machine is run.
Wherein, Clark conversion, Park conversion, Park inverse transformations are realized by following formula (1), (2), (3) respectively.
In formula, iαAnd iβIt is the equivalent current under two-phase rest frame (abbreviation α β coordinate systems), ia、ibAnd icFor permanent magnetism The three-phase current of synchronous motor, idAnd iqFor equivalent current of the permagnetic synchronous motor under dq axis coordinate systems, θ is permanent magnet synchronous electric The rotor-position of machine.
Fig. 3 is the structural representation of DC/DC converter units in the present invention, and DC/DC converter units are using partly having in the present invention Source bridge DC-DC converter, is made up of input side and outlet side.It is high-frequency ac that input side, which is used for the DC voltage conversion of input, Square-wave voltage, secondary is transferred to by transformer by electric energy from primary side;Outlet side is used to realize the alternating current to transformer secondary Pressure carries out shaping, realizes that rated voltage is exported.Input side constitutes full-bridge circuit by four controlled tr tubes S1, S2, S3 and S4, CS1, CS2, CS3, CS4 are respectively the junction capacity being in parallel with switching tube S1, S2, S3, S4.Outlet side is by two controlled tr tubes S5, S6 and two diodes D1, D2 and output capacitance Co composition, CS5, CS6 are the respective junction capacity of S5, S6, and CD5, CD6 are The respective junction capacity of D1, D2.Input side and outlet side are connected by transformer T, leakage inductance and additional AC inductance that Lk is transformer T Sum, ip is primary side current of transformer.
Voltage signal Vin, Vo processing that MCU is obtained to sensor sample, and according to the generation of PWM phase-shifting control methods Pwm signal G1, regulation primary voltage of transformer VABWith transformer secondary voltage VCDRespective dutycycle and phase shift between the two Angle.G1 provides driving voltage after isolation and power amplification for switching tube S1, S2, S3, S4, S5, S6.
The power output p of DC/DC converter unitsoFor:
Wherein,
It can be calculated according to formula (4) and obtain power output Po with respect to phase shifting angleThe maximum P of change0_max
Corresponding phase shifting angle when power output Po is maximumValue such as formula (7) shown in.
In above formula, m is the voltage gain for being input to output, m=Vo/(nVin), n is transformer primary side and secondary turn ratio, Ts is switch periods, and Δ dp is transformer primary side dutycycle compensation rate, for finely tuning opening for primary side leading-bridge switching tube S1, S2 The logical time;Δ ds is the compensation rate of secondary dutycycle, the service time for finely tuning secondary-side switch pipe S5, S6.
As shown in figure 4, the course of work of DC/DC converter units is as follows:
S110:Determine the set-point Vref of DC/DC converter unit output voltages;S120:Electricity is exported to DC/DC converter units Pressure is sampled, and sampled value is designated as Vo, calculates the set-point Vref and output voltage Vo of output voltage difference, described difference It is used as the input value of digital pi regulator.The output valve of described digital pi regulator is used as transformer after limiter amplitude limit Original edge voltage VABWith transformer secondary voltage VCDBetween phase shifting angleS130:Pass through phase shifting angleCalculate such as formula (8) The primary side dutycycle d1 and secondary dutycycle d2 such as formula (9).
In above formula, primary side dutycycle d1 includes secondary duty comprising primary side dutycycle compensation term Δ dp, secondary dutycycle d2 The compensation term Δ ds of ratio, the electric current for flow through primary side leading-bridge switching tube S1, S2 by primary side dutycycle compensation term Δ dp Flowed through in the moment opened from the body diode of switching tube, to flow through switching tube by the compensation term Δ ds of secondary dutycycle Electric current flows through in the moment opened from secondary-side switch pipe S5, S6 body diode, realize all switching tubes (S1, S2, S3, S4, S5, S6) Sofe Switch.Ensure secondary-side switch pipe S5, S6 in primary side current of transformer ip by the calculation formula of secondary dutycycle With regard to that can open after zero, the time span of secondary-side switch pipe S5, S6 body diode conducting can be reduced, reduce secondary and open Close pipe S5, S6 conduction loss.
S140:According to phase shifting anglePrimary side dutycycle d1 and secondary dutycycle d2 produces the pwm signal of switching tube, driving DC/DC converter units work, and realize all switching tubes (S1, S2, S3, S4, S5, S6) Sofe Switch, reduce secondary-side switch pipe S5, S6 conduction loss, and reactive power present in DC/DC converter units is reduced, reduce the current stress of switching tube, improve The reliability of DC-DC converter.
Produced phase shifting angleEach is controlled to drive pwm signal waveform with primary side dutycycle d1 and secondary dutycycle d2 Relation is as follows:S1 is complementary with S2, S3 is complementary with S4, S5 differs 180 ° with S6;S1, S2, S3 and S4 dutycycle are 50%, S5 Dutycycle with S6 is 1-d2;Phase difference between S1 and S3 is d12 π, and the phase difference between S2 and S4 is d12 π, S1 Rising edge and S5 trailing edge between phase difference for d22 π, S2 rising edge and S6 trailing edge between phase difference be d2·2π。
The time span that the body diode that can reduce secondary-side switch pipe S5, S6 by DC/DC converter units is turned on, reduction Secondary-side switch pipe S5, S6 conduction loss;Reactive power present in DC-DC converter is reduced, the electric current for reducing switching tube should Power, improves the reliability of DC-DC converter;The high efficiency fortune of the semi-active bridge DC-DC converter of voltage-source type can be realized simultaneously The Sofe Switch of capable and all switching tubes, efficient converter means less heating, it is possible to use less radiating dress Put, and the realization of Sofe Switch can reduce the volume and weight of switching noise, reduction input and output filter.
Different from conventional regulator, in the present invention, the speed regulation for outer shroud uses Fractional Order PID, and its structure is such as Shown in Fig. 5.Similar to integer rank PID controller, the differential equation of Fractional Order PID Controller is:
Wherein,Defined for Caputo;λ > 0, μ > 0 are any real number, are the orders of fractional order control device.
Laplace transform is asked to the fractional calculus that Caputo is defined, can be obtained:
The transmission function of thus obtained Fractional Order PID Controller:
It can be any real number that Fractional Order PID Controller, which includes an integration order λ and differential order μ, wherein λ and μ,.It is whole The special circumstances that number rank PID controllers are Fractional Order PID Controllers in λ=1 and μ=1, are PI controls as λ=1, μ=0 It is PD control device when device processed, λ=0, μ=1.Fractional Order PID Controller many two adjustable parameters λ and μ, by reasonably selecting Parameter can just improve the control effect of system.
Refering to Fig. 6, if the preferable closed loop reference model of system is:λ, μ, kp, ki, kd lead to Cross following manner determination:
S210:Required to choose the cut-off frequency ω c and order α of ideal close-loop reference model according to the control performance of system; The control performance requirement of system is time domain index, and time domain index can be overshoot, regulating time or time to peak;The ideal is closed Ring reference model H (s) causes system to have the desired characteristic insensitive to change in gain, is to cause cut-off when change in gain Frequencies omega c change, system has strong robustness to change in gain, and the overshoot size of system is only relevant with α, and with gain without Close.
S220:By H (s) and Gc(S) control object model, is calculated
Wherein λ, μ take decimal.If λ=α, have
S230:Obtain the frequency domain response data of unknown actual controlled device Gp (s), it is assumed thatWith Gp (s) in ω=0 and Frequency response at ω=ω x is identical, then ω x can be chosen for the cross-over frequency of Gp (s) phase margins of original system | Gp (j ω X) |=1, λ=α is first chosen, meaningful at ω=0 (now, object can keep good steady-state response, with general reality The situation of system is consistent), haveThen basisHave Place and μ functional relation are:
Wherein,
S240:The ideal form of unknown object is picked out by optimizingIn parameter, makeIn cutoff frequency To greatest extent close to practical object Gp (s) frequency domain response index in the range of rate;Set up frequency domain response error criterionAnd error criterion is optimized in the range of 0 < μ < 2Final To the parameter of fractional order control device.
The present invention primarily determines that ω c, α, λ value according to the time domain response index of system, by approaching practical object model With the frequency response characteristic of ideal object model, optimizing obtains the differential term order of Fractional Order PID, and calculating obtains kd, ki, Kp value, can obtain approaching the Fractional Order PID Controller of desired reference model.
Current regulator is used to calculate q shaft voltage set-pointsWith d shaft voltage set-pointsThe structure of current regulator Adjusted as shown in fig. 7, the second comparator and the deviation signal of the 3rd comparator output are respectively fed to d axles pi regulator with q axles PI Device, the output voltage of d axle pi regulators is Ud, the output voltage of q axle pi regulators is Uq, Ud、Uq、VoVoltage limit ring is sent into, ObtainWithMeanwhile, by the 4th comparator to UqWithIt is compared, obtains deviation △ Uq, △ UqThrough ratio module 1/ Kqp is admitted to the integration module in q axle pi regulators, so to △ UqCarry out PI regulations so thatCompare by the 5th Module is to UdWithIt is compared, obtains deviation △ Ud, △ UdThe product in d axle pi regulators is admitted to through ratio module 1/Kdp Sub-module, so to △ UdCarry out PI regulations so that
In order to ensure motor even running, it is to avoid motor ovennodulation pattern occurs, it is necessary to which voltage limit ring limiting motor is electric Press UdqLess than busbar voltage.That is Ud、UqFollowing formula condition need to be met.
If the condition is invalid, dq shaft voltages ud, uq need to carry out equal proportion amplitude limit, such as according to busbar voltage amplitude Vo Shown in formula (17):
Park inverse transform modules are used for willWithBe converted to α shaft voltage U α, β shaft voltages Uβ, and send to pulsewidth modulation Module;Pulse width modulation module is space vector pulse width modulation, and voltage arteries and veins is obtained for being calculated according to α β shaft voltages, busbar voltage Punching, and send to inverter.
Inverter output power so is controlled by controlling d shaft currents with q shaft currents, is determined according to motor is actually required Electron current amplitude, by doing phasor difference with q shaft currents, obtains actually required q shaft currents, simplifies the control knot of q shaft currents Structure, on the premise of net side High Power Factor is realized, the robustness of strengthening system;According to busbar voltage amplitude, limiting motor is real Border stator voltage size, it is to avoid motor is run into ovennodulation, enhances the reliability of system;Adjusted by voltage error, will Obtained current error value feeds back to electric current loop integral element, effectively increases the rapidity of electric current loop regulation.
The control system of two close cycles+Fractional Order PID+current limit ring of the present invention is adjusted with traditional digital ratio ring speed System is contrasted, and Fig. 8 is the comparison diagram of control result, and curve a is given step signal in figure, and curve b drives for the present invention The velocity-response curve of dynamic system, curve C is the response curve of the single closed-loop system of tradition.By contrast as can be seen that the present invention Drive system rotating speed response it is smooth, quick, the phenomenon without overshoot, vibration substantially improves system drive effect.
Each embodiment in this specification is described by the way of progressive, what each embodiment was stressed be with Between the difference of other embodiment, each embodiment identical similar part mutually referring to.For the side of the application For method embodiment, because it is substantially similar to device embodiment, so description is fairly simple, related part is real referring to device Apply the part explanation of example.
Many details are elaborated in the above description to fully understand the present invention.But above description is only Presently preferred embodiments of the present invention, the invention can be embodied in many other ways as described herein, therefore this Invention is not limited by specific implementation disclosed above.Any those skilled in the art are not departing from the technology of the present invention simultaneously In the case of aspects, all make many possible to technical solution of the present invention using the methods and techniques content of the disclosure above Change and modify, or be revised as the equivalent embodiment of equivalent variations.Every content without departing from technical solution of the present invention, according to this The technical spirit of invention still falls within skill of the present invention to any simple modifications, equivalents, and modifications made for any of the above embodiments In the range of the protection of art scheme.

Claims (3)

1. a kind of driving system for electric vehicles, it is characterised in that including DC/DC converter units, inverter, permagnetic synchronous motor, Cark conversion modules, Park conversion modules, rotor-position sensor, Fractional Order PID adjuster, current regulator, Park inversions Change the mold block and Pulse width modulation module;The rotor ginseng of the input connection permagnetic synchronous motor of the rotor-position sensor Number output end, the rotor-position output end of rotor-position sensor connects the rotor position data input of Park conversion modules; The rotor velocity data output end of rotor-position sensor connects the reverse input end of first comparator, and first comparator is just It is connected to input with rotational speed setup signal;The output end of first comparator is connected with the input of Fractional Order PID adjuster, point The output end of number rank PID regulator connects the positive input of the second comparator, the reverse input end and Park of the second comparator The q shaft currents output end of conversion module is connected;I.e. d shaft currents set-point perseverance is zero, d shaft currents set-point and the 3rd comparator Positive input is connected, and the reverse input end of the 3rd comparator is connected with the d shaft current output ends of Park conversion modules;Second ratio Output end compared with device and the 3rd comparator is connected with current regulator, and the output end of current regulator passes through Park inverse transform modules It is connected with Pulse width modulation module, Pulse width modulation module exports modulated signal to inverter, and inverter receives DC/DC and become The output voltage Vo of unit, the IGBT beaten according to modulated signal in opening/closing inverter are changed, so as to export the voltage of variable frequency Signal is to magneto;Rotor position, the actual speed ω m of permagnetic synchronous motor are gathered by rotor-position sensor, is passed through Wherein two-phase ia, ib of current sensor collection inverter output, ia, ib are converted and Park conversion by Clark, obtain permanent magnetism Equivalent current id and iq of the synchronous motor under dq axis coordinate systems;First comparator is by rotary speed setting valueWith actual speed ω m Be compared, deviation signal is adjusted by Fractional Order PID adjuster, the output valve of Fractional Order PID adjuster as q axles electric current Set-pointD shaft current set-pointsSecond comparator to iq withBe compared, the 3rd comparator to id withCompared Compared with the comparative result feeding current regulator of the second comparator and the 3rd comparator obtains dq after being adjusted by current regulator Q shaft voltage set-points under axis coordinate systemWith d shaft voltage set-pointsPark inverse transform modules pairWithCarry out Park After inverse transformation, it is sequentially output to Pulse width modulation module and inverter, so as to obtain the three-phase input electricity of permagnetic synchronous motor Pressure, driving permagnetic synchronous motor operation;The DC/DC converter units use semi-active bridge DC-DC converter, by input side and defeated Go out side composition;Input side be used for by the DC voltage conversion of input be high-frequency ac square-wave voltage, by transformer by electric energy from Primary side is transferred to secondary;Outlet side is used to realize carries out shaping to the alternating voltage of transformer secondary, realizes that rated voltage is exported; Input side constitutes full-bridge circuit by four controlled tr tubes, and outlet side is by two controlled tr tubes and two diodes and output Electric capacity is into input side and outlet side are connected by transformer;The current regulator is used to calculate q shaft voltage set-pointsWith d axles Voltage set-pointSecond comparator and the deviation signal of the 3rd comparator output are respectively fed to d axles pi regulator and adjusted with q axles PI Device is saved, the output voltage of d axle pi regulators is Ud, the output voltage of q axle pi regulators is Uq, Ud、Uq、VoSend into voltage limit Ring, is obtainedWithBy the 4th comparator to UqWithIt is compared, obtains deviation △ Uq, △ UqThrough ratio module 1/Kqp The integration module in q axle pi regulators is admitted to, to △ UqCarry out PI regulations so thatPass through the 5th comparison module pair UdWithIt is compared, obtains deviation △ Ud, △ UdThe integration module in d axle pi regulators is admitted to through ratio module 1/Kdp, To △ UdCarry out PI regulations so that
2. driving system for electric vehicles according to claim 1, it is characterised in that the power output p of DC/DC converter unitso For:
Wherein,
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>a</mi> <mo>=</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>b</mi> <mo>=</mo> <mo>-</mo> <mi>m</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;Delta;d</mi> <mi>p</mi> </msub> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> <msup> <msub> <mi>&amp;Delta;d</mi> <mi>p</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;d</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>0.25</mn> <mi>m</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Calculating obtains power output Po with respect to phase shifting angleThe maximum P of change0_max
<mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msubsup> <mi>V</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msubsup> <mi>&amp;Delta;d</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>&amp;Delta;d</mi> <mi>p</mi> </msub> <mo>-</mo> <mn>0.25</mn> <mi>m</mi> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msup> <mi>mn</mi> <mn>2</mn> </msup> <msub> <mi>L</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Corresponding phase shifting angle when power output Po is maximumValue it is as follows:
In above formula, m is the voltage gain for being input to output, m=Vo/(nVin), n is transformer primary side and secondary turn ratio, and Ts is Switch periods, Δ dp is transformer primary side dutycycle compensation rate, the service time for finely tuning primary side leading-bridge switching tube;Δ Ds is the compensation rate of secondary dutycycle, the service time for finely tuning secondary-side switch pipe.
3. driving system for electric vehicles according to claim 1, it is characterised in that the biography of the Fractional Order PID Controller Delivery function is:Wherein parameter lambda, μ, kp, ki, kd pass through such as Under type is determined:
S210:Required to choose ideal close-loop reference model H (S) cut-off frequency ω c and order α according to the control performance of system; S220:By H (s) and Gc(S) control object model, is calculatedS230:The frequency domain for obtaining actual controlled device Gp (s) rings Data are answered, ifIdentical with frequency responses of the Gp (s) at ω=0 and ω=ω x, then ω x are chosen for the Gp (s) of original system The cross-over frequency of phase margin | Gp (j ω x) |=1, λ=α is first chosen, is hadThen basisHavekp、kdIn ω=ωx
Place and μ functional relation are:
Wherein,
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mo>=</mo> <mi>Re</mi> <mo>&amp;lsqb;</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>q</mi> <mo>=</mo> <mi>Im</mi> <mo>&amp;lsqb;</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>t</mi> <mo>=</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;mu;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>+</mo> <mi>j</mi> <mi>b</mi> <mo>=</mo> <msup> <mi>j</mi> <mi>t</mi> </msup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mo>+</mo> <mi>j</mi> <mi>d</mi> <mo>=</mo> <msup> <mi>j</mi> <mi>&amp;lambda;</mi> </msup> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
S240:The ideal form of unknown object is picked out by optimizingIn parameter, makeIn cut-off frequency model To greatest extent close to practical object Gp (s) frequency domain response index in enclosing;Set up frequency domain response error criterionAnd error criterion is optimized in the range of 0 < μ < 2Final To the parameter of fractional order control device.
CN201710241272.4A 2017-04-13 2017-04-13 Driving system for electric vehicles Pending CN107070338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710241272.4A CN107070338A (en) 2017-04-13 2017-04-13 Driving system for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710241272.4A CN107070338A (en) 2017-04-13 2017-04-13 Driving system for electric vehicles

Publications (1)

Publication Number Publication Date
CN107070338A true CN107070338A (en) 2017-08-18

Family

ID=59599986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710241272.4A Pending CN107070338A (en) 2017-04-13 2017-04-13 Driving system for electric vehicles

Country Status (1)

Country Link
CN (1) CN107070338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429457A (en) * 2018-03-07 2018-08-21 北京亿华通科技股份有限公司 A kind of DC booster converter control method
CN109116752A (en) * 2018-08-31 2019-01-01 北京交通大学 A kind of the dynamic model analogue system and control method of urban track traffic
CN109802600A (en) * 2019-03-20 2019-05-24 合肥为民电源有限公司 A kind of method and control device of power frequency inverter startup motor
CN110829465A (en) * 2019-11-29 2020-02-21 国网四川省电力公司电力科学研究院 Electric power system ultralow frequency oscillation risk assessment method considering dead zones of multiple speed regulators
CN113179051A (en) * 2021-04-28 2021-07-27 一巨自动化装备(上海)有限公司 Soft switching control method for parking actuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429457A (en) * 2018-03-07 2018-08-21 北京亿华通科技股份有限公司 A kind of DC booster converter control method
CN109116752A (en) * 2018-08-31 2019-01-01 北京交通大学 A kind of the dynamic model analogue system and control method of urban track traffic
CN109802600A (en) * 2019-03-20 2019-05-24 合肥为民电源有限公司 A kind of method and control device of power frequency inverter startup motor
CN110829465A (en) * 2019-11-29 2020-02-21 国网四川省电力公司电力科学研究院 Electric power system ultralow frequency oscillation risk assessment method considering dead zones of multiple speed regulators
CN110829465B (en) * 2019-11-29 2023-02-24 国网四川省电力公司电力科学研究院 Electric power system ultralow frequency oscillation risk assessment method considering dead zones of multiple speed regulators
CN113179051A (en) * 2021-04-28 2021-07-27 一巨自动化装备(上海)有限公司 Soft switching control method for parking actuator
CN113179051B (en) * 2021-04-28 2022-11-22 一巨自动化装备(上海)有限公司 Soft switch control method for parking actuator

Similar Documents

Publication Publication Date Title
CN107070338A (en) Driving system for electric vehicles
CN105515479B (en) A kind of durface mounted permanent magnet synchronous generator field weakening control method
CN104092422B (en) Finite state set asynchronous motor model prediction flux linkage control method and device
CN108809176B (en) A kind of asynchronous motor speed-regulating system control method based on Buck-Boost matrix converter
CN105827168A (en) PMSM control method and system based on sliding mode observation
CN103731084A (en) Permanent magnet synchronous motor low inverter power consumption direct torque control method and device
CN105162371A (en) Motor drive system and method for inhibiting torque pulsation of switch reluctance motor
CN206041865U (en) Switched reluctance motor direct torque control system based on commutation district space voltage vector
CN103956955A (en) Co-bus winding opening permanent magnet motor system with one side controllable and zero sequence current suppression method thereof
CN102832874A (en) System and method for controlling motor
CN109194218B (en) Control device, control method and system of direct-current bias type hybrid excitation motor
CN112117908A (en) Frequency conversion phase shift modulation device and method for double-active-bridge series resonant converter circuit
CN108880268B (en) Multi-mode control method of voltage source type semi-active bridge DC-DC converter
CN104506092A (en) Switched reluctance motor current hysteresis control method based on inductance Fourier decomposition
CN107255921B (en) Optimal control method for range extender of electric vehicle
CN103944471B (en) It is a kind of to improve the MC direct torque control of torque and magnetic linkage performance
CN104579091B (en) Direct torque control device and method
CN106849812A (en) A kind of asynchronous motor control method based on flux compensation
CN205051611U (en) Motor drive system that restraines switched reluctance motor torque ripple
CN106817057A (en) Motor driven systems
CN106817056A (en) Motor driven systems based on harmonic wave observer
CN108092585A (en) A kind of direct Torque Control of no magnetic linkage ring
CN106849800A (en) Motor driven systems
CN110086398A (en) A kind of Direct Torque Control based on duty ratio control
CN106953574A (en) Speedless sensor motor driven systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination