CN107069818B - 一种基于混合控制策略的无缝切换控制系统及方法 - Google Patents

一种基于混合控制策略的无缝切换控制系统及方法 Download PDF

Info

Publication number
CN107069818B
CN107069818B CN201710283888.8A CN201710283888A CN107069818B CN 107069818 B CN107069818 B CN 107069818B CN 201710283888 A CN201710283888 A CN 201710283888A CN 107069818 B CN107069818 B CN 107069818B
Authority
CN
China
Prior art keywords
grid
control
inverter
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710283888.8A
Other languages
English (en)
Other versions
CN107069818A (zh
Inventor
刘进军
孟鑫
刘增
武腾
王施珂
刘宝谨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710283888.8A priority Critical patent/CN107069818B/zh
Publication of CN107069818A publication Critical patent/CN107069818A/zh
Application granted granted Critical
Publication of CN107069818B publication Critical patent/CN107069818B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/44Synchronising a generator for connection to a network or to another generator with means for ensuring correct phase sequence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network

Abstract

本发明公开了一种基于混合控制策略的无缝切换控制系统及方法,本发明可以实现并网运行转孤岛运行时逆变器自动由电流源控制切换为基于下垂控制的电压源控制,提高了并网到孤岛模式的转换过程中的负载电压质量。从逆变器分为两类,其中第一类基于传统的PQ控制控制为电流源,将其命名为从逆变器‑类型1;另一类基于PQ控制以及下垂控制,将其命名为从逆变器‑类型2。在孤岛发生后,从逆变器‑类型2从PQ控制转换为下垂控制,以电压源模式运行,可实现无快速通讯线的功率均分。从逆变器‑类型2在转换为下垂控制后可看作主逆变器,起到维持电网电压幅值和频率稳定的作用。多台主逆变器的存在提高了孤岛运行时微网系统的可靠性。

Description

一种基于混合控制策略的无缝切换控制系统及方法
技术领域
本发明属于并网逆变器控制研究领域,具体涉及一种基于混合控制策略的无缝切换控制系统及方法。
背景技术
随着环境和能源危机的日益加深,新能源发电得到了越来越多的关注和应用,而并网逆变器是新能源发电系统向电网输送电能的必不可少的接口设备,并网逆变器的性能将会对发电系统以及电网的稳定性产生重要的影响。
在电网正常时,并网逆变器应能够并网运行,与电网共同为负载供电,当电网发生故障时,分布式发电单元应该立即与电网断开,并且单独为负载供电,形成孤岛运行。在电网恢复之后,重新并网运行。因此,并网逆变器应该具备并网及孤岛运行能力,并且可实现两种模式之间的无缝切换,保证本地重要负载的供电质量不受影响。按照控制方式的不同,并网逆变器可以分为电流控制型和电压控制型两种。目前普遍的无缝切换控制策略可分为以下三类:1.混合电压电流模式控制;2.电压模式控制;3.间接电流控制。在混合电压电流模式控制中,并网时逆变器控制为电流源,孤岛时逆变器控制为电压源,因此存在两套控制系统,在并网和孤岛运行发生转换时,由于孤岛检测时间的存在,负载电压会存在一段失控时间,负载电压质量受到孤岛检测快速性的影响。在电压模式控制中,无论在并网或者孤岛模式,逆变器均采用下垂控制,以电压源运行,但是由于下垂控制中功率环的存在,无论在孤岛或并网模式,系统的动态响应特性均比较慢。在间接电流控制中,并网运行时逆变器控制成电流源,当孤岛发生时,不需要改变控制结构,逆变器自动切换为电压源,因此负载电压质量可以得到提高,但是在并网运行时,电流外环对注入电网电流峰值进行调节,动态响应较差。因此有人提出一种改进间接电流控制控制克服其动态特性差的缺点,但是当采用该控制方法时,微网系统在孤岛运行时只能采用单主多从的结构,一旦主逆变器出现故障,整个微网系统无法工作,系统可靠性较低。
发明内容
本发明的目的在于克服上述改进间接电流控制中主逆变器出现故障整个微网系统无法工作的问题,提出一种基于混合控制策略的无缝切换控制系统及方法,能够实现逆变器在并网模式和孤岛模式之间的无缝切换,提高了切换过程中的负载电压质量,并且在孤岛模式时,微网系统以多主多从结构运行,提高了系统的可靠性。
为了达到上述目的,一种基于混合控制策略的无缝切换控制系统包括三相逆变器,三相逆变器的输出端连接LC滤波器,LC滤波器的电容Cf并联有负载,LC滤波器下游通过线路阻抗Lg连接并网开关Si,并网开关Si下游通过电网保护开关Su连接电网。
所述逆变器包括单台主逆变器和两台从逆变器,单台主逆变器和两台从逆变器并联运行。
一种基于混合控制策略的无缝切换控制系统策略为:
当电网正常时,并网开关Si和电网保护开关Su均闭合,微网系统并网运行,主逆变器中流过并网电感Lg的电流igx(x=a,b,c)跟随其指令值,使主逆变器输出给定的有功及无功功率;
当电网发生故障时,电网保护开关Su立即断开,微网系统与大电网分离,微网系统与大电网之间的功率流动减小为0,因此主逆变器中流过并网电感Lg的电流会偏离指令值。在D轴中,PI控制器GIG的输出会保持增加或减少,达到限幅器的上限值Vdmax或下限值Vdmax,同理Q轴中PI控制器输出达到限幅器的下限值Vqmin或上限值Vdmax,当D轴限幅器的输出达到其限幅值之后,将数据选择开关S2选为下垂控制无功功率环生成的电压指令值Edroop,完成孤岛模式的切换。从逆变器分为两类,其中第一类基于传统的PQ控制控制为电流源,将其命名为从逆变器-类型1;另一类基于PQ控制以及下垂控制,将其命名为从逆变器-类型2。在主逆变器切换为下垂控制后,从逆变器-类型2从PQ控制转换为下垂控制,以电压源模式运行,其在转换为下垂控制后可看作主逆变器,起到维持电网电压幅值和频率稳定的作用。多台主逆变器的存在提高了孤岛运行时微网系统的可靠性。
在孤岛模式时,主逆变器及从逆变器-类型2基于下垂控制,以电压源模式运行,实现主逆变器与从逆变器-类型2之间无通讯线的功率均分,并且提高了微网系统的可靠性。
当电网恢复后,电网保护开关Su自动闭合,从逆变器-类型2由下垂控制转换为PQ控制,主逆变器由下垂控制转为间接电流控制,之后进行负载电压和电网电压的预同步控制,当二者实现电压幅值和相位的同步后,并网开关Si闭合,逆变器重新并网运行,完成并网模式。
与现有技术相比,本发明采用独特的控制结构,主逆变器采用电容电流内环,电容电压环以及并网电流环的三环控制结构,同时还包括独特的锁相环模块以及相角选择模块和下垂控制模块,可以实现并网运行转孤岛运行时主逆变器自动由电流源控制切换为基于下垂控制的电压源控制,提高了并网到孤岛模式的转换过程中的负载电压质量。从逆变器-类型2采用PQ控制与下垂控制,并且采用状态跟踪实现两种控制策略之间的切换。孤岛发生后,从逆变器-类型2可以从PQ控制转换为下垂控制,提高了孤岛运行时微网系统的可靠性。
本发明的方法通过由并网运行切换为孤岛运行再切换为并网运行的过程,实现并网模式时基于间接电流控制的电流源型逆变器到孤岛模式时基于下垂控制的电压源型逆变器的自动切换,提高了并网转孤岛过程中的负载电压质量,并提高了孤岛运行时微网系统的可靠性。实现孤岛运行时主逆变器与从逆变器-类型2之间的无需快速通讯线的功率均分。由于在孤岛运行时存在主逆变器与从逆变器-类型2共同为微网系统提供电压幅值和频率支撑,即使其中某台逆变器发生故障也不会影响微网系统的正常运行。所以该控制方法可以提高微网系统的可靠性。
附图说明
图1为本发明的主电路图;
图2为本发明主控制框图;
图3为本发明带频率限幅器的锁相环;
图4为本发明的相角选择模块;
图5为本发明孤岛运行时下垂控制框图;
图6为本发明从逆变器-类型2状态跟踪控制框图;
图7为本发明微网系统的电路图;
图8为本发明的仿真波形图;其中,(a)为整个微网系统运行过程中A相负载电压波形,(b)为1s电网发生故障时,A相负载电压的波形,(c)为电网恢复后,3.7s开始负载电压与电网电压预同步控制,4.3s闭合并网开关Si,A相负载电压的波形,(d)表示整个运行过程中,微网与大电网之间并网电流的波形。
图9为主逆变器A相电容电压的波形;其中,(a)为1s电网发生故障时,主逆变器A相电容电压的波形,(b)为电网恢复后,3.7s开始负载电压与电网电压预同步控制,4.3s闭合并网开关Si,主逆变器A相电容电压的波形。
具体实施方式
下面结合附图对本发明做进一步说明。
一种基于混合控制策略的无缝切换控制系统包括三相逆变器,三相逆变器的输出端连接LC滤波器,LC滤波器的电容Cf并联有负载,LC滤波器下游通过线路阻抗Lg连接并网开关Si,并网开关Si下游通过电网保护开关Su连接电网,逆变器包括单台主逆变器和两台从逆变器,单台主逆变器和两台从逆变器并联运行。
一种基于混合控制策略的无缝切换控制系统为,当电网正常时,并网开关Si和电网保护开关Su均闭合,逆变器并网运行,流过并网电感Lg的电流igx(x=a,b,c)为并网电流,完成并网模式;
当电网发生故障时,电网保护开关Su立即断开,通过孤岛检测算法确定孤岛发生后,并网开关Si断开,分布式发电单元处于孤岛运行,完成孤岛模式;
当电网恢复后,电网保护开关Su自动闭合,进行负载电压和电网电压的预同步控制,当二者实现电压幅值和相位的同步后,并网开关Si闭合,逆变器重新并网运行,完成并网模式。
分布式发电单元共包括四种运行状态:并网模式,并网模式转孤岛模式的转换过程,孤岛模式,孤岛模式转并网模式的转换过程。
1、并网模式
当电网正常时,并网开关和电网保护开关均闭合,主逆变器基于间接电流控制,控制为电流源。图2所示的控制结构由电容电流内环,电容电压环以及并网电流外环构成,在并网模式时,三个控制环共同发挥作用,开关S1,S4,S5断开,数据选择器S2与VIGdout相连接,数据选择器S3与θgrid相连接。分布式发电系统控制为电流源向电网注入有功及无功功率,并且注入的有功和无功功率由电流参考值igrefd和igrefq决定。此时电网电流调节器GIG调节电网电流,使其跟踪指令值,因此调节器之后的限幅器不能限制其输出。
从逆变器-类型1始终为PQ控制以电流源运行。从逆变器-类型2控制框图图6中的开关K2,K4,K5闭合,K1,K3,K6断开。在并网模式时同样为PQ控制并且其下垂控制器的输出跟随PQ控制器的输出。
2、并网模式向孤岛模式转换
在并网模式下,分布式发电单元向电网注入的有功及无功功率分别为式(1),(2)。
为了分析方便,假定并网时,分布式发电单元向电网注入的有功及无功功率均为正值。首先以图1所示单台分布式发电单元进行分析。当电网发生故障时,电网保护开关Su立即断开,流过并网电感Lg的电流迅速减小为0。并网电流ig的d轴分量igd由正值减为0,q轴分量igq由负值增加为0。在D轴中,PI控制器GIG的输出会保持增加,达到限幅器的上限值Vdmax,在Q轴中,PI控制器GIG的输出会保持减小,达到限幅器的下限值Vqmin。限幅器上下限值的选取非常重要,在之后会有详细说明。当D轴限幅器的输出达到其上限值之后,将数据选择开关S2选为下垂控制无功功率环生成的电压指令值Edroop,因为图5(b)所示的下垂控制框图中幅值给定值E0等于Vdmax(幅值给定值E0也可能等于D轴限幅器下限值Vdmin,取决于并网运行时的有功功率流向,如果由分布式发电单元流向电网,即Pg>0,那么E0等于Vdmax;如果由电网流向分布式发电单元,即Pg<0,那么E0等于Vdmin。并且由于图5(b)中的下垂系数kq很小,所以由VIGdout到Edroop的转换是平滑的。然后图5(a)中的逻辑开关S4闭合使得下垂控制产生的相角值θdroop与PLL模块产生的θgrid同步,经过图4相角选择模块的自动判断,当二者的差值小于某个阈值时,认为二者已经同步,图4中的数据选择器S3选为θdroop。此时,由间接电流控制到下垂控制的切换完成。
并网模式时,电网电流调节器GIG应该能够正常控制电网电流,因此限幅器不能限制其输出,D轴限幅器上限值Vdmax应该大于电网电压幅度,同时它又不能远大于电网电压幅度,否则负载电压幅度将远离额定值。因此,D轴限幅器上限值Vdmax选择为电网电压幅度最大值。根据IEEE标准IEEE Std.1547-2003,电网电压最大值为1.1p.u.,所以Vdmax可以由式(3)表示,其中Vn是额定相电压。
同理可得D轴限幅器下限值Vdmin选择为电网电压幅度最小值,如式(4)所示。
为了使负载电压幅度在正常范围内,Q轴限幅器的上限值Vqmax应该远小于D轴限幅器上限Vdmax,在这里将其设定为额定电网电压幅度的10%。Q轴限幅器的下限值应与上限值关于0对称,因此Vqmin设定为额定电网电压幅度的-10%。
当微网结构如图7所示时,存在单台主逆变器及多台从逆变器,此时主逆变器并网电流(并网电流为分布式发电单元与PCC点之间的电流)在电网保护开关Su断开后不为0,但是由于微网系统与大电网分离,微网系统与大电网之间的功率流动减小为0,因此主逆变器中流过并网电感Lg的电流会偏离指令值。在D轴中,PI控制器GIG的输出会保持增加或减少,达到限幅器的上限值Vdmax或下限值Vdmax,同理Q轴中PI控制器输出达到限幅器的下限值Vqmin或上限值Vdmax,当D轴限幅器的输出达到其限幅值之后,将数据选择开关S2选为下垂控制无功功率环生成的电压指令值Edroop,如果经过一段设定时间T后D轴限幅器仍未达到其限幅值,同样将数据选择开关S2选为下垂控制无功功率环生成的电压指令值Edroop,即完成孤岛模式的切换。
从逆变器-类型1以及类型2均按照PQ控制,控制策略不发生变化。
3、孤岛模式
在孤岛模式时,主逆变器基于下垂控制,以电压源模式运行。孤岛发生后,当主逆变器由间接电流控制转为下垂控制后,从逆变器-类型2控制框图中的开关K2,K4,K5断开,K1,K3,K6闭合。从逆变器-类型2从PQ控制转换为下垂控制,以电压源模式运行,并且PQ控制器的输出跟随下垂控制器的输出。其在转换为下垂控制后可看作主逆变器,起到维持电网电压幅值和频率稳定的作用。多台主逆变器的存在提高了孤岛运行时微网系统的可靠性。在孤岛时基于下垂控制的逆变器可以实现多台主逆变器之间无通讯线的功率均分。
4、孤岛模式向并网模式转换
当电网恢复正常以后,电网保护开关Su自动闭合,从逆变器-类型2由下垂控制转换为PQ控制,之后主逆变器由下垂控制转换为间接电流控制,在并网开关Si闭合之前,需要首先进行负载电压和电网电压的预同步控制。
电网恢复后主逆变器PLL模块自动跟踪电网电压相位,闭合开关S4,使得θdroop与θgrid同步,同步完成后,相角选择模块自动将S3与θgrid相连接。之后闭合开关S5和S1,使得Edroop和VIGdout均与电网电压幅值Eg同步。之后将数据选择器S2与VIGdout相连接,断开开关S5和S1
具体的,本发明在仿真软件PSCAD中搭建了如图1所示的并网逆变器模型作为主逆变器,实现了单台主逆变器,2台从逆变器的并联运行如图7所示。仿真结果如图8,9所示,其中图8(a)表示整个微网系统运行过程中A相负载电压波形,图8(b)表示1s电网发生故障时,A相负载电压的波形,图8(c)表示电网恢复后,3.7s开始负载电压与电网电压预同步控制,4.3s闭合并网开关Si,A相负载电压的波形,图8(d)表示整个运行过程中,微网与大电网之间并网电流的波形。图9(a)表示1s电网发生故障时,主逆变器A相电容电压的波形,图9(b)表示电网恢复后,3.7s开始负载电压与电网电压预同步控制,4.3s闭合并网开关Si,主逆变器A相电容电压的波形。
仿真开始时,电网正常运行,分布式发电单元向电网注入有功及无功功率,在1s时刻,电网发生故障,电网保护开关Su立即断开,根据上文分析,D轴限幅器输出达到上限值而Q轴限幅器输出达到下限值,因此在仿真波形图8(a)中可以看到1s后由并网运行转孤岛运行时,负载电压幅值会增加一定程度,但仍处在运行标准范围之内,由图8(b)可以清楚的看到并网转孤岛运行时,负载电压增大一定程度。之后主逆变器由间接电流控制切换为下垂控制,主逆变器切换为下垂控制后,从逆变器-类型2由PQ控制切换为下垂控制,此时相当于微网系统中存在两台主电源。当2.2s电网恢复以后,电网保护开关自动闭合,从逆变器-类型2由下垂控制切换为PQ控制,主逆变器由下垂控制切换为间接电流控制,之后完成负载电压与电网电压的预同步控制,闭合并网开关,微网系统重新并网运行。由图8(a)及图8(c)可以看到孤岛转并网运行时,负载电压恢复至额定值。由图8(b)及图8(c)可看出无论由并网转孤岛运行或是孤岛转并网运行的过程中,负载电压质量均可以得到保证。图8(d)表示整个运行过程中,微网与大电网之间并网电流的波形。图8(d)中在4.3s重新并网之后,需要将预同步控制时加入控制环中的积分量逐渐减小至零,主逆变器电容电压会经历一定的变化过程,因此可以看到并网电流先增加后减小到与1s之前相同的值,如果使加入控制环中的积分量的减小速度足够慢,可以使并网电流逐渐增加至指令值。
本发明中给出一种基于间接电流控制和下垂控制的无缝切换方法。为了验证控制方法的可行性,作者在仿真软件PSCAD中搭建了仿真模型,仿真结果证明了该控制方法可以实现微网系统并网运行和孤岛运行之间的无缝切换,在切换过程中负载电压可以得到保证,并且在孤岛运行时,微网系统中存在多台主逆变器为系统提供电压支撑,提高了微网系统的可靠性。该方法正确、可靠,为工程应用提供了很好的参考价值。

Claims (2)

1.一种基于混合控制策略的无缝切换控制系统的控制方法,其特征在于,控制系统包括三相逆变器,三相逆变器的输出端连接LC滤波器,LC滤波器的电容Cf并联有负载,LC滤波器下游通过线路阻抗Lg连接并网开关Si,并网开关Si下游通过电网保护开关Su连接电网;
所述逆变器包括单台主逆变器和两台从逆变器,单台主逆变器和两台从逆变器并联运行;
控制系统的控制方法如下:
当电网正常时,并网开关Si和电网保护开关Su均闭合,逆变器并网运行,流过并网电感Lg的电流igx为并网电流,x=a,b,c,完成并网模式;
当电网发生故障时,电网保护开关Su立即断开,通过孤岛检测算法确定孤岛发生后,并网开关Si断开,分布式发电单元处于孤岛运行,完成孤岛模式;
当电网恢复后,电网保护开关Su自动闭合,进行负载电压和电网电压的预同步控制,当负载电压和电网电压实现电压幅值和相位的同步后,并网开关Si闭合,逆变器重新并网运行,完成并网模式;
当电网发生故障时,电网保护开关Su立即断开,由于微网系统与大电网分离,微网系统与大电网之间的功率流动减小为0,因此主逆变器中流过并网电感Lg的电流会偏离指令值;在D轴中,PI控制器GIG的输出会保持增加或减少,达到限幅器的上限值Vdmax或下限值Vdmax,同理Q轴中PI控制器输出达到限幅器的下限值Vqmin或上限值Vdmax,当D轴限幅器的输出达到其限幅值或经过设定时间T之后,将数据选择开关S2选为下垂控制无功功率环生成的电压指令值Edroop,即完成孤岛模式的切换。
2.根据权利要求1所述的一种基于混合控制策略的无缝切换控制系统的控制方法,其特征在于,从逆变器分为两类,其中第一类基于PQ控制为电流源,将其命名为从逆变器-类型1;另一类基于PQ控制以及下垂控制,将其命名为从逆变器-类型2;在孤岛发生后,从逆变器-类型2从PQ控制转换为下垂控制,以电压源模式运行,实现无快速通讯线的功率均分;从逆变器-类型2在转换为下垂控制后看作主逆变器,实现维持电网电压幅值和频率稳定。
CN201710283888.8A 2017-04-26 2017-04-26 一种基于混合控制策略的无缝切换控制系统及方法 Expired - Fee Related CN107069818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710283888.8A CN107069818B (zh) 2017-04-26 2017-04-26 一种基于混合控制策略的无缝切换控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710283888.8A CN107069818B (zh) 2017-04-26 2017-04-26 一种基于混合控制策略的无缝切换控制系统及方法

Publications (2)

Publication Number Publication Date
CN107069818A CN107069818A (zh) 2017-08-18
CN107069818B true CN107069818B (zh) 2019-10-11

Family

ID=59604090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710283888.8A Expired - Fee Related CN107069818B (zh) 2017-04-26 2017-04-26 一种基于混合控制策略的无缝切换控制系统及方法

Country Status (1)

Country Link
CN (1) CN107069818B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560572B (zh) * 2018-11-23 2022-04-29 西安石油大学 一种基于无扰动切换的微网多目标运行的优化控制方法
CN109842154B (zh) * 2019-02-18 2021-10-29 阳光电源股份有限公司 一种并网逆变器的继电器控制方法及装置
CN111049172B (zh) * 2019-12-31 2021-09-24 科华数据股份有限公司 离网切换至并网的方法、系统及储能变流器
CN112260315A (zh) * 2020-10-16 2021-01-22 成都英格利科技有限公司 一种基于改进下垂控制的无缝切换控制系统及策略
CN112564163B (zh) * 2020-11-25 2023-06-20 西安交通大学 一种基于小信号同步注入的微网孤岛检测方法及系统
CN113098060B (zh) * 2021-04-08 2022-10-04 河北工业大学 一种新能源并网用智能型可控功率开关
CN113131527B (zh) * 2021-04-15 2023-02-21 燕山大学 一种储能变流器被动脱网的全无缝切换控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074973A (zh) * 2011-01-18 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 基于托管模式下的分布式电源并网方法及装置
CN103414207A (zh) * 2013-07-15 2013-11-27 中国科学院电工研究所 一种基于下垂控制的平滑切换方法
CN104410097A (zh) * 2014-09-26 2015-03-11 广东易事特电源股份有限公司 微网逆变器及其并网和离网的控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074973A (zh) * 2011-01-18 2011-05-25 国网电力科学研究院武汉南瑞有限责任公司 基于托管模式下的分布式电源并网方法及装置
CN103414207A (zh) * 2013-07-15 2013-11-27 中国科学院电工研究所 一种基于下垂控制的平滑切换方法
CN104410097A (zh) * 2014-09-26 2015-03-11 广东易事特电源股份有限公司 微网逆变器及其并网和离网的控制方法

Also Published As

Publication number Publication date
CN107069818A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107069818B (zh) 一种基于混合控制策略的无缝切换控制系统及方法
CN106961121B (zh) 基于间接电流控制和下垂控制的无缝切换控制系统及策略
CN102185341B (zh) 基于主从控制策略微网的主电源双模式运行控制方法
Papangelis et al. Stability of a voltage source converter subject to decrease of short-circuit capacity: A case study
CN103795080A (zh) 一种mmc型轻型直流输电系统的并网方法
CN111934330B (zh) 海上风电经柔直并网系统交流故障下的主动能量控制方法
CN107732954B (zh) 一种电压源换流器单元在线投入控制方法及装置
CN103904677A (zh) 一种vsc-hvdc在联网与孤岛运行方式间的切换控制方法
CN104201694A (zh) 一种新型智能动态混成无功补偿系统及其控制方法
CN112448388B (zh) 基于智能软开关与联络开关并联的转供电系统的控制方法
Xin et al. AC fault ride-through coordinated control strategy of LCC-MMC hybrid DC transmission system connected to passive networks
CN108767902A (zh) 一种基于耦合虚拟阻抗的发电系统接口变流器控制方法
CN104377723A (zh) 一种用于静止式中频电源组网系统的暂态过程控制方法
CN113991670A (zh) 一种用于电网交流柔性合环控制装置及其控制方法
CN115579944B (zh) 一种具有自限流保护能力的构网型储能控制系统及方法
CN112909999A (zh) 一种无锁相环高电能质量无缝切换系统及其控制方法
CN104218605A (zh) 三相电压源型并网逆变器的无冲击电流并网方法
CN109149591B (zh) 特高压直流换流站同步调相机动态无功协控方法及系统
CN115864374A (zh) 一种储能mmc-同步机并联供电系统的暂态稳定提升方法
CN115378036A (zh) 考虑vsg电流限制和暂态稳定性的紧急控制方法及装置
CN115296325A (zh) 用于锁相环-构网型mmc换流站并联供电系统的控制方法
CN112600239A (zh) 一种风电并网控制方法
CN113346500A (zh) 一种支持微电网全自治控制的柔性切换变流器及控制方法
CN112564176A (zh) 一种基于临时主从切换的微网预同步方法及系统
CN107968423B (zh) 一种无源mmc站并入不同电压等级的直流电网的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011