CN107067034A - 一种快速识别红外光谱数据分类的方法及系统 - Google Patents

一种快速识别红外光谱数据分类的方法及系统 Download PDF

Info

Publication number
CN107067034A
CN107067034A CN201710246398.0A CN201710246398A CN107067034A CN 107067034 A CN107067034 A CN 107067034A CN 201710246398 A CN201710246398 A CN 201710246398A CN 107067034 A CN107067034 A CN 107067034A
Authority
CN
China
Prior art keywords
sample
classification
matrix
data
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710246398.0A
Other languages
English (en)
Other versions
CN107067034B (zh
Inventor
陈孝敬
袁雷明
陈熙
施剑
施一剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201710246398.0A priority Critical patent/CN107067034B/zh
Publication of CN107067034A publication Critical patent/CN107067034A/zh
Application granted granted Critical
Publication of CN107067034B publication Critical patent/CN107067034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Abstract

本发明实施例公开了一种快速识别红外光谱数据分类的方法,包括基于SOM聚类网络得到样品的红外光谱数据的特征信息;确定样品每一种类别的样品数,根据样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;确定待测样本数据及其对应的待测样本矩阵并构建线性关系,采用最小二乘回归算法对线性关系求解,得到回归系数;根据回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应每一种类别的估算样本矩阵,对比待测样本矩阵到各估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为待测样本数据的类别。本发明实施例,简单直观,且误差较小。

Description

一种快速识别红外光谱数据分类的方法及系统
技术领域
本发明涉及红外光谱数据分析技术领域,尤其涉及一种快速识别红外光谱数据分类的方法及系统。
背景技术
红外光谱检测具有快速、安全、低成本、无损的特点,用红外光谱来对物质进行快速检测是一种行之有效的办法。然而,现有对红外光谱数据的常用模式识别方法,如偏最小二乘回归算法(PLS)方法及主成份分析法(PCA)的空间重构方法,都需要涉及复杂的不直观的空间投影方法。
因此,亟需一种快速识别红外光谱数据分类的方法,简单直观,且误差较小。
发明内容
本发明实施例的目的在于提供一种快速识别红外光谱数据分类的方法及系统,简单直观,且误差较小。
为了解决上述技术问题,本发明实施例提供了一种快速识别红外光谱数据分类的方法,所述方法包括:
获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
其中,所述样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示。
其中,特征信息的维度为294。
其中,所述样品数为25个。
本发明实施例还提供了一种快速识别红外光谱数据分类的系统,所述系统包括:
数据维度选择单元,用于获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
训练样本矩阵获取单元,用于确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
求解回归系数单元,用于确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
样品类别识别单元,用于根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
其中,所述样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示。
其中,所述特征信息的维度为294。
其中,所述样品数为25个。
实施本发明实施例,具有如下有益效果:
本发明实施例通过SOM聚类网络实现了红外光谱数据的变量选择,得到较少的更具特征的变量数据,并结合线性回归的算法,用训练样本来线性表示预测样本的方式,然后根据不同类别的训练样本表示待测样本的好坏来进行判决,实现待测样本的快速分类,因此具有简单直观,且误差较小等优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为本发明实施例提供的快速识别红外光谱数据分类的方法的流程图;
图2本发明实施例提供的快速识别红外光谱数据分类的系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例中,提出一种快速识别红外光谱数据分类的方法,所述方法包括:
步骤S101、获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
具体过程为,利用SOM聚类网络实现对已知光谱数据的变量选择,提升分类识别率。其中,样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示;特征信息的维度为294。
作为一个例子,以泥蚶的重金属污染种类的红外光谱识别为例,有五类泥蚶样本,分别为泥蚶a,泥蚶b,泥蚶c,泥蚶d,泥蚶e,每个泥蚶样品的红外数据为3000×1的列矩阵,即每一种泥蚶每一个样品数的红外数据均采用行数为3000的单列矩阵。将光谱样本的变量经过SOM聚类网络,并选择聚类数目的参数,最后得到泥蚶的红外光谱数据的特征信息的维度为294。
步骤S102、确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
具体过程为,根据样品的类别标签将同类的训练样本矩阵分在一起,即如把相同类别泥蚶样本的红外光谱数据放在一起。
在形成样品总训练样本矩阵过程中,是取样品每一种类别中每一个样品数的红外光谱数据,即已知样品的类别,将不同种类别的红外光谱数据形成的以特征信息的维度为行数、样品数为列数的矩阵;而在形成样品每一种类别各自对应的分类训练样本矩阵的过程中,是取样品同种类别的红外光谱数据形成的以特征信息的维度为行数、样品数为列数的矩阵。其中,样品数可设为25或其它。
作为一个例子,在上述泥蚶的重金属污染种类的红外光谱识别的例子中,将已知类别标签的每种泥蚶样品数均设为25个,然后将泥蚶样本数据排成行为294,列为25的形式,并且A1的1~25列为第一类泥蚶a,A2的1~25列为第二类泥蚶b,以此类推,构建样品总训练样本矩阵A和分类训练样本矩阵Ai。A=[Ai]=[vi,1,vi,2,...,vi,n],对于第i类的矩阵数据,存在n个训练样本;i=1-5,n=25。
步骤S103、确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
具体过程为,明确待测样本矩阵y,即明确某一个需要识别其类别标签的样本,做成行数为特征信息的维度、列数为1的矩阵。
对于待测样本矩阵y,根据样品总训练样本矩阵A,形成线性关系y=Ax,并进行求解。由于对于红外光谱数据来说,通常数据的特征信息的维度是大于样本数的,也就是说,线性系统y=Ax是超定的,通常可以得到一个唯一解。利用最小二乘法,求解出这个线性系统的系数其公式是
步骤S104、根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
具体过程为,利用之前得到的每一种类别的分类训练样本矩阵Ai乘以对应的最小二乘回归系数得到对应于样品每一种类别的估算样本矩阵
根据某一类的估算样本矩阵与待测样本矩阵y的差异来进行判决,这里的差异性是通过估算样本矩阵与待测样本矩阵y之间的欧式距离作为标准,以误差最小的那类标签作为实际的预测样本的类别。即最后输出欧氏距离为最小时所对应估算样本矩阵的类别为该待测样本数据的类别,即输出
如图2所示,为本发明实施例中,提供的一种快速识别红外光谱数据分类的系统,所述系统包括:
数据维度选择单元110,用于获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
训练样本矩阵获取单元120,用于确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
求解回归系数单元130,用于确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
样品类别识别单元140,用于根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
其中,所述样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示。
其中,所述特征信息的维度为294。
其中,所述样品数为25个。
实施本发明实施例,具有如下有益效果:
本发明实施例通过SOM聚类网络实现了红外光谱数据的变量选择,得到较少的更具特征的变量数据,并结合线性回归的算法,用训练样本来线性表示预测样本的方式,然后根据不同类别的训练样本表示待测样本的好坏来进行判决,实现待测样本的快速分类,因此具有简单直观,且误差较小等优点。
值得注意的是,上述系统实施例中,所包括的各个系统单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种快速识别红外光谱数据分类的方法,其特征在于,所述方法包括:
获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
2.如权利要求1所述的方法,其特征在于,所述样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示。
3.如权利要求1所述的方法,其特征在于,所述特征信息的维度为294。
4.如权利要求1所述的方法,其特征在于,所述样品数为25个。
5.一种快速识别红外光谱数据分类的系统,其特征在于,所述系统包括:
数据维度选择单元,用于获取样品每一种类别各自对应的红外光谱数据,并将所述获取到的红外光谱数据基于SOM聚类网络进行聚类计算,得到样品的红外光谱数据的特征信息;
训练样本矩阵获取单元,用于确定样品每一种类别的样品数,并获取样品每一种类别中每一个样品数的红外光谱数据,且根据所述获取到的样品每一种类别中每一个样品数的红外光谱数据,形成样品每一种类别各自对应的分类训练样本矩阵以及样品总训练样本矩阵;其中,所述样品每一种类别各自对应的分类训练样本矩阵是由同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;所述样品总训练样本矩阵是由不同种类别的红外光谱数据形成的以所述特征信息的维度为行数、样品数为列数的矩阵;
求解回归系数单元,用于确定样品未知类别的待测样本数据,且将所述待测样本数据形成以所述特征信息的维度为行数的单列矩阵作为待测样本矩阵,并根据所述形成的样品总训练样本矩阵以及待测样本矩阵构建二者线性关系,进一步采用最小二乘回归算法对所述构建的线性关系求解,得到所述样品总训练样本矩阵与所述待测样本矩阵之间形成的回归系数;
样品类别识别单元,用于根据所述得到的回归系数以及样品每一种类别各自对应的分类训练样本矩阵,得到对应于样品每一种类别的估算样本矩阵,并对比所述待测样本矩阵分别与所述得到的对应于样品每一种类别的估算样本矩阵之间的欧氏距离,确定欧氏距离为最小时所对应估算样本矩阵的类别为所述待测样本数据的类别。
6.如权利要求5所述的系统,其特征在于,所述样品每一种类别各自对应的红外光谱数据采用行数为3000、列为1的矩阵来表示。
7.如权利要求5所述的系统,其特征在于,所述特征信息的维度为294。
8.如权利要求5所述的系统,其特征在于,所述样品数为25个。
CN201710246398.0A 2017-04-15 2017-04-15 一种快速识别红外光谱数据分类的方法及系统 Active CN107067034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710246398.0A CN107067034B (zh) 2017-04-15 2017-04-15 一种快速识别红外光谱数据分类的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710246398.0A CN107067034B (zh) 2017-04-15 2017-04-15 一种快速识别红外光谱数据分类的方法及系统

Publications (2)

Publication Number Publication Date
CN107067034A true CN107067034A (zh) 2017-08-18
CN107067034B CN107067034B (zh) 2020-06-23

Family

ID=59599478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710246398.0A Active CN107067034B (zh) 2017-04-15 2017-04-15 一种快速识别红外光谱数据分类的方法及系统

Country Status (1)

Country Link
CN (1) CN107067034B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895167A (zh) * 2017-10-12 2018-04-10 温州大学 一种基于稀疏表示的红外光谱数据分类识别方法
CN109060715A (zh) * 2018-07-31 2018-12-21 温州大学 一种基于自组织神经网络的近红外光谱共识模型的构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620621B1 (en) * 1995-11-13 2003-09-16 Digilab Method for the detection of cellular abnormalities using fourier transform infrared spectroscopy
EP1428032A2 (en) * 2001-09-07 2004-06-16 Transform Pharmaceuticals, Inc. Apparatus and method for high-throughput preparation and characterization of compositions
CN103234922A (zh) * 2013-03-29 2013-08-07 浙江大学 一种基于大样本土壤可见-近红外光谱分类的土壤有机质快速检测方法
CN104374738A (zh) * 2014-10-30 2015-02-25 中国科学院半导体研究所 一种基于近红外提高鉴别结果的定性分析方法
CN105445218A (zh) * 2015-11-25 2016-03-30 中国科学院南京土壤研究所 中红外光谱油菜籽蛋白质含量检测自适应模型的建立方法
CN106408012A (zh) * 2016-09-09 2017-02-15 江苏大学 一种模糊鉴别聚类的茶叶红外光谱分类方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620621B1 (en) * 1995-11-13 2003-09-16 Digilab Method for the detection of cellular abnormalities using fourier transform infrared spectroscopy
EP1428032A2 (en) * 2001-09-07 2004-06-16 Transform Pharmaceuticals, Inc. Apparatus and method for high-throughput preparation and characterization of compositions
CN103234922A (zh) * 2013-03-29 2013-08-07 浙江大学 一种基于大样本土壤可见-近红外光谱分类的土壤有机质快速检测方法
CN104374738A (zh) * 2014-10-30 2015-02-25 中国科学院半导体研究所 一种基于近红外提高鉴别结果的定性分析方法
CN105445218A (zh) * 2015-11-25 2016-03-30 中国科学院南京土壤研究所 中红外光谱油菜籽蛋白质含量检测自适应模型的建立方法
CN106408012A (zh) * 2016-09-09 2017-02-15 江苏大学 一种模糊鉴别聚类的茶叶红外光谱分类方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIAN-XIONG CAI ET AL: "Using FTIR spectra and pattern recognition for discrimination of tea varieties", 《INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES》 *
TIAN-TAI GUO ET AL: "Application of NIR Spectroscopy in Classification of Plant Species", 《2009 FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE》 *
刘鑫等: "马铃薯叶片晚疫病的多光谱分类识别", 《光学仪器》 *
毕一鸣等: "红外光谱定量分析中的一种变量聚类偏最小二乘算法", 《分析化学(FENXI HUAXUE)研究报告》 *
赵龙莲等: "近红外光谱法对不同品种葡萄酒的识别研究", 《2010年学术年会》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895167A (zh) * 2017-10-12 2018-04-10 温州大学 一种基于稀疏表示的红外光谱数据分类识别方法
CN109060715A (zh) * 2018-07-31 2018-12-21 温州大学 一种基于自组织神经网络的近红外光谱共识模型的构建方法

Also Published As

Publication number Publication date
CN107067034B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
Zhu et al. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data
Dinga et al. Controlling for effects of confounding variables on machine learning predictions
Sedlmair et al. Data‐driven evaluation of visual quality measures
Kuhn et al. Data pre-processing
RU2517286C2 (ru) Классификация данных выборок
Drab et al. Clustering in analytical chemistry
Liu et al. Feature selection based on sensitivity analysis of fuzzy ISODATA
Robin et al. PanelomiX: a threshold-based algorithm to create panels of biomarkers
CN107273910A (zh) 过滤器学习方法及利用过滤器检测测试图像中的对象的方法、学习装置及对象识别支持装置
Manninen et al. Leukemia prediction using sparse logistic regression
CN108877947A (zh) 基于迭代均值聚类的深度样本学习方法
CN113268833A (zh) 一种基于深度联合分布对齐的迁移故障诊断方法
CN115358259A (zh) 一种基于自学习的无监督跨工况轴承故障诊断方法
Alizadeh et al. Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis
He et al. A selective overview of feature screening methods with applications to neuroimaging data
CN107067034A (zh) 一种快速识别红外光谱数据分类的方法及系统
CN113408616B (zh) 基于pca-uve-elm的光谱分类方法
CN104680190A (zh) 目标检测方法及装置
US11017323B2 (en) Method and apparatus for improving a profile analysis of an interpretive framework based on digital measurement of the production of and responses to visual stimuli
EP2834624B1 (en) A method for measuring performance of a spectroscopy system
Fitousi Can we perceive two colors at the same time? A direct test of Huang and Pashler’s (2007) Boolean map theory of visual attention
Asadi et al. A heuristic information cluster search approach for precise functional brain mapping
CN109635702A (zh) 基于卫星遥感图像的林业生物灾害监测方法和系统
Sachnev An efficient classification scheme for ADHD problem based on Binary Coded Genetic Algorithm and McFIS
CN108122002A (zh) 训练样本获取方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant