CN107067727A - A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matchings - Google Patents

A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matchings Download PDF

Info

Publication number
CN107067727A
CN107067727A CN201710421757.1A CN201710421757A CN107067727A CN 107067727 A CN107067727 A CN 107067727A CN 201710421757 A CN201710421757 A CN 201710421757A CN 107067727 A CN107067727 A CN 107067727A
Authority
CN
China
Prior art keywords
mrow
msub
road traffic
data
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710421757.1A
Other languages
Chinese (zh)
Other versions
CN107067727B (en
Inventor
徐东伟
王永东
张贵军
郭海锋
何德峰
周晓根
郝小虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710421757.1A priority Critical patent/CN107067727B/en
Publication of CN107067727A publication Critical patent/CN107067727A/en
Application granted granted Critical
Publication of CN107067727B publication Critical patent/CN107067727B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Game Theory and Decision Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Fuzzy Systems (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种基于模糊KNN特征匹配的道路交通服务水平评价方法,建立道路交通特征参考序列,获取不同模态下的道路交通基准数据;提取道路交通训练数据,基于基准数据获取道路交通差值数据,经过阈值化处理获取训练数据的特征;将道路交通服务水平模糊化处理,结合训练数据特征,完成知识库的构建;提取道路交通测试数据;通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,并求出对应的模糊化的服务水平;将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通运行状态评价。本发明实现简单,不需要进行大量复杂的数据计算,可以有效的提高处理速度。

A road traffic service level evaluation method based on fuzzy KNN feature matching, which establishes a road traffic feature reference sequence and obtains road traffic benchmark data in different modes; extracts road traffic training data, and obtains road traffic difference data based on the benchmark data. Threshold processing to obtain the characteristics of the training data; fuzzy processing of the road traffic service level, combined with the characteristics of the training data, to complete the construction of the knowledge base; extract the road traffic test data; through the KNN feature matching algorithm, select the feature distance between the knowledge base and the test data The nearest k features, and calculate the corresponding fuzzy service level; add up the k groups of fuzzy service levels to get the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the road traffic operation status Evaluation. The invention is simple to realize, does not need to perform a large amount of complex data calculations, and can effectively improve the processing speed.

Description

一种基于模糊KNN特征匹配的道路交通服务水平评价方法A Road Traffic Service Level Evaluation Method Based on Fuzzy KNN Feature Matching

技术领域technical field

本发明属于道路交通服务水平评价领域,涉及道路交通数据的分析与评价,是一种道路交通服务水平评价的方法。The invention belongs to the field of road traffic service level evaluation, relates to the analysis and evaluation of road traffic data, and is a method for road traffic service level evaluation.

背景技术Background technique

随着社会经济的发展,汽车的保有量不断增长,道路交通问题变得更加严峻,必须对道路交通服务水平进行正确地评价,才能够在交通问题发生前对其进行处理,避免交通拥堵、事故等事件的发生,为交通管理部门制定决策提供依据。With the development of society and economy, the number of cars keeps increasing, and road traffic problems become more serious. It is necessary to correctly evaluate the level of road traffic service in order to deal with traffic problems before they occur, and avoid traffic jams and accidents. The occurrence of such events provides a basis for the traffic management department to make decisions.

目前,道路交通服务水平评价的研究大部分针对交通拥挤展开的。比较成熟的交通服务水平评价指标有连通性、行程时间可靠性和路网容量可靠性。其他交通服务水平评价研究还有交通拥堵评价加权模型、路网整体适应性分析法、空间饱和度指标、路网动态交通流状态估计等。上述研究主要是在路网层面进行研究,没有考虑到单条路段的交通服务水平,而且实现过程较为复杂。At present, most researches on the evaluation of road traffic service level focus on traffic congestion. The more mature evaluation indicators of traffic service level include connectivity, travel time reliability and road network capacity reliability. Other studies on traffic service level evaluation include traffic congestion evaluation weighted model, road network overall adaptability analysis method, space saturation index, road network dynamic traffic flow state estimation, etc. The above studies are mainly carried out at the road network level, without considering the traffic service level of a single road section, and the implementation process is relatively complicated.

发明内容Contents of the invention

为了克服已有道路交通服务水平评价方法的不足,本发明提供一种简化算法、基于模糊KNN特征匹配的道路交通服务水平评价方法。In order to overcome the shortcomings of existing road traffic service level evaluation methods, the present invention provides a road traffic service level evaluation method based on a simplified algorithm and fuzzy KNN feature matching.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

一种基于模糊KNN特征匹配的道路交通服务水平评价方法,包括以下步骤:A road traffic service level evaluation method based on fuzzy KNN feature matching, comprising the following steps:

1)建立道路交通特征参考序列,获取不同模态下的道路交通基准数据;1) Establish a road traffic feature reference sequence to obtain road traffic benchmark data in different modes;

2)提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征;2) Extract road traffic training data, obtain road traffic difference data based on road traffic reference data in the same mode, and obtain the characteristics of the training data through thresholding processing;

3)对已有的道路交通服务水平进行模糊化处理,结合训练数据的特征,完成知识库的构建;3) Fuzzify the existing road traffic service level, and combine the characteristics of the training data to complete the construction of the knowledge base;

4)提取道路交通测试数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取测试数据的特征;4) Extract road traffic test data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the test data through thresholding processing;

5)通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,并求出对应的模糊化的服务水平;5) Through the KNN feature matching algorithm, select the k features closest to the test data features in the knowledge base, and obtain the corresponding fuzzy service level;

6)将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通服务水平评价。6) Add up the fuzzified service levels of k groups to obtain the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the road traffic service level evaluation.

进一步,所述步骤1)中,建立道路交通特征参考序列,获取不同模态下的道路交通基准数据,包括如下步骤:Further, in said step 1), a reference sequence of road traffic characteristics is established to obtain road traffic reference data in different modes, including the following steps:

1.1)设计道路交通特征参考序列的结构1.1) Design the structure of the road traffic feature reference sequence

设定道路交通状态数据的采集周期是Δt,则道路交通信息模板的时间格式如图1所示。Assuming that the collection cycle of road traffic status data is Δt, the time format of the road traffic information template is shown in Figure 1.

道路交通特征参考序列的表格式如表1和表2所示。Table 1 and Table 2 show the table format of the road traffic feature reference sequence.

表1.道路交通特征参考序列信息表Table 1. Road traffic feature reference sequence information table

表2.道路交通特征参考序列描述表Table 2. Road traffic feature reference sequence description table

1.2)通过相关的数据预处理,建立道路交通运行特征参考序列1.2) Through relevant data preprocessing, establish a reference sequence of road traffic operation characteristics

道路交通运行模态的划分分为两个层次:路网层和路段层,设定路网层的交通运行模态的划分标识将道路的交通运行模态划分为g种子模态,路段层的交通运行模态的划分标识将道路的交通运行模态划分为h种子模态,则道路的交通运行模态一共划分为g×h种,记为集合Mode={M11,M12,…,Mgh},其中g和h的取值根据所选交通运行模态的划分标识确定;The division of the road traffic operation mode is divided into two levels: the road network layer and the road section layer. The division logo of the traffic operation mode of the road network layer is set to divide the traffic operation mode of the road into the g seed mode, and the road section layer The division mark of the traffic operation mode divides the traffic operation mode of the road into h sub-modes, then the traffic operation mode of the road is divided into g×h types in total, recorded as the set Mode = {M 11 , M 12 , ... , M gh }, where the values of g and h are determined according to the division identification of the selected traffic operation mode;

获取目标路段具有代表性的道路交通状态数据,并进行数据预处理,将经过数据预处理后的道路交通状态数据输入道路交通特征参考序列中,从而建立道路交通特征参考序列。Obtain representative road traffic state data of the target road section, perform data preprocessing, and input the road traffic state data after data preprocessing into the road traffic feature reference sequence, thereby establishing the road traffic feature reference sequence.

再进一步,所述步骤2)中,提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征,其一般表达式如下:Further, in the step 2), the road traffic training data is extracted, based on the road traffic reference data under the same mode, the road traffic difference data is obtained, and through thresholding, the characteristics of the training data are obtained, and its general expression is as follows :

其中,Mgh为模态;Δt为道路交通状态数据的采集周期;(m*Δt)为第m个道路交通状态数据采集周期,0≤m≤N,N表示每天采集的交通信息的条数;表示(m*Δt)时刻的训练数据;表示(m*Δt)时刻的基准数据;S(m*Δt)表示(m*Δt)时刻训练数据与基准数据的差值数据;表示模态Mgh下、Δt到(m*Δt)时段训练数据和基准数据的差值数据;表示阈值;表示模态Mgh下、Δt到(m*Δt)时段阈值处理后的差值数据,即为训练数据的特征;表示交通状态数据与特征的映射法则。Among them, M gh is the mode; Δt is the collection cycle of road traffic state data; (m*Δt) is the mth road traffic state data collection cycle, 0≤m≤N, and N represents the number of traffic information collected every day ; Indicates the training data at (m*Δt) time; Indicates the benchmark data at (m*Δt) time; S(m*Δt) represents the difference data between training data and benchmark data at (m*Δt) time; Represents the difference data between the training data and the benchmark data during the period from Δt to (m*Δt) under the mode M gh ; Indicates the threshold; Represents the difference data after threshold processing in the period from Δt to (m*Δt) under the mode M gh , which is the feature of the training data; Indicates the mapping rule between traffic state data and features.

更进一步,所述步骤3)中,通过已有的道路交通数据和道路交通服务水平模糊划分,结合训练数据的特征,完成知识库的构建,其一般表达式如下:Further, in said step 3), through the fuzzy division of existing road traffic data and road traffic service level, in combination with the characteristics of the training data, the construction of the knowledge base is completed, and its general expression is as follows:

其中,φ表示当前的道路交通状态与模糊化的交通服务水平的映射关系,Losm表示模糊化后的道路交通服务水平。Among them, φ represents the mapping relationship between the current road traffic state and the fuzzy traffic service level, and Los m represents the fuzzy road traffic service level.

结合(4)(5),可以得到交通运行状态与特征之间的关系:Combining (4) and (5), the relationship between the traffic operation state and the characteristics can be obtained:

Losm=ω(hem) (6)Los m =ω(he m ) (6)

其中,ω表示模糊化的服务水平与交通运行特征之间的映射法则,从而完成知识库的构建。Among them, ω represents the mapping rule between the fuzzy service level and the traffic operation characteristics, so as to complete the construction of the knowledge base.

更进一步,所述步骤4)中,提取道路交通测试数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取测试数据的特征,其一般表达式如下:Further, in the step 4), the road traffic test data is extracted, based on the road traffic benchmark data under the same mode, the road traffic difference data is obtained, and the characteristics of the test data are obtained by thresholding, and its general expression is as follows :

其中表示(m*Δt)时刻道路交通测试数据;MS(m*Δt)表示(m*Δt)时刻测试数据与基准数据的差值数据;表示Δt到(m*Δt)时间段测试数据与基准数据的差值数据;表示经过阈值处理后的差值数据,即为测试数据的特征。in Indicates the road traffic test data at (m*Δt) time; MS(m*Δt) represents the difference data between test data and benchmark data at (m*Δt) time; Represents the difference data between the test data and the benchmark data in the time period from Δt to (m*Δt); Represents the difference data after threshold processing, which is the feature of the test data.

更进一步,所述步骤5)中通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,并求出对应的模糊化的服务水平,过程如下:Further, in said step 5), by KNN feature matching algorithm, select the k features closest to the test data feature distance in the knowledge base, and obtain the corresponding fuzzy service level, the process is as follows:

5.1)计算训练数据的特征与测试数据的特征的距离5.1) Calculate the distance between the features of the training data and the features of the test data

dist(m)=||TheMgh(m)-heMgh(m)|| (10)dist(m)=||The Mgh (m)-he Mgh (m)|| (10)

DN(m)=[dist1(m)dist2(m)…distN(m)] (11)D N (m)=[dist 1 (m)dist 2 (m)...dist N (m)] (11)

其中,||||表示求取欧式距离,dist(m)表示Δt到(m*Δt)时段测试数据的特征与知识库中特征的距离,N表示训练数据的组数,DN(m)表示N组测试数据的特征在Δt到(m*Δt)时段内到N组训练数据的特征距离集合。Among them, |||| means to obtain the Euclidean distance, dist(m) means the distance between the features of the test data and the features in the knowledge base during the period from Δt to (m*Δt), N means the number of groups of training data, D N (m) Represents the set of feature distances from the features of N sets of test data to N sets of training data within the period from Δt to (m*Δt).

5.2)找出k个最近距离对应的特征,设k个特征为s1,s2,…sk,根据特征与模糊化的服务水平的映射关系,则有5.2) Find the features corresponding to the k closest distances, let the k features be s 1 , s 2 , ... s k , according to the mapping relationship between the features and the fuzzy service level, then there is

(L1,L2,…Lk)=ω(s1,s2,…sk) (12)(L 1 , L 2 , ... L k ) = ω(s 1 , s 2 , ... s k ) (12)

其中L1,L2,…Lk分别表示s1,s2,…sk对应的模糊化的服务水平。其中, 分别表示模态Mgh下、Δt到(m*Δt)时段畅通、一般拥堵、严重拥堵的概率。Among them, L 1 , L 2 , ... L k represent the fuzzy service levels corresponding to s 1 , s 2 , ... s k respectively. in, Respectively represent the probability of unimpeded, general congestion, and severe congestion under the mode M gh , from Δt to (m*Δt).

所述步骤6)中将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通服务水平评价,过程如下:In said step 6), add the service levels of k groups of fuzzification to obtain the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the evaluation of the road traffic service level. The process is as follows:

将k个特征对应的模糊化的服务水平概率相加,则有Add the fuzzy service level probabilities corresponding to k features, then we have

其中,SuAK,SuAK,SuAK分别表示综合k个特征后对应的畅通、一般拥堵、严重拥堵的概率。SuAK,SuAK,SuAK中最大的概率值对应的服务水平,即为当前特征所属服务水平。Among them, Su AK , Su AK , and Su AK respectively represent the probability of unimpeded traffic, general congestion, and severe congestion after integrating k features. Su AK , Su AK , the service level corresponding to the largest probability value among Su AK is the service level to which the current feature belongs.

本发明的技术构思为:提出了一种基于模糊KNN特征匹配的道路交通服务水平评价方法。提取同一时间段的道路交通数据,并将之分为基准数据、训练数据和测试数据。对训练数据和基准数据的差值数据进行阈值化处理,获取训练数据的特征。将道路交通服务水平模糊化处理,结合当前交通运行状态,构建训练数据特征与道路交通服务水平组成的知识库。对测试数据和基准数据的差值数据进行阈值化处理,获取测试数据的特征,求取测试数据的特征与训练数据特征之间的欧氏距离。基于KNN算法,选取最近k个最近距离对应的模糊化的服务水平。将k个最近距离对应的模糊化的服务水平相加,求取最大概率对应的服务水平,即为当前服务水平,实现道路交通服务水平评价。The technical idea of the present invention is: a road traffic service level evaluation method based on fuzzy KNN feature matching is proposed. The road traffic data of the same time period is extracted and divided into benchmark data, training data and test data. Perform thresholding processing on the difference data between the training data and the benchmark data to obtain the characteristics of the training data. The road traffic service level is fuzzified, combined with the current traffic operation status, and a knowledge base composed of training data characteristics and road traffic service level is constructed. Perform thresholding processing on the difference data between the test data and the benchmark data, obtain the characteristics of the test data, and calculate the Euclidean distance between the characteristics of the test data and the characteristics of the training data. Based on the KNN algorithm, select the fuzzy service level corresponding to the nearest k closest distances. Add up the fuzzy service levels corresponding to the k closest distances to obtain the service level corresponding to the maximum probability, which is the current service level, and realize the evaluation of road traffic service level.

本方法仅在数据之间作减法处理,获取交通运行特征,构建知识库,通过特征匹配结合模糊KNN算法,实现道路交通服务水平评价。方法实现简单,不需要进行大量复杂的数据计算,可以有效的提高处理速度。This method only performs subtraction between data, obtains traffic operation characteristics, builds a knowledge base, and realizes road traffic service level evaluation through feature matching combined with fuzzy KNN algorithm. The method is simple to implement, does not need to perform a large number of complex data calculations, and can effectively improve the processing speed.

本发明的有益效果主要表现在:通过将同一模态Mgh的道路交通训练数据和基准数据的差值数据进行阈值化处理,获取训练数据的特征,结合模糊化的道路交通服务水平,实现训练数据知识库的构建;获取同一模态下测试数据的特征,通过KNN算法计算测试数据特征与训练数据特征的距离。选取最小的k组距离对应的模糊化的服务水平进行相加,选取概率最大的服务水平即为当前的道路交通服务水平,完成道路交通服务水平的评价。The beneficial effect of the present invention is mainly manifested in: by thresholding the difference data of the road traffic training data and the reference data of the same mode Mgh , the characteristics of the training data are obtained, and the training is realized in combination with the fuzzy road traffic service level. The construction of the data knowledge base; obtain the characteristics of the test data in the same mode, and calculate the distance between the test data characteristics and the training data characteristics through the KNN algorithm. Select the fuzzy service levels corresponding to the smallest k group distances and add them up, and select the service level with the highest probability as the current road traffic service level to complete the evaluation of the road traffic service level.

附图说明Description of drawings

图1是道路交通信息模板的时间格式的示意图。Fig. 1 is a schematic diagram of a time format of a road traffic information template.

图2是道路交通运行模态划分示意图。Figure 2 is a schematic diagram of road traffic operation mode division.

图3是基于模糊KNN特征匹配的道路交通服务水平评价流程图。Figure 3 is a flowchart of road traffic service level evaluation based on fuzzy KNN feature matching.

具体实施方式detailed description

下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.

参照图1~图3,一种基于模糊KNN特征匹配的道路交通服务水平评价方法,包括以下步骤:Referring to Figures 1 to 3, a road traffic service level evaluation method based on fuzzy KNN feature matching includes the following steps:

1)建立道路交通特征参考序列,获取不同模态下的道路交通基准数据,包括如下步骤:1) Establish a reference sequence of road traffic characteristics to obtain road traffic reference data in different modes, including the following steps:

1.1)设计道路交通特征参考序列的结构1.1) Design the structure of the road traffic feature reference sequence

设定道路交通状态数据的采集周期是Δt,则道路交通信息模板的时间格式如图1所示。Assuming that the collection cycle of road traffic status data is Δt, the time format of the road traffic information template is shown in Figure 1.

道路交通特征参考序列的表格式如表1和表2所示,表1为道路交通特征参考序列信息表,表2为道路交通特征参考序列描述表。The table format of the road traffic feature reference sequence is shown in Table 1 and Table 2. Table 1 is the road traffic feature reference sequence information table, and Table 2 is the road traffic feature reference sequence description table.

表1Table 1

表2Table 2

1.2)通过相关的数据预处理,建立道路交通运行特征参考序列1.2) Through relevant data preprocessing, establish a reference sequence of road traffic operation characteristics

道路交通运行模态的划分分为两个层次:路网层和路段层,设定路网层的交通运行模态的划分标识将道路的交通运行模态划分为g种子模态,路段层的交通运行模态的划分标识将道路的交通运行模态划分为h种子模态,则道路的交通运行模态一共划分为g×h种,记为集合Mode={M11,M12,…,Mgh},其中g和h的取值根据所选交通运行模态的划分标识确定;The division of the road traffic operation mode is divided into two levels: the road network layer and the road section layer. The division logo of the traffic operation mode of the road network layer is set to divide the traffic operation mode of the road into the g seed mode, and the road section layer The division mark of the traffic operation mode divides the traffic operation mode of the road into h sub-modes, then the traffic operation mode of the road is divided into g×h types in total, recorded as the set Mode = {M 11 , M 12 , ... , M gh }, where the values of g and h are determined according to the division identification of the selected traffic operation mode;

获取目标路段具有代表性的道路交通状态数据,并进行数据预处理,将经过数据预处理后的道路交通状态数据输入道路交通特征参考序列中,从而建立道路交通特征参考序列。Obtain representative road traffic state data of the target road section, perform data preprocessing, and input the road traffic state data after data preprocessing into the road traffic feature reference sequence, thereby establishing the road traffic feature reference sequence.

2)提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征,其一般表达式如下:2) Extract road traffic training data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the training data after thresholding processing. The general expression is as follows:

其中,Mgh为模态;Δt为道路交通状态数据的采集周期;(m*Δt)为第m个道路交通状态数据采集周期,0≤m≤N,N表示每天采集的交通信息的条数;表示(m*Δt)时刻、m*Δt时刻的训练数据;表示(m*Δt)时刻的基准数据;S(m*Δt)表示(m*Δt)时刻训练数据与基准数据的差值数据;表示模态Mgh下、Δt到(m*Δt)时段训练数据和基准数据的差值数据;表示阈值;表示模态Mgh下、Δt到(m*Δt)时段阈值处理后的差值数据,即为训练数据的特征;表示交通状态数据与特征的映射法则。Among them, M gh is the mode; Δt is the collection cycle of road traffic state data; (m*Δt) is the mth road traffic state data collection cycle, 0≤m≤N, and N represents the number of traffic information collected every day ; Indicates the training data at (m*Δt) time and m*Δt time; Indicates the benchmark data at (m*Δt) time; S(m*Δt) represents the difference data between training data and benchmark data at (m*Δt) time; Represents the difference data between the training data and the benchmark data during the period from Δt to (m*Δt) under the mode M gh ; Indicates the threshold; Represents the difference data after threshold processing in the period from Δt to (m*Δt) under the mode M gh , which is the feature of the training data; Indicates the mapping rule between traffic state data and features.

3)通过已有的道路交通数据和道路交通服务水平模糊划分,结合训练数据的特征,完成知识库的构建,其一般表达式如下:3) Through the fuzzy division of the existing road traffic data and road traffic service level, combined with the characteristics of the training data, the construction of the knowledge base is completed, and its general expression is as follows:

其中,φ表示当前的道路交通状态与模糊化的交通服务水平的映射关系,Losm表示模糊化后的道路交通服务水平。Among them, φ represents the mapping relationship between the current road traffic state and the fuzzy traffic service level, and Los m represents the fuzzy road traffic service level.

结合(4)(5),可以得到交通运行状态与特征之间的关系:Combining (4) and (5), the relationship between the traffic operation state and the characteristics can be obtained:

Losm=ω(hem) (6)Los m =ω(he m ) (6)

其中,ω表示模糊化的服务水平与交通运行特征之间的映射法则,从而完成知识库的构建。Among them, ω represents the mapping rule between the fuzzy service level and the traffic operation characteristics, so as to complete the construction of the knowledge base.

4)提取道路交通测试数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取测试数据的特征,其一般表达式如下:4) Extract road traffic test data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the test data through thresholding processing. The general expression is as follows:

其中表示(m*Δt)时刻道路交通测试数据;MS(m*Δt)表示(m*Δt)时刻测试数据与基准数据的差值数据;表示Δt到(m*Δt)时间段测试数据与基准数据的差值数据;表示经过阈值处理后的差值数据,即为测试数据的特征。in Indicates the road traffic test data at (m*Δt) time; MS(m*Δt) represents the difference data between test data and benchmark data at (m*Δt) time; Represents the difference data between the test data and the benchmark data in the time period from Δt to (m*Δt); Represents the difference data after threshold processing, which is the feature of the test data.

5)通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,求出对应的模糊化的服务水平,过程如下:5) Through the KNN feature matching algorithm, select the k features closest to the test data features in the knowledge base, and obtain the corresponding fuzzy service level. The process is as follows:

5.1)计算训练数据的特征与测试数据的特征的距离5.1) Calculate the distance between the features of the training data and the features of the test data

dist(m)=||TheMgh(m)-heMgh(m)|| (10)dist(m)=||The Mgh (m)-he Mgh (m)|| (10)

DN(m)=[dist1(m)dist2(m)…distN(m)] (11)D N (m)=[dist 1 (m)dist 2 (m)...dist N (m)] (11)

其中,||||表示求取欧式距离,dist(m)表示Δt到(m*Δt)时段测试数据的特征与知识库中特征的距离,N表示训练数据的组数,DN(m)表示N组测试数据的特征在Δt到(m*Δt)时段内到N组训练数据的特征距离集合。Among them, |||| means to obtain the Euclidean distance, dist(m) means the distance between the features of the test data and the features in the knowledge base during the period from Δt to (m*Δt), N means the number of groups of training data, D N (m) Represents the set of feature distances from the features of N sets of test data to N sets of training data within the period from Δt to (m*Δt).

5.2)找出k个最近距离对应的特征,设k个特征为s1,s2,…sk,根据特征与模糊化的服务水平的映射关系,则有5.2) Find the features corresponding to the k closest distances, let the k features be s 1 , s 2 , ... s k , according to the mapping relationship between the features and the fuzzy service level, then there is

(L1,L2,…Lk)=ω(s1,s2,…sk) (12)(L 1 , L 2 , ... L k ) = ω(s 1 , s 2 , ... s k ) (12)

其中L1,L2,…Lk分别表示s1,s2,…sk对应的模糊化的服务水平。其中, 分别表示模态Mgh下、Δt到(m*Δt)时段畅通、一般拥堵、严重拥堵的概率。Among them, L 1 , L 2 , ... L k represent the fuzzy service levels corresponding to s 1 , s 2 , ... s k respectively. in, Respectively represent the probability of unimpeded, general congestion, and severe congestion under the mode M gh , from Δt to (m*Δt).

6)将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通服务水平评价,过程如下:6) Add up the fuzzy service levels of k groups to obtain the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the road traffic service level evaluation. The process is as follows:

将k个特征对应的模糊化的服务水平概率相加,则有Add the fuzzy service level probabilities corresponding to k features, then we have

其中,SuAK,SuAK,SuAK分别表示综合k个特征后对应的畅通、一般拥堵、严重拥堵的概率。SuAK,SuAK,SuAK中最大的概率值对应的服务水平,即为当前特征所属服务水平。Among them, Su AK , Su AK , and Su AK respectively represent the probability of unimpeded traffic, general congestion, and severe congestion after integrating k features. Su AK , Su AK , the service level corresponding to the largest probability value among Su AK is the service level to which the current feature belongs.

实例:一种基于模糊KNN特征匹配的道路交通服务水平评价方法,包括以下步骤:Example: a road traffic service level evaluation method based on fuzzy KNN feature matching, comprising the following steps:

1)建立道路交通特征参考序列,获取不同模态下的道路交通基准数据1) Establish a road traffic feature reference sequence to obtain road traffic benchmark data in different modes

由于同一路段、对应时间的道路交通流具有相似性,故选择北京5条快速路在2011年6月份7天工作日(15,16,21,22,23,24,28)的道路交通速度数据建立道路交通特征参考序列。道路交通状态数据的获取间隔Δt为2min。路段具体信息如表3所示。Due to the similarity of road traffic flow at the same road section and corresponding time, the road traffic speed data of five expressways in Beijing on 7 working days in June 2011 (15, 16, 21, 22, 23, 24, 28) were selected Establish a road traffic feature reference sequence. The acquisition interval Δt of road traffic state data is 2min. The specific information of the road section is shown in Table 3.

路段IDSection ID 路段名称section name HI2075aHI2075a 中央音乐学院——西便门桥Central Conservatory of Music - Xibianmen Bridge HI3002bHI3002b 德胜门桥——积水潭桥Deshengmen Bridge - Jishuitan Bridge HI7008aHI7008a 白桥大街——广渠门桥Baiqiao Street——Guangqumen Bridge HI7051aHI7051a 月坛北桥——月坛南桥Moon Temple North Bridge - Moon Temple South Bridge HI7060bHI7060b 东直门桥北入口——小街桥东North Entrance of Dongzhimen Bridge—East of Xiaojie Bridge

表3table 3

将15日的道路交通速度数据作为基准数据集;将同一模态16、21、22、23、24日的道路交通速度数据作为训练数据建立知识库。将28日的道路交通速度数据做实验数据集,进行算法验证。The road traffic speed data on the 15th is used as the benchmark data set; the road traffic speed data of the same mode on the 16th, 21st, 22nd, 23rd, and 24th are used as training data to establish a knowledge base. The road traffic speed data on the 28th was used as an experimental data set to verify the algorithm.

2)提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征,其一般表达式如下:2) Extract road traffic training data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the training data after thresholding processing. The general expression is as follows:

其中,Mgh为模态;Δt为道路交通状态数据的采集周期;(m*Δt)为第m个道路交通状态数据采集周期,0≤m≤N,N表示每天采集的交通信息的条数;表示(m*Δt)时刻、m*Δt时刻的训练数据;表示(m*Δt)时刻的基准数据;S(m*Δt)表示(m*Δt)时刻训练数据与基准数据的差值数据;表示模态Mgh下、Δt到(m*Δt)时段训练数据和基准数据的差值数据;表示阈值;表示模态Mgh下、Δt到(m*Δt)时段阈值处理后的差值数据,即为训练数据的特征;表示交通状态数据与特征的映射法则。Among them, M gh is the mode; Δt is the collection cycle of road traffic state data; (m*Δt) is the mth road traffic state data collection cycle, 0≤m≤N, and N represents the number of traffic information collected every day ; Indicates the training data at (m*Δt) time and m*Δt time; Indicates the benchmark data at (m*Δt) time; S(m*Δt) represents the difference data between training data and benchmark data at (m*Δt) time; Represents the difference data between the training data and the benchmark data during the period from Δt to (m*Δt) under the mode M gh ; Indicates the threshold; Represents the difference data after threshold processing in the period from Δt to (m*Δt) under the mode M gh , which is the feature of the training data; Indicates the mapping rule between traffic state data and features.

3)通过已有的道路交通数据和道路交通服务水平模糊划分,结合训练数据的特征,完成知识库的构建,其一般表达式如下:3) Through the fuzzy division of the existing road traffic data and road traffic service level, combined with the characteristics of the training data, the construction of the knowledge base is completed, and its general expression is as follows:

其中,φ表示当前的道路交通状态与模糊化的服务水平的映射关系,Losm表示模糊化后的道路交通服务水平。Among them, φ represents the mapping relationship between the current road traffic state and the fuzzy service level, and Los m represents the fuzzy road traffic service level.

结合(4)(5),可以得到交通运行状态与特征之间的关系:Combining (4) and (5), the relationship between the traffic operation state and the characteristics can be obtained:

Losm=ω(hem) (6)Los m =ω(he m ) (6)

其中,ω表示模糊化的服务水平与交通运行特征之间的映射法则,从而完成知识库的构建。Among them, ω represents the mapping rule between the fuzzy service level and the traffic operation characteristics, so as to complete the construction of the knowledge base.

4)提取道路交通测试数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取测试数据的特征,其一般表达式如下:4) Extract road traffic test data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the test data through thresholding processing. The general expression is as follows:

其中表示(m*Δt)时刻道路交通测试数据;MS(m*Δt)表示(m*Δt)时刻测试数据与基准数据的差值数据;表示Δt到(m*Δt)时间段测试数据与基准数据的差值数据;表示经过阈值处理后的差值数据,即为测试数据的特征。in Indicates the road traffic test data at (m*Δt) time; MS(m*Δt) represents the difference data between test data and benchmark data at (m*Δt) time; Represents the difference data between the test data and the benchmark data in the time period from Δt to (m*Δt); Represents the difference data after threshold processing, which is the feature of the test data.

5)通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,求出对应的模糊化的服务水平,过程如下:5) Through the KNN feature matching algorithm, select the k features closest to the test data features in the knowledge base, and obtain the corresponding fuzzy service level. The process is as follows:

5.1)计算训练数据的特征与测试数据的特征的距离5.1) Calculate the distance between the features of the training data and the features of the test data

dist(m)=||TheMgh(m)-heMgh(m)|| (10)dist(m)=||The Mgh (m)-he Mgh (m)|| (10)

DN(m)=[dist1(m)dist2(m)…distN(m)] (11)D N (m)=[dist 1 (m)dist 2 (m)...dist N (m)] (11)

其中,||||表示求取欧式距离,dist(m)表示Δt到(m*Δt)时段测试数据的特征与知识库中特征的距离,N表示训练数据的组数,DN(m)表示N组测试数据的特征在Δt到(m*Δt)时段内到N组训练数据的特征距离集合。Among them, |||| means to obtain the Euclidean distance, dist(m) means the distance between the features of the test data and the features in the knowledge base during the period from Δt to (m*Δt), N means the number of groups of training data, D N (m) Represents the set of feature distances from the features of N sets of test data to N sets of training data within the period from Δt to (m*Δt).

5.2)找出k个最近距离对应的特征,设k个特征为s1,s2,…sk,根据特征与服务水平的映射关系,则有5.2) Find the features corresponding to the k closest distances, let the k features be s 1 , s 2 , ... s k , according to the mapping relationship between features and service levels, then there is

(L1,L2,…Lk)=ω(s1,s2,…sk) (12)(L 1 , L 2 , ... L k ) = ω(s 1 , s 2 , ... s k ) (12)

其中L1,L2,…Lk分别表示特征s1,s2,…sk对应的模糊化的服务水平。其中, 分别表示模态Mgh下、Δt到(m*Δt)时段畅通、一般拥堵、严重拥堵的概率。Among them, L 1 , L 2 , ... L k represent the fuzzy service levels corresponding to features s 1 , s 2 , ... s k respectively. in, Respectively represent the probability of unimpeded, general congestion, and severe congestion under the mode M gh , from Δt to (m*Δt).

6)将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通运行状态评价,过程如下:6) Add up the fuzzy service levels of k groups to obtain the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the evaluation of road traffic operation status. The process is as follows:

将k个特征对应的模糊化的服务水平概率相加,则有Add the fuzzy service level probabilities corresponding to k features, then we have

其中,SuAK,SuAK,SuAK分别表示综合k个特征后对应的畅通、一般拥堵、严重拥堵的概率。Among them, Su AK , Su AK , and Su AK respectively represent the probability of unimpeded traffic, general congestion, and severe congestion after integrating k features.

7)基于模糊KNN特征匹配的道路交通服务水平评价方法的参数确定;7) Parameter determination of road traffic service level evaluation method based on fuzzy KNN feature matching;

在基于模糊KNN特征匹配算法的道路交通服务水平评价方法过程中,设计到有以下几个参数: In the evaluation method of road traffic service level based on fuzzy KNN feature matching algorithm, the following parameters are designed:

可以由获取,可以由决定,k的取值在3-10之间,可以通过训练获得,这里所做的参数设定只是对基于KNN算法的道路交通运行状态评价的大概影响分析。 can be made by with Obtain, can be made by It is decided that the value of k is between 3-10 and can be obtained through training. The parameter setting here is only an analysis of the approximate impact on the evaluation of road traffic operation status based on the KNN algorithm.

由于这些参数对算法的精度各有影响,单独分析每个参数对算法精度的影响并不能确保算法的最优,因此在进行算法分析时应该同时考虑所有参数对该道路交通运行状态评价的影响。Since these parameters have different influences on the accuracy of the algorithm, analyzing the influence of each parameter on the accuracy of the algorithm alone cannot ensure the optimality of the algorithm. Therefore, the influence of all parameters on the evaluation of the road traffic operation status should be considered at the same time when analyzing the algorithm.

引入偏差率作为道路交通运行状态评价指标,其计算公式如下:The deviation rate is introduced as the evaluation index of road traffic operation status, and its calculation formula is as follows:

其中,PE表示偏差率,Nsr≠sm表示测试与真实不同的交通服务水平数量,Nsr表示实际测试的交通服务水平个数。Among them, PE represents the deviation rate, N sr≠sm represents the number of traffic service levels that are different from the real ones, and N sr represents the number of traffic service levels that are actually tested.

即对于不同的存在与之对应的NMAE。故存在如下等式:i.e. for different A corresponding NMAE exists. So there is the following equation:

与NMAE存在某种分布关系f,寻找NMAE最小时对应的即为最优参数设定过程。故可以得到如下模型:which is There is a certain distribution relationship f with NMAE, looking for the corresponding when NMAE is the smallest That is the optimal parameter setting process. Therefore, the following model can be obtained:

最终的取值可以通过道路交通基准数据和训练数据的训练确定。finally The value of can be determined through the training of road traffic benchmark data and training data.

7)实验结果7) Experimental results

基于同一模态的道路交通基准数据和训练数据,获取最优参数本实验结果主要针对路段的车速度值进行道路交通服务水平评价。提取道路交通测试数据,基于KNN算法实现测试状态的评价。Obtain optimal parameters based on road traffic benchmark data and training data of the same modality The results of this experiment mainly evaluate the road traffic service level based on the vehicle speed value of the road section. The road traffic test data is extracted, and the evaluation of the test status is realized based on the KNN algorithm.

选取偏差率作为道路交通服务水平评价指标,其计算如式(13)所示。实验路段2011年6月28日速度值的偏差统计分析如下表4所示。The deviation rate is selected as the evaluation index of road traffic service level, and its calculation is shown in formula (13). The deviation statistical analysis of the speed value of the experimental road section on June 28, 2011 is shown in Table 4 below.

路段IDSection ID 时间time 偏差率Deviation rate HI2075aHI2075a 2011-6-282011-6-28 11.53%11.53% HI3002bHI3002b 2011-6-282011-6-28 5.83%5.83% HI7008aHI7008a 2011-6-282011-6-28 10.00%10.00% HI7051aHI7051a 2011-6-282011-6-28 5.69%5.69% HI7060bHI7060b 2011-6-282011-6-28 12.22%12.22%

表4。Table 4.

Claims (7)

1.一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述评价方法包括以下步骤:1. a road traffic service level evaluation method based on fuzzy KNN feature matching, is characterized in that: described evaluation method comprises the following steps: 1)建立道路交通特征参考序列,获取不同模态下的道路交通基准数据;1) Establish a road traffic feature reference sequence to obtain road traffic benchmark data in different modes; 2)提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征;2) Extract road traffic training data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the training data through thresholding processing; 3)对已有的道路交通服务水平进行模糊化处理,结合训练数据的特征,完成知识库的构建;3) Fuzzify the existing road traffic service level, and combine the characteristics of the training data to complete the construction of the knowledge base; 4)提取道路交通测试数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取测试数据的特征;4) Extract road traffic test data, obtain road traffic difference data based on the road traffic reference data in the same mode, and obtain the characteristics of the test data through thresholding processing; 5)通过KNN特征匹配算法,选取知识库中与测试数据特征距离最近的k个特征,并求出对应的模糊化的服务水平;5) Through the KNN feature matching algorithm, select the k features closest to the test data features in the knowledge base, and obtain the corresponding fuzzy service level; 6)将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通服务水平评价。6) Add up the fuzzified service levels of k groups to obtain the service level corresponding to the maximum probability, which is the service level to which the current feature belongs, and complete the road traffic service level evaluation. 2.如权利要求1所述的一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述步骤1)中,建立道路交通特征参考序列,获取不同模态下的道路交通基准数据,包括如下步骤:2. a kind of road traffic service level evaluation method based on fuzzy KNN feature matching as claimed in claim 1, is characterized in that: in described step 1), set up road traffic characteristic reference sequence, obtain the road traffic under different modes Benchmark data, including the following steps: 1.1)设计道路交通特征参考序列的结构1.1) Design the structure of the road traffic feature reference sequence 设定道路交通状态数据的采集周期是Δt,道路交通特征参考序列的表格式如表1和表2所示,表1为道路交通特征参考序列信息表,表2为道路交通特征参考序列描述表;Set the collection cycle of road traffic status data as Δt, the table format of the road traffic feature reference sequence is shown in Table 1 and Table 2, Table 1 is the road traffic feature reference sequence information table, and Table 2 is the road traffic feature reference sequence description table ; 表1Table 1 表2Table 2 1.2)通过数据预处理,建立道路交通运行特征参考序列1.2) Through data preprocessing, establish a reference sequence of road traffic operation characteristics 道路交通运行模态的划分分为两个层次:路网层和路段层,设定路网层的交通运行模态的划分标识将道路的交通运行模态划分为g种子模态,路段层的交通运行模态的划分标识将道路的交通运行模态划分为h种子模态,则道路的交通运行模态一共划分为g×h种,记为集合Mode={M11,M12,…,Mgh},其中g和h的取值根据所选交通运行模态的划分标识确定;The division of the road traffic operation mode is divided into two levels: the road network layer and the road section layer. The division logo of the traffic operation mode of the road network layer is set to divide the traffic operation mode of the road into the g seed mode, and the road section layer The division mark of the traffic operation mode divides the traffic operation mode of the road into h sub-modes, then the traffic operation mode of the road is divided into g×h types in total, recorded as the set Mode = { M11 , M12, ..., M gh }, where the values of g and h are determined according to the division identification of the selected traffic operation mode; 获取目标路段的具有代表性的道路交通状态数据,并进行数据预处理,将经过数据预处理后的道路交通状态数据输入道路交通特征参考序列中,从而建立道路交通特征参考序列。Obtain representative road traffic state data of the target road section, perform data preprocessing, and input the road traffic state data after data preprocessing into the road traffic feature reference sequence, thereby establishing the road traffic feature reference sequence. 3.如权利要求1或2所述的一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述步骤2)中,提取道路交通训练数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,经过阈值化处理,获取训练数据的特征,其一般表达式如下:3. a kind of road traffic service level evaluation method based on fuzzy KNN feature matching as claimed in claim 1 or 2, is characterized in that: in described step 2), extract road traffic training data, based on the road under the same modality Traffic reference data, obtain the road traffic difference data, after thresholding processing, obtain the characteristics of the training data, the general expression is as follows: <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>SB</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 1 <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>SB</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 1 <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>he</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>he</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>e</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> 其中,Mgh为模态;Δt为道路交通状态数据的采集周期;(m*Δt)为第m个道路交通状态数据采集周期,0≤m≤N,N表示每天采集的交通信息的条数;表示(m*Δt)时刻的训练数据;表示(m*Δt)时刻的基准数据;S(m*Δt)表示(m*Δt)时刻训练数据与基准数据的差值数据;表示模态Mgh下、Δt到(m*Δt)时段训练数据和基准数据的差值数据;表示阈值;表示模态Mgh下、Δt到(m*Δt)时段阈值处理后的差值数据,即为训练数据的特征;表示交通状态数据与特征的映射法则。Among them, M gh is the mode; Δt is the collection cycle of road traffic state data; (m*Δt) is the mth road traffic state data collection cycle, 0≤m≤N, and N represents the number of traffic information collected every day ; Indicates the training data at (m*Δt) time; Indicates the benchmark data at (m*Δt) time; S(m*Δt) represents the difference data between training data and benchmark data at (m*Δt) time; Represents the difference data between the training data and the benchmark data during the period from Δt to (m*Δt) under the mode M gh ; Indicates the threshold; Represents the difference data after threshold processing in the period from Δt to (m*Δt) under the mode M gh , which is the feature of the training data; Indicates the mapping rule between traffic state data and features. 4.如权利要求3所述的一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述步骤3)中,通过已有的道路交通数据和道路交通服务水平模糊划分,结合训练数据的特征,完成知识库的构建,其一般表达式如下:4. a kind of road traffic service level evaluation method based on fuzzy KNN feature matching as claimed in claim 3, is characterized in that: in described step 3), by existing road traffic data and road traffic service level fuzzy division, Combined with the characteristics of the training data, the construction of the knowledge base is completed, and its general expression is as follows: <mrow> <msub> <mi>Los</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mo>(</mo> <mi>m</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>Los</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mo>(</mo> <mi>m</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> 其中,φ表示当前的道路交通状态与模糊化的服务水平的映射关系,Losm表示模糊化后的道路交通服务水平。Among them, φ represents the mapping relationship between the current road traffic state and the fuzzy service level, and Los m represents the fuzzy road traffic service level. 结合(4)(5),得到交通运行状态与特征之间的关系:Combining (4) and (5), the relationship between traffic operation status and characteristics is obtained: Losm=ω(hem) (6)Los m =ω(he m ) (6) 其中,ω表示模糊化的服务水平与交通运行特征之间的映射法则,从而完成知识库的构建。Among them, ω represents the mapping rule between the fuzzy service level and the traffic operation characteristics, so as to complete the construction of the knowledge base. 5.如权利要求4所述的一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述步骤4)中,提取道路交通实时数据,基于同一模态下的道路交通基准数据,获取道路交通差值数据,通过阈值化处理,获取实时数据的特征,其一般表达式如下:5. a kind of road traffic service level evaluation method based on fuzzy KNN feature matching as claimed in claim 4, is characterized in that: in described step 4), extract road traffic real-time data, based on the road traffic benchmark under the same modality Data, to obtain road traffic difference data, through thresholding processing, to obtain the characteristics of real-time data, the general expression is as follows: <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>SM</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>SB</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>SM</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>SB</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mi>M</mi> <mi>S</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>The</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>The</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>err</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <msub> <mi>E</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> 其中表示(m*Δt)时刻道路交通实时数据;MS(m*Δt)表示(m*Δt)时刻实时数据与基准数据的差值数据;表示Δt到(m*Δt)时间段实时数据与基准数据的差值数据;表示经过阈值处理后的差值数据,即为实时数据的特征。in Indicates the real-time road traffic data at (m*Δt) time; MS(m*Δt) indicates the difference data between real-time data and benchmark data at (m*Δt) time; Indicates the difference data between the real-time data and the reference data in the time period from Δt to (m*Δt); Represents the difference data after threshold processing, which is the feature of real-time data. 6.如权利要求5所述的一种基于模糊KNN特征匹配的道路交通服务水平评价方法,其特征在于:所述步骤5)中,通过KNN特征匹配算法,选取知识库中与实时数据特征距离最近的k个特征,并求出对应的模糊化的服务水平,过程如下:6. a kind of road traffic service level evaluation method based on fuzzy KNN feature matching as claimed in claim 5, it is characterized in that: in described step 5), by KNN feature matching algorithm, select knowledge base and real-time data feature distance The nearest k features, and calculate the corresponding fuzzy service level, the process is as follows: 5.1)计算训练数据的特征与实时数据的特征的距离5.1) Calculate the distance between the features of the training data and the features of the real-time data dist(m)=||TheMgh(m)-heMgh(m)|| (10)dist(m)=||The Mgh (m)-he Mgh (m)|| (10) DN(m)=[dist1(m)dist2(m)…distN(m)] (11)D N (m)=[dist 1 (m)dist 2 (m)...dist N (m)] (11) 其中,||||表示求取欧式距离,dist(m)表示Δt到(m*Δt)时段实时数据的特征与知识库中特征的距离,N表示训练数据的组数,DN(m)表示N组实时数据的特征在Δt到(m*Δt)时段内到N组训练数据的特征距离集合;Among them, |||| means to obtain the Euclidean distance, dist(m) means the distance between the features of the real-time data and the features in the knowledge base during the period from Δt to (m*Δt), N means the number of groups of training data, D N (m) Represents the set of feature distances between the features of N groups of real-time data and N groups of training data within the period from Δt to (m*Δt); 5.2)找出k个最近距离对应的特征,设k个特征为s1,s2,…sk,根据特征与服务水平的映射关系,则有5.2) Find the features corresponding to the k closest distances, let the k features be s 1 , s 2 , ... s k , according to the mapping relationship between features and service levels, then there is (L1,L2,…Lk)=ω(s1,s2,…sk) (12)(L 1 , L 2 , ... L k ) = ω(s 1 , s 2 , ... s k ) (12) 其中L1,L2,…Lk分别表示s1,s2,…sk对应的模糊化的服务水平。其中, 分别表示模态Mgh下、Δt到(m*Δt)时段畅通、一般拥堵、严重拥堵的概率。Among them, L 1 , L 2 , ... L k represent the fuzzy service levels corresponding to s 1 , s 2 , ... s k respectively. in, Respectively represent the probability of unimpeded, general congestion, and severe congestion under the mode M gh , from Δt to (m*Δt). 7.如权利要求6所述的一种基于模糊KNN特征匹配的道路交通运行状态评价方法,其特征在于:所述步骤6)中,将k组模糊化的服务水平相加,得出最大概率对应的服务水平,即为当前特征所属服务水平,完成道路交通服务水平评价,过程如下:7. a kind of road traffic operating state evaluation method based on fuzzy KNN feature matching as claimed in claim 6, is characterized in that: in described step 6), the service level of k group fuzzification is added up, draws maximum probability The corresponding service level is the service level to which the current feature belongs. To complete the road traffic service level evaluation, the process is as follows: 将k个特征对应的模糊化的服务水平概率相加,则有Add the fuzzy service level probabilities corresponding to k features, then we have <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>A</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>B</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>C</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>A</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>B</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>A</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>B</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Su</mi> <mrow> <mi>C</mi> <mi>k</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>A</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>B</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msub> <mi>u</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>ST</mi> <msub> <mi>M</mi> <mrow> <mi>g</mi> <mi>h</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> 其中,SuAK,SuAK,SuAK分别表示综合k个特征后对应的畅通、一般拥堵、严重拥堵的概率。SuAK,SuAK,SuAK中最大的概率值对应的服务水平,即为当前特征所属服务水平。Among them, Su AK , Su AK , and Su AK respectively represent the probability of unimpeded traffic, general congestion, and severe congestion after integrating k features. Su AK , Su AK , the service level corresponding to the largest probability value among Su AK is the service level to which the current feature belongs.
CN201710421757.1A 2017-06-07 2017-06-07 A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matching Active CN107067727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710421757.1A CN107067727B (en) 2017-06-07 2017-06-07 A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710421757.1A CN107067727B (en) 2017-06-07 2017-06-07 A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matching

Publications (2)

Publication Number Publication Date
CN107067727A true CN107067727A (en) 2017-08-18
CN107067727B CN107067727B (en) 2019-07-05

Family

ID=59615749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710421757.1A Active CN107067727B (en) 2017-06-07 2017-06-07 A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matching

Country Status (1)

Country Link
CN (1) CN107067727B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107767023A (en) * 2017-09-20 2018-03-06 浙江工业大学 A kind of road traffic service level evaluation method based on the matching of fuzzy KNN space characteristics
CN109816271A (en) * 2019-02-25 2019-05-28 东南大学 Evaluation method of bicycle lane service level based on shared bicycle trajectory data
CN110858334A (en) * 2018-08-13 2020-03-03 北京中科蓝图科技有限公司 Road safety assessment method and device and road safety early warning system
CN112801373A (en) * 2021-01-29 2021-05-14 南方电网调峰调频发电有限公司 Water regime forecast information system based on big data analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866143A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Road traffic service level prediction method based on space-time characteristic aggregation
CN101866543A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Multi-granularity analysis evaluation method and evaluation system for regional traffic service level
CN101866550A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Road traffic emulation technique method based on service level
US20100332189A1 (en) * 2009-06-30 2010-12-30 Sun Microsystems, Inc. Embedded microcontrollers classifying signatures of components for predictive maintenance in computer servers
CN103593545A (en) * 2012-08-16 2014-02-19 同济大学 Intersection multi-mode integrated service level evaluation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866143A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Road traffic service level prediction method based on space-time characteristic aggregation
CN101866543A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Multi-granularity analysis evaluation method and evaluation system for regional traffic service level
CN101866550A (en) * 2009-04-14 2010-10-20 北京宏德信智源信息技术有限公司 Road traffic emulation technique method based on service level
US20100332189A1 (en) * 2009-06-30 2010-12-30 Sun Microsystems, Inc. Embedded microcontrollers classifying signatures of components for predictive maintenance in computer servers
CN103593545A (en) * 2012-08-16 2014-02-19 同济大学 Intersection multi-mode integrated service level evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107767023A (en) * 2017-09-20 2018-03-06 浙江工业大学 A kind of road traffic service level evaluation method based on the matching of fuzzy KNN space characteristics
CN110858334A (en) * 2018-08-13 2020-03-03 北京中科蓝图科技有限公司 Road safety assessment method and device and road safety early warning system
CN109816271A (en) * 2019-02-25 2019-05-28 东南大学 Evaluation method of bicycle lane service level based on shared bicycle trajectory data
CN112801373A (en) * 2021-01-29 2021-05-14 南方电网调峰调频发电有限公司 Water regime forecast information system based on big data analysis

Also Published As

Publication number Publication date
CN107067727B (en) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020238631A1 (en) Population type recognition method based on mobile phone signaling data
CN109448370B (en) Traffic control subarea division method based on vehicle track data
CN107067727A (en) A kind of road traffic service level evaluation method based on fuzzy KNN characteristic matchings
CN106023589B (en) A kind of track of vehicle reconstructing method based on bayonet socket data
CN108985380B (en) A fault identification method of switch machine based on cluster integration
CN106228398A (en) Specific user&#39;s digging system based on C4.5 decision Tree algorithms and method thereof
CN105469611B (en) A kind of short-term traffic flow forecasting model method
CN111967712B (en) Traffic risk prediction method based on complex network theory
CN104504099A (en) Position-trajectory-based travel state splitting method
CN108847022B (en) Abnormal value detection method of microwave traffic data acquisition equipment
CN109345434B (en) Method for evaluating design safety of external roads in open type community
CN106682703A (en) Method for recognizing travel mode of driver based on OBD data
CN106055689A (en) Spatial clustering method based on time sequence correlation
CN106911591A (en) The sorting technique and system of network traffics
CN109784416A (en) Traffic mode discrimination method based on semi-supervised SVM based on mobile phone signaling data
CN106156531A (en) Travel time estimation method based on low sample history track
CN107274066A (en) A kind of shared traffic Customer Value Analysis method based on LRFMD models
CN107507421A (en) Method for rapidly judging traffic state and device
CN108256923A (en) A kind of ETC customer segmentation methods based on vehicle pass-through feature
CN112801181B (en) Urban signaling traffic flow user classification, prediction method, storage medium and system
CN111307164A (en) Low-sampling-rate track map matching method
CN111462492B (en) Key road section detection method based on Rich flow
CN115565376B (en) Vehicle journey time prediction method and system integrating graph2vec and double-layer LSTM
CN106384507A (en) Travel time real-time estimation method based on sparse detector
CN108846429B (en) Unsupervised learning-based network space resource automatic classification method and unsupervised learning-based network space resource automatic classification device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant