CN107067419A - The method for registering images of application enhancements gravitation search - Google Patents

The method for registering images of application enhancements gravitation search Download PDF

Info

Publication number
CN107067419A
CN107067419A CN201710246579.3A CN201710246579A CN107067419A CN 107067419 A CN107067419 A CN 107067419A CN 201710246579 A CN201710246579 A CN 201710246579A CN 107067419 A CN107067419 A CN 107067419A
Authority
CN
China
Prior art keywords
mrow
individual
msubsup
image registration
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710246579.3A
Other languages
Chinese (zh)
Inventor
郭肇禄
章银娥
王洋
鄢化彪
尹宝勇
余法红
李康顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201710246579.3A priority Critical patent/CN107067419A/en
Publication of CN107067419A publication Critical patent/CN107067419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明公开了一种应用改进引力搜索的图像配准方法。本发明采用改进引力搜索来优化图像配准的参数。在改进引力搜索中,将图像配准的参数编码为个体的当前位置。在搜索过程中,先执行引力搜索的基本操作算子,然后再随机选择一个个体并对其执行混沌局部搜索操作,从而提高算法的局部搜索能力,加快收敛速度,提高图像配准参数的精度。本发明能够加快图像配准的收敛速度,提高图像配准的精度。

The invention discloses an image registration method using improved gravitational search. The present invention uses the improved gravitational search to optimize the parameters of image registration. In Modified Gravity Search, the parameters of the image registration are encoded as the individual's current location. In the search process, the basic operation operator of gravitational search is executed first, and then an individual is randomly selected and chaotic local search operation is performed on it, so as to improve the local search ability of the algorithm, accelerate the convergence speed, and improve the accuracy of image registration parameters. The invention can accelerate the convergence speed of image registration and improve the precision of image registration.

Description

应用改进引力搜索的图像配准方法Image Registration Method Using Improved Gravity Search

技术领域technical field

本发明涉及图像处理领域,尤其是涉及一种应用改进引力搜索的图像配准方法。The invention relates to the field of image processing, in particular to an image registration method using improved gravitational search.

背景技术Background technique

图像配准是图像处理领域中的常用技术,它在遥感图像分析、医学影像诊断、机器人视觉、图像融合和模式识别等领域中具有非常重要的作用。图像配准的本质就是给定一幅参考图像和一幅待配准图像,要求寻找到适合的空间变换参数对待配准图像进行空间变换,使得变换后的待配准图像与参考图像中的某些特定的特征在一定程度上达到相应的匹配。由此可见,图像配准的核心就是优化图像配准的参数。Image registration is a common technique in the field of image processing, and it plays a very important role in the fields of remote sensing image analysis, medical image diagnosis, robot vision, image fusion and pattern recognition. The essence of image registration is given a reference image and an image to be registered, and it is required to find suitable spatial transformation parameters to perform spatial transformation on the image to be registered, so that the transformed image to be registered and a certain image in the reference image Some specific features achieve corresponding matching to a certain extent. It can be seen that the core of image registration is to optimize the parameters of image registration.

由于图像配准问题在本质上一个复杂的优化问题,但基于目标函数数学特性的传统优化算法往往难以有效求解。演化算法是一种模拟自然界演化规律的启发式优化算法,它在求解复杂优化问题中表现出很有潜力的性能。因此,许多研究人员将演化算法用于优化图像配准的参数。例如,孙俊等发明了一种基于量子行为粒子群算法的多分辨率医学图像配准方法(专利号:200810019451.4);张秀杰等提出了一种利用和声量子遗传算法来优化图像配准参数的方方法(张秀杰,李士勇,沈毅,宋申民.和声量子遗传算法在图像配准中的应用[J].系统工程与电子技术,2012,34(10):2152-2156);焦李成等发明了一种基于量子进化计算和B样条变换的医学图像配准方法(专利号:201310516236.6);许应强等提出了一种基于遗传算法的图像配准算法(许应强,施庆华,曲永冬,王翠芝,朱攀,叶愈.一种基于遗传算法的图像配准算法研究[J].计算机科学,2016,43(11A):229-232);刘海玲和裴连群提出了一种基于改进遗传算法的医学图像配准方法(刘海玲,裴连群.基于遗传算法的医学图像配准方法改进[J].自动化与仪器仪表,2016,(09):218-220)。Since the image registration problem is a complex optimization problem in nature, traditional optimization algorithms based on the mathematical properties of the objective function are often difficult to solve effectively. Evolutionary algorithm is a heuristic optimization algorithm that simulates the evolution law of nature, and it shows great potential performance in solving complex optimization problems. Therefore, many researchers use evolutionary algorithms to optimize the parameters of image registration. For example, Sun Jun et al. invented a multi-resolution medical image registration method based on quantum behavior particle swarm algorithm (patent number: 200810019451.4); Zhang Xiujie et al. proposed a method to optimize image registration parameters by using harmonic quantum genetic algorithm Fang Method (Xiujie Zhang, Shiyong Li, Yi Shen, Shenmin Song. Application of Harmony Quantum Genetic Algorithm in Image Registration[J]. Systems Engineering and Electronic Technology, 2012,34(10):2152-2156); Invented by Jiao Licheng et al. A medical image registration method based on quantum evolutionary calculation and B-spline transformation (patent number: 201310516236.6); Xu Yingqiang et al. proposed an image registration algorithm based on genetic algorithm (Xu Yingqiang, Shi Qinghua, Qu Yongdong, Wang Cuizhi, Zhu Pan, Ye Yu.Research on an Image Registration Algorithm Based on Genetic Algorithm[J].Computer Science,2016,43(11A):229-232); Liu Hailing and Pei Lianqun proposed a medical registration algorithm based on improved genetic algorithm Image registration method (Liu Hailing, Pei Lianqun. Improvement of medical image registration method based on genetic algorithm [J]. Automation and Instrumentation, 2016, (09): 218-220).

引力搜索算法是一种新近提出的演化算法,它在解决工程优化问题中表现出较优越的性能,并且已经广泛地应用到了图像处理领域中。但是传统引力搜索算法在优化图像配准的参数时容易出现收敛速度慢,求解精度不够的缺点。The gravitational search algorithm is a newly proposed evolutionary algorithm, which shows superior performance in solving engineering optimization problems, and has been widely used in the field of image processing. However, the traditional gravitational search algorithm is prone to the disadvantages of slow convergence speed and insufficient solution accuracy when optimizing the parameters of image registration.

发明内容Contents of the invention

本发明的目的是提供一种应用改进引力搜索的图像配准方法。它在一定程度上克服了传统引力搜索算法在优化图像配准的参数时容易出现收敛速度慢,求解精度不够的缺点,本发明能够加快图像配准的收敛速度,提高图像配准的精度。The object of the present invention is to provide an image registration method using improved gravitational search. To a certain extent, it overcomes the disadvantages of slow convergence speed and insufficient solution precision of the traditional gravity search algorithm when optimizing the parameters of image registration. The invention can accelerate the convergence speed of image registration and improve the accuracy of image registration.

本发明的技术方案:一种应用改进引力搜索的图像配准方法,包括以下步骤:The technical solution of the present invention: an image registration method using improved gravitational search, comprising the following steps:

步骤1,输入参考图像RIM,然后输入待配准图像FIM;Step 1, input the reference image RIM, and then input the image to be registered FIM;

步骤2,用户初始化种群大小Popsize,最大评价次数MAX_FEs;Step 2, the user initializes the population size Popsize, the maximum number of evaluations MAX_FEs;

步骤3,令当前演化代数t=0,当前评价次数FEs=0,图像配准参数个数D=3;Step 3, let the current evolution algebra t=0, the current evaluation times FEs=0, and the number of image registration parameters D=3;

步骤4,设置D个优化参数的下界LBj和上界UBj,其中维度下标j=1,2,3;Step 4, setting the lower bound LB j and upper bound UB j of D optimization parameters, where the dimension subscript j=1,2,3;

步骤5,随机初始化种群其中个体下标i=1,2,...,Popsize;为种群Pt中的第i个个体,其随机初始化公式为:Step 5, randomly initialize the population Wherein individual subscript i=1,2,...,Popsize; is the i-th individual in the population Pt , and its random initialization formula is:

其中j=1,2,3;表示第i个个体的位置,存储了3个图像配准的参数值,即是图像配准的水平偏移量,是图像配准的竖直偏移量,是图像配准的旋转角度;表示第i个个体在每一维度上的速度大小,rand(0,1)为在[0,1]之间的随机实数产生函数;where j=1,2,3; Indicates the location of the i-th individual, and stores three parameter values for image registration, namely is the horizontal offset for image registration, is the vertical offset of the image registration, is the rotation angle for image registration; Indicates the speed of the i-th individual in each dimension, rand(0,1) is a random real number generation function between [0,1];

步骤6,计算种群Pt中每个个体的适应值,其中个体下标i=1,2,...,Popsize,计算个体的适应值的方法为:将的位置解码为图像配准的参数,利用得到的图像配准参数对图像FIM进行空间变换得到图像CIM,以图像RIM与图像CIM的互信息作为个体的适应值;Step 6, calculate each individual in the population P t The fitness value of , where the individual subscript i=1,2,...,Popsize, calculate the individual The method of the fitness value is: the The position of is decoded into the parameters of image registration, and the obtained image registration parameters are used to perform spatial transformation on the image FIM to obtain the image CIM, and the mutual information of the image RIM and the image CIM is used as the individual the fitness value;

步骤7,令当前评价次数FEs=FEs+Popsize;Step 7, make the current evaluation times FEs=FEs+Popsize;

步骤8,保存种群Pt中的最优个体BesttStep 8, save the best individual Best t in the population P t ;

步骤9,执行引力搜索的基本操作算子;Step 9, execute the basic operation operator of gravitational search;

步骤10,计算种群Pt中每个个体的适应值;Step 10, calculate the fitness value of each individual in the population P t ;

步骤11,令当前评价次数FEs=FEs+Popsize;Step 11, make the current evaluation times FEs=FEs+Popsize;

步骤12,随机初始化混沌因子tr,具体步骤如下:Step 12, randomly initialize the chaos factor tr, the specific steps are as follows:

步骤12.1,令混杂次数Num=300+200×rand(0,1);Step 12.1, make the mixing times Num=300+200×rand(0,1);

步骤12.2,在[0,1]之间随机产生一个不等于0.25,0.5和0.75的实数itr;Step 12.2, randomly generate a real number itr not equal to 0.25, 0.5 and 0.75 between [0,1];

步骤12.3,令计数器ki=0,并令迭代因子tml=itr;Step 12.3, make the counter ki=0, and let the iteration factor tml=itr;

步骤12.4,如果计数器ki大于Num,则转到步骤13,否则转到步骤12.5;Step 12.4, if the counter ki is greater than Num, then go to step 13, otherwise go to step 12.5;

步骤12.5,令混沌因子tr=4.0×tml×(1-tml);Step 12.5, make chaos factor tr=4.0×tml×(1-tml);

步骤12.6,令迭代因子tml=tr;Step 12.6, let iteration factor tml=tr;

步骤12.7,令计数器ki=ki+1,转到步骤12.4;Step 12.7, make counter ki=ki+1, go to step 12.4;

步骤13,随机选择一个个体并对其执行混沌局部搜索操作,具体步骤如下:Step 13, randomly select an individual and perform a chaotic local search operation on it, the specific steps are as follows:

步骤13.1,在[1,Popsize]之间随机产生一个正整数RT1;Step 13.1, randomly generate a positive integer RT1 between [1, Popsize];

步骤13.2,在[1,Popsize]之间随机产生一个不等于RT1的正整数RT2,然后令迭代因子tml=tr;Step 13.2, randomly generate a positive integer RT2 not equal to RT1 between [1, Popsize], then make the iteration factor tml=tr;

步骤13.3,令混沌因子tr=4.0×tml×(1-tml);Step 13.3, make chaos factor tr=4.0×tml×(1-tml);

步骤13.4,按以下公式生成个体LUtStep 13.4, generate individual LU t according to the following formula:

其中反向因子LK的值为[0,1]之间随机生成的实数,杂交因子IK的值为[0,1]之间随机生成的实数,MEIt为种群中所有个体的位置的平均值;The value of the reverse factor LK is a randomly generated real number between [0,1], the value of the hybridization factor IK is a randomly generated real number between [0,1], MEI t is the average value of the positions of all individuals in the population ;

步骤13.5,计算个体LUt的适应值,令当前评价次数FEs=FEs+1;Step 13.5, calculate the fitness value of the individual LU t , make the current evaluation times FEs=FEs+1;

步骤13.6,如果个体LUt的适应值优于的适应值则转到步骤13.7,否则转到步骤14;Step 13.6, if the fitness value of individual LU t is better than If the fitness value is , go to step 13.7, otherwise go to step 14;

步骤13.7, Step 13.7,

步骤13.8,转到步骤13.2;Step 13.8, go to step 13.2;

步骤14,令当前演化代数t=t+1;Step 14, make the current evolution algebra t=t+1;

步骤15,保存种群Pt中的最优个体BesttStep 15, saving the best individual Best t in the population P t ;

步骤16,重复步骤9至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为图像配准参数,即可实现图像配准。Step 16, repeating steps 9 to 15 until the current evaluation times FEs reaches MAX_FEs, then the best individual Best t obtained during the execution process is decoded into image registration parameters to realize image registration.

本发明采用改进引力搜索来优化图像配准的参数。在改进引力搜索中,将图像配准的参数编码为个体的当前位置。在搜索过程中,先执行引力搜索的基本操作算子,然后再随机选择一个个体并对其执行混沌局部搜索操作,从而提高算法的局部搜索能力,加快收敛速度,提高图像配准参数的精度。本发明能够加快图像配准的收敛速度,提高图像配准的精度。The present invention uses the improved gravitational search to optimize the parameters of image registration. In Modified Gravity Search, the parameters of the image registration are encoded as the individual's current location. In the search process, the basic operation operator of gravitational search is executed first, and then an individual is randomly selected and chaotic local search operation is performed on it, so as to improve the local search ability of the algorithm, accelerate the convergence speed, and improve the accuracy of image registration parameters. The invention can accelerate the convergence speed of image registration and improve the precision of image registration.

附图说明Description of drawings

图1为参考图像。Figure 1 is a reference image.

图2为待配准图像。Figure 2 is the image to be registered.

图3为应用本发明的配准结果图像。Fig. 3 is an image of the registration result of the application of the present invention.

具体实施方式detailed description

下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.

实施例:Example:

步骤1,输入参考图像RIM如图1所示,然后输入待配准图像FIM如图2所示;Step 1, input the reference image RIM as shown in Figure 1, and then input the image to be registered FIM as shown in Figure 2;

步骤2,用户初始化种群大小Popsize=50,最大评价次数MAX_FEs=10000;Step 2, the user initializes the population size Popsize=50, the maximum number of evaluations MAX_FEs=10000;

步骤3,令当前演化代数t=0,当前评价次数FEs=0,图像配准参数个数D=3;Step 3, let the current evolution algebra t=0, the current evaluation times FEs=0, and the number of image registration parameters D=3;

步骤4,设置D个优化参数的下界LBj和上界UBj,其中维度下标j=1,2,3;Step 4, setting the lower bound LB j and upper bound UB j of D optimization parameters, where the dimension subscript j=1,2,3;

步骤5,随机初始化种群其中个体下标i=1,2,...,Popsize;为种群Pt中的第i个个体,其随机初始化公式为:Step 5, randomly initialize the population Wherein individual subscript i=1,2,...,Popsize; is the i-th individual in the population Pt , and its random initialization formula is:

其中j=1,2,3;表示第i个个体的位置,存储了3个图像配准的参数值,即是图像配准的水平偏移量,是图像配准的竖直偏移量,是图像配准的旋转角度;表示第i个个体在每一维度上的速度大小,rand(0,1)为在[0,1]之间的随机实数产生函数;where j=1,2,3; Indicates the location of the i-th individual, and stores three parameter values for image registration, namely is the horizontal offset for image registration, is the vertical offset of the image registration, is the rotation angle for image registration; Indicates the speed of the i-th individual in each dimension, rand(0,1) is a random real number generation function between [0,1];

步骤6,计算种群Pt中每个个体的适应值,其中个体下标i=1,2,...,Popsize,计算个体的适应值的方法为:将的位置解码为图像配准的参数,利用得到的图像配准参数对图像FIM进行空间变换得到图像CIM,以图像RIM与图像CIM的互信息作为个体的适应值;Step 6, calculate each individual in the population P t The fitness value of , where the individual subscript i=1,2,...,Popsize, calculate the individual The method of the fitness value is: the The position of is decoded into the parameters of image registration, and the obtained image registration parameters are used to perform spatial transformation on the image FIM to obtain the image CIM, and the mutual information of the image RIM and the image CIM is used as the individual the fitness value;

步骤7,令当前评价次数FEs=FEs+Popsize;Step 7, make the current evaluation times FEs=FEs+Popsize;

步骤8,保存种群Pt中的最优个体BesttStep 8, save the best individual Best t in the population P t ;

步骤9,执行引力搜索的基本操作算子;Step 9, execute the basic operation operator of gravitational search;

步骤10,计算种群Pt中每个个体的适应值;Step 10, calculate the fitness value of each individual in the population P t ;

步骤11,令当前评价次数FEs=FEs+Popsize;Step 11, make the current evaluation times FEs=FEs+Popsize;

步骤12,随机初始化混沌因子tr,具体步骤如下:Step 12, randomly initialize the chaos factor tr, the specific steps are as follows:

步骤12.1,令混杂次数Num=300+200×rand(0,1);Step 12.1, make the mixing times Num=300+200×rand(0,1);

步骤12.2,在[0,1]之间随机产生一个不等于0.25,0.5和0.75的实数itr;Step 12.2, randomly generate a real number itr not equal to 0.25, 0.5 and 0.75 between [0,1];

步骤12.3,令计数器ki=0,并令迭代因子tml=itr;Step 12.3, make the counter ki=0, and let the iteration factor tml=itr;

步骤12.4,如果计数器ki大于Num,则转到步骤13,否则转到步骤12.5;Step 12.4, if the counter ki is greater than Num, then go to step 13, otherwise go to step 12.5;

步骤12.5,令混沌因子tr=4.0×tml×(1-tml);Step 12.5, make chaos factor tr=4.0×tml×(1-tml);

步骤12.6,令迭代因子tml=tr;Step 12.6, let iteration factor tml=tr;

步骤12.7,令计数器ki=ki+1,转到步骤12.4;Step 12.7, make counter ki=ki+1, go to step 12.4;

步骤13,随机选择一个个体并对其执行混沌局部搜索操作,具体步骤如下:Step 13, randomly select an individual and perform a chaotic local search operation on it, the specific steps are as follows:

步骤13.1,在[1,Popsize]之间随机产生一个正整数RT1;Step 13.1, randomly generate a positive integer RT1 between [1, Popsize];

步骤13.2,在[1,Popsize]之间随机产生一个不等于RT1的正整数RT2,然后令迭代因子tml=tr;Step 13.2, randomly generate a positive integer RT2 not equal to RT1 between [1, Popsize], then make the iteration factor tml=tr;

步骤13.3,令混沌因子tr=4.0×tml×(1-tml);Step 13.3, make chaos factor tr=4.0×tml×(1-tml);

步骤13.4,按以下公式生成个体LUtStep 13.4, generate individual LU t according to the following formula:

其中反向因子LK的值为[0,1]之间随机生成的实数,杂交因子IK的值为[0,1]之间随机生成的实数,MEIt为种群中所有个体的位置的平均值;The value of the reverse factor LK is a randomly generated real number between [0,1], the value of the hybridization factor IK is a randomly generated real number between [0,1], MEI t is the average value of the positions of all individuals in the population ;

步骤13.5,计算个体LUt的适应值,令当前评价次数FEs=FEs+1;Step 13.5, calculate the fitness value of the individual LU t , make the current evaluation times FEs=FEs+1;

步骤13.6,如果个体LUt的适应值优于的适应值则转到步骤13.7,否则转到步骤14;Step 13.6, if the fitness value of individual LU t is better than If the fitness value is , go to step 13.7, otherwise go to step 14;

步骤13.7, Step 13.7,

步骤13.8,转到步骤13.2;Step 13.8, go to step 13.2;

步骤14,令当前演化代数t=t+1;Step 14, make the current evolution algebra t=t+1;

步骤15,保存种群Pt中的最优个体BesttStep 15, saving the best individual Best t in the population P t ;

步骤16,重复步骤9至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为图像配准参数,并对待配准图像FIM进行空间变换即可得到如图3所示的图像配准结果。Step 16, repeat steps 9 to 15 until the current evaluation times FEs reaches MAX_FEs, then decode the optimal individual Best t obtained during the execution process into image registration parameters, and perform spatial transformation on the image to be registered FIM to obtain the following: Figure 3 shows the image registration results.

本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.

Claims (1)

1.一种应用改进引力搜索的图像配准方法,其特征在于,包括以下步骤:1. An image registration method using improved gravitational search, characterized in that, comprising the following steps: 步骤1,输入参考图像RIM,然后输入待配准图像FIM;Step 1, input the reference image RIM, and then input the image to be registered FIM; 步骤2,用户初始化种群大小Popsize,最大评价次数MAX_FEs;Step 2, the user initializes the population size Popsize, the maximum number of evaluations MAX_FEs; 步骤3,令当前演化代数t=0,当前评价次数FEs=0,图像配准参数个数D=3;Step 3, let the current evolution algebra t=0, the current evaluation times FEs=0, and the number of image registration parameters D=3; 步骤4,设置D个优化参数的下界LBj和上界UBj,其中维度下标j=1,2,3;Step 4, setting the lower bound LB j and upper bound UB j of D optimization parameters, where the dimension subscript j=1,2,3; 步骤5,随机初始化种群其中个体下标i=1,2,...,Popsize;为种群Pt中的第i个个体,其随机初始化公式为:Step 5, randomly initialize the population Wherein individual subscript i=1,2,...,Popsize; is the i-th individual in the population Pt , and its random initialization formula is: <mrow> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msub> <mi>LB</mi> <mi>j</mi> </msub> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>UB</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>LB</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msub> <mi>LB</mi> <mi>j</mi> </msub> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>UB</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>LB</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> 其中j=1,2,3;表示第i个个体的位置,存储了3个图像配准的参数值,即是图像配准的水平偏移量,是图像配准的竖直偏移量,是图像配准的旋转角度;表示第i个个体在每一维度上的速度大小,rand(0,1)为在[0,1]之间的随机实数产生函数;where j=1,2,3; Indicates the location of the i-th individual, and stores three parameter values for image registration, namely is the horizontal offset for image registration, is the vertical offset of the image registration, is the rotation angle for image registration; Indicates the speed of the i-th individual in each dimension, rand(0,1) is a random real number generation function between [0,1]; 步骤6,计算种群Pt中每个个体的适应值,其中个体下标i=1,2,...,Popsize,计算个体的适应值的方法为:将的位置解码为图像配准的参数,利用得到的图像配准参数对图像FIM进行空间变换得到图像CIM,以图像RIM与图像CIM的互信息作为个体的适应值;Step 6, calculate each individual in the population P t The fitness value of , where the individual subscript i=1,2,...,Popsize, calculate the individual The method of the fitness value is: the The position of is decoded into the parameters of image registration, and the obtained image registration parameters are used to perform spatial transformation on the image FIM to obtain the image CIM, and the mutual information of the image RIM and the image CIM is used as the individual the fitness value; 步骤7,令当前评价次数FEs=FEs+Popsize;Step 7, make the current evaluation times FEs=FEs+Popsize; 步骤8,保存种群Pt中的最优个体BesttStep 8, save the best individual Best t in the population P t ; 步骤9,执行引力搜索的基本操作算子;Step 9, execute the basic operation operator of gravitational search; 步骤10,计算种群Pt中每个个体的适应值;Step 10, calculate the fitness value of each individual in the population P t ; 步骤11,令当前评价次数FEs=FEs+Popsize;Step 11, make the current evaluation times FEs=FEs+Popsize; 步骤12,随机初始化混沌因子tr,具体步骤如下:Step 12, randomly initialize the chaos factor tr, the specific steps are as follows: 步骤12.1,令混杂次数Num=300+200×rand(0,1);Step 12.1, make the mixing times Num=300+200×rand(0,1); 步骤12.2,在[0,1]之间随机产生一个不等于0.25,0.5和0.75的实数itr;Step 12.2, randomly generate a real number itr not equal to 0.25, 0.5 and 0.75 between [0,1]; 步骤12.3,令计数器ki=0,并令迭代因子tml=itr;Step 12.3, make the counter ki=0, and let the iteration factor tml=itr; 步骤12.4,如果计数器ki大于Num,则转到步骤13,否则转到步骤12.5;Step 12.4, if the counter ki is greater than Num, then go to step 13, otherwise go to step 12.5; 步骤12.5,令混沌因子tr=4.0×tml×(1-tml);Step 12.5, make chaos factor tr=4.0×tml×(1-tml); 步骤12.6,令迭代因子tml=tr;Step 12.6, let iteration factor tml=tr; 步骤12.7,令计数器ki=ki+1,转到步骤12.4;Step 12.7, make counter ki=ki+1, go to step 12.4; 步骤13,随机选择一个个体并对其执行混沌局部搜索操作,具体步骤如下:Step 13, randomly select an individual and perform a chaotic local search operation on it, the specific steps are as follows: 步骤13.1,在[1,Popsize]之间随机产生一个正整数RT1;Step 13.1, randomly generate a positive integer RT1 between [1, Popsize]; 步骤13.2,在[1,Popsize]之间随机产生一个不等于RT1的正整数RT2,然后令迭代因子tml=tr;Step 13.2, randomly generate a positive integer RT2 not equal to RT1 between [1, Popsize], then make the iteration factor tml=tr; 步骤13.3,令混沌因子tr=4.0×tml×(1-tml);Step 13.3, make chaos factor tr=4.0×tml×(1-tml); 步骤13.4,按以下公式生成个体LUtStep 13.4, generate individual LU t according to the following formula: <mrow> <msubsup> <mi>LU</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Best</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;times;</mo> <mi>I</mi> <mi>K</mi> <mo>+</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Best</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>+</mo> <msup> <mi>MEI</mi> <mi>t</mi> </msup> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mi>L</mi> <mi>K</mi> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>I</mi> <mi>K</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>LU</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Best</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;times;</mo> <mi>I</mi> <mi>K</mi> <mo>+</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Best</mi> <mn>1</mn> <mi>t</mi> </msubsup> <mo>+</mo> <msup> <mi>MEI</mi> <mi>t</mi> </msup> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mi>L</mi> <mi>K</mi> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>I</mi> <mi>K</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>LU</mi> <mn>2</mn> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> <mi>t</mi> </msubsup> </mrow> 1 <mrow> <msubsup> <mi>LU</mi> <mn>2</mn> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mrow> <mi>R</mi> <mi>T</mi> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> <mi>t</mi> </msubsup> </mrow> 1 其中反向因子LK的值为[0,1]之间随机生成的实数,杂交因子IK的值为[0,1]之间随机生成的实数,MEIt为种群中所有个体的位置的平均值;The value of the reverse factor LK is a randomly generated real number between [0,1], the value of the hybridization factor IK is a randomly generated real number between [0,1], MEI t is the average value of the positions of all individuals in the population ; 步骤13.5,计算个体LUt的适应值,令当前评价次数FEs=FEs+1;Step 13.5, calculate the fitness value of the individual LU t , make the current evaluation times FEs=FEs+1; 步骤13.6,如果个体LUt的适应值优于的适应值则转到步骤13.7,否则转到步骤14;Step 13.6, if the fitness value of individual LU t is better than If the fitness value is , go to step 13.7, otherwise go to step 14; 步骤13.7, Step 13.7, 步骤13.8,转到步骤13.2;Step 13.8, go to step 13.2; 步骤14,令当前演化代数t=t+1;Step 14, make the current evolution algebra t=t+1; 步骤15,保存种群Pt中的最优个体BesttStep 15, saving the best individual Best t in the population P t ; 步骤16,重复步骤9至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为图像配准参数,即可实现图像配准。Step 16, repeating steps 9 to 15 until the current evaluation times FEs reaches MAX_FEs, then the best individual Best t obtained during the execution process is decoded into image registration parameters to realize image registration.
CN201710246579.3A 2017-04-16 2017-04-16 The method for registering images of application enhancements gravitation search Pending CN107067419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710246579.3A CN107067419A (en) 2017-04-16 2017-04-16 The method for registering images of application enhancements gravitation search

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710246579.3A CN107067419A (en) 2017-04-16 2017-04-16 The method for registering images of application enhancements gravitation search

Publications (1)

Publication Number Publication Date
CN107067419A true CN107067419A (en) 2017-08-18

Family

ID=59600699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710246579.3A Pending CN107067419A (en) 2017-04-16 2017-04-16 The method for registering images of application enhancements gravitation search

Country Status (1)

Country Link
CN (1) CN107067419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107977990A (en) * 2018-01-27 2018-05-01 江西理工大学 Method for registering images based on sinusoidal heuristic search
CN111899286A (en) * 2020-07-13 2020-11-06 江西理工大学 Image registration method based on elite differential evolution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346153A (en) * 2002-05-29 2003-12-05 Tsubakimoto Chain Co Pattern matching method, pattern matching device, computer program, and recording medium
CN102496156A (en) * 2011-11-17 2012-06-13 西安电子科技大学 Medical image segmentation method based on quantum-behaved particle swarm cooperative optimization
CN102609904A (en) * 2012-01-11 2012-07-25 云南电力试验研究院(集团)有限公司电力研究院 Bivariate nonlocal average filtering de-noising method for X-ray image
CN106204415A (en) * 2015-05-04 2016-12-07 南京邮电大学 A New Image Registration Method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346153A (en) * 2002-05-29 2003-12-05 Tsubakimoto Chain Co Pattern matching method, pattern matching device, computer program, and recording medium
CN102496156A (en) * 2011-11-17 2012-06-13 西安电子科技大学 Medical image segmentation method based on quantum-behaved particle swarm cooperative optimization
CN102609904A (en) * 2012-01-11 2012-07-25 云南电力试验研究院(集团)有限公司电力研究院 Bivariate nonlocal average filtering de-noising method for X-ray image
CN106204415A (en) * 2015-05-04 2016-12-07 南京邮电大学 A New Image Registration Method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN XIAOHONG,ET AL: "A chaotic digital secure communication based on a modified gravitational search algorithm filter", 《INFORMATION SCIENCES》 *
井福荣等: "应用精英反向学习的引力搜索算法", 《计算机应用研究》 *
刘勇等: "非线性极大极小问题的混沌万有引力搜索算法求解", 《计算机应用研究》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107977990A (en) * 2018-01-27 2018-05-01 江西理工大学 Method for registering images based on sinusoidal heuristic search
CN111899286A (en) * 2020-07-13 2020-11-06 江西理工大学 Image registration method based on elite differential evolution
CN111899286B (en) * 2020-07-13 2024-01-05 江西理工大学 Image registration method based on elite differential evolution

Similar Documents

Publication Publication Date Title
Mitchell A toolbox of level set methods
Huang et al. Action-reaction: Forecasting the dynamics of human interaction
CN107995039B (en) Resource self-learning and self-adaptive distribution method for cloud software service
CN103336855B (en) A kind of two-dimentional irregular nesting method based on many subgroups particle cluster algorithm
CN110936382B (en) A data-driven energy consumption optimization method for industrial robots
CN108520272A (en) A Semi-supervised Intrusion Detection Method Based on Improved Cangwolf Algorithm
Li et al. Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
CN110238839A (en) A control method for multi-axis hole assembly using environment prediction to optimize non-model robot
CN103105774B (en) Fractional order proportion integration differentiation (PID) controller setting method based on improved quantum evolutionary algorithm
Liu et al. A multitasking-oriented robot arm motion planning scheme based on deep reinforcement learning and twin synchro-control
CN105740953A (en) Irregular layout method based on real-coded quantum evolutionary algorithm
Iglesias et al. Discrete Bézier curve fitting with artificial immune systems
CN109508740B (en) Object hardness identification method based on Gaussian mixed noise production confrontation network
CN113778654B (en) Parallel task scheduling method based on particle swarm optimization algorithm
CN107067419A (en) The method for registering images of application enhancements gravitation search
Baressi Šegota et al. Dynamics modeling of industrial robotic manipulators: a machine learning approach based on synthetic data
CN107222873A (en) A kind of full target coverage methods of WMSN towards three-dimensional directional sensing model
Zhao et al. Parameter optimization for Bezier curve fitting based on genetic algorithm
CN103679271B (en) Based on Bloch spherical coordinate and the collision checking method of quantum calculation
Alfaro-Ayala et al. Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD
Wen et al. Transgrasp: Grasp pose estimation of a category of objects by transferring grasps from only one labeled instance
CN107133626A (en) Medical image classification method based on partial average stochastic optimization model
Yan et al. Parameter identification of robot manipulators: A heuristic particle swarm search approach
CN105046712A (en) Adaptive Gauss differential evolution based circle detection method
Li et al. Tidal turbine hydrofoil design and optimization based on deep learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818