CN107065913A - The sliding moding structure gesture stability algorithm of Spacecraft - Google Patents

The sliding moding structure gesture stability algorithm of Spacecraft Download PDF

Info

Publication number
CN107065913A
CN107065913A CN201710326702.2A CN201710326702A CN107065913A CN 107065913 A CN107065913 A CN 107065913A CN 201710326702 A CN201710326702 A CN 201710326702A CN 107065913 A CN107065913 A CN 107065913A
Authority
CN
China
Prior art keywords
mrow
mtd
mtr
msub
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710326702.2A
Other languages
Chinese (zh)
Other versions
CN107065913B (en
Inventor
吴爱国
董瑞琦
张颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201710326702.2A priority Critical patent/CN107065913B/en
Publication of CN107065913A publication Critical patent/CN107065913A/en
Application granted granted Critical
Publication of CN107065913B publication Critical patent/CN107065913B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • External Artificial Organs (AREA)

Abstract

There is the sliding moding structure gesture stability algorithm of the Spacecraft of perturbation the invention provides a kind of rotary inertia, the kinematical equation of Spacecraft is set up using Quaternion Method, the Complex Spacecraft kinetics equation that Rigid Base has perturbation with flexible appendage, rotary inertia is set up, the simplified Flexible Spacecraft kinetics equation based on hybrid coordinate is given.The beneficial effects of the invention are as follows:The gesture stability algorithm designed using the present invention makes Space Vehicle System have good stability, and when Space Vehicle System inertia parameter is varied widely, the posture of spacecraft can tend towards stability quickly.

Description

The sliding moding structure gesture stability algorithm of Spacecraft
Technical field
The present invention relates to the sliding moding structure gesture stability algorithm of spacecraft, more particularly to a kind of Spacecraft.
Background technology
In traditional gesture stability algorithm, do not consider that the rotary inertia of Spacecraft has perturbation, and traditional cunning Mould variable structure control algorithm can cause larger buffeting.
The content of the invention
In order to solve the problems of the prior art, the invention provides a kind of sliding moding structure posture control of Spacecraft Algorithm processed.
The invention provides a kind of sliding moding structure gesture stability algorithm of Spacecraft, set up Spacecraft and be based on The kinematical equation and kinetics equation of quaternary number are as follows:
Wherein, T (q0,qv)=(q0I3+[qv×]),
Wherein, q0,qvThe respectively scalar component and vector portion of attitude quaternion;ω is the attitude angle of spacecraft;δ is Coupling matrix between the flex section and rigid body main body of Spacecraft;C, K are respectively damping matrix and stiffness matrix,
ωni, i=1,2 ..., N is natural frequency, ζi, i=1 ..., N is damped coefficient;J0It is rotary inertia nominal value, JmbFor the rotary inertia of rigid body portion, △ J are rotary inertia uncertainty coefficient, and spacecraft carries flexible appendage, and rotates used Amount contains perturbing term.
As a further improvement on the present invention, it is assumed that under the measurable situation of flexible mode, the sliding-mode surface of design is as follows:
S=w+Gqv
The sliding mode control law based on feedback of status of design is as follows:
F (s)={ sgn (s1),sgn(s2),sgn(s3)}T
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix.
As a further improvement on the present invention, the switching function sliding mode control law based on feedback of status included F (s) is substituted for following F1(s):
F1(s)={ f (s1),f(s2),f(s3)}T
As a further improvement on the present invention, under the immesurable situation of flexible mode, following mode observation device is designed:
Wherein, matrix P is following Lyapunov non trivial solutions:
The sliding-mode surface of design is as follows:
S=w+Gqv
The sliding mode control law based on observer of design is as follows:
F (s)={ sgn (s1),sgn(s2),sgn(s3)}T
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix, and matrix P is following Lyapunov non trivial solutions
As a further improvement on the present invention, the switching function F sliding mode control law based on observer included (s) it is substituted for following F1(s):
F1(s)={ f (s1),f(s2),f(s3)}T
The beneficial effects of the invention are as follows:
1st, the gesture stability algorithm designed using the present invention makes Space Vehicle System have good stability, when spacecraft system When system inertia parameter is varied widely, the posture of spacecraft can tend towards stability quickly;
2nd, the ability for preferably suppressing flexible mode vibration is possessed, the vibration of flexible appendage can effectively be suppressed.
Brief description of the drawings
Fig. 1 is the block diagram of the measurable Sliding Mode Attitude control system of flexible mode.
Fig. 2 is the block diagram of the immesurable Sliding Mode Attitude control system of flexible mode.
Embodiment
With reference to embodiment, the invention will be further described.
As shown in Figure 1 to Figure 2, the sliding moding structure gesture stability algorithm of a kind of Spacecraft, including:
1st, the sliding formwork control ratio based on feedback of status is devised for the measurable situation of flexible mode
F1(s)={ f (s1),f(s2),f(s3)}T
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix.
2nd, the sliding formwork control ratio based on observer is devised for the immeasurablel situation of flexible mode
F1(s)={ f (s1),f(s2),f(s3)}T
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix.Matrix P is following Lyapunov non trivial solutions
The Spacecraft for containing perturbation to rotary inertia sets up kinematical equation and kinetics equation based on quaternary number It is as follows:
Wherein, J0It is rotary inertia nominal value, △ J are rotary inertia uncertainty coefficient.It is characterized in that:Spacecraft is carried Flexible appendage, and rotary inertia contains perturbing term.
Consider following two kinds of situations:
(1) mode for assuming system is measurable, and the sliding formwork based on feedback of status is designed for Spacecraft (1)-(2) Variable-structure control is restrained.
Step 1 designs sliding-mode surface
Choose following sliding formwork switching surface function:
S=w+Gqv
And, it was demonstrated that above-mentioned hyperplane can ensure the whole motion process of sliding formwork motion stabilization, i.e. system, Ke Yi It is stable in the limited time.
Prove:The Lyapunov functions of selection are as follows:
Step2 design control laws
Control of the design with following form:
U=-Ws-DF (s)+ueq (3)
Wherein,
The sliding mode control law can enable the state of system from arbitrary initial point, in finite time, motion Onto sliding-mode surface s=0, i.e. s=w+Gqv, and can be maintained on sliding manifolds.
Equivalent control u is designed beloweq, select following Lyapunov functions:
OrderObtain:
Wherein,
(2) when spacecraft flexible mode can not be measured, the sliding formwork based on observer is designed for Spacecraft (1)-(2) Variable-structure control is restrained.
First, the observation error for the flexible mode being defined as follows:
The following mode observation device of selection:
Wherein, matrix P is following Lyapunov non trivial solutions:
Next the sliding mode control law based on above-mentioned observer is designed.
Step 1 designs sliding-mode surface
Choose following sliding formwork switching surface function:
S=w+Gqv
And, it was demonstrated that above-mentioned hyperplane can ensure the whole motion process of sliding formwork motion stabilization, i.e. system, Ke Yi It is stable in the limited time.
Prove:The Lyapunov functions of selection are as follows:
Step2 design control laws
Control of the design with following form:
U=-Ws-DF (s)+ueq (7)
Wherein,
The sliding mode control law can enable the state of system from arbitrary initial point, in finite time, motion Onto sliding-mode surface s=0, i.e. s=w+Gqv, and can be maintained on sliding manifolds.
Equivalent control u is designed beloweq, select following Lyapunov functions:
Order
Wherein,
Then, it was demonstrated that obtained control law can ensure that Spacecraft finally tends towards stability.Accordingly, it would be desirable to verify
Finally, sliding mode control law (3)-(6) based on feedback of status to design and the sliding formwork based on observer Variable-structure control rule (7)-(10) are improved.Control law (3)-(6) and switching function F (s) in control law (7)-(10) are non- Chang Rongyi causes the flutter of variable-structure control in itself.Meanwhile, when Spacecraft carries out attitude maneuver, needed for initial time Control moment is maximum.This can improve the requirement of the output torque to spacecraft executing agency itself, be scratched while can also increase Property annex modal displacement, increase flexible appendage buffeting.Therefore, following form is substituted for switching function F (s):
F1(s)={ f (s1),f(s2),f(s3)}T
We will illustrate the sliding mode control law based on feedback of status and the cunning based on observer by example below The control effect of moding structure control rule.
Consider the nominal value J of the rotary inertia with flexible appendage spacecraft0For:
Rotary inertia uncertainty coefficient △ J are:
Rigid-flexible coupling matrix between Spacecraft and flexible appendage:
The vibration frequency of flexible appendage is:
ωn=[0.7681,1.1038,1.8733,2.5496]
The vibration damping of flexible appendage is:
ξ=[0.005607,0.00862,0.01283,0.02516]
Sliding Mode Controller parameter based on feedback of status is:
G=diag { 0.2 0.2 0.2 };W=diag { 200 200 200 };D=diag { 200 200 200 }
The parameter of Sliding Mode Controller based on observer is:
A kind of sliding moding structure gesture stability algorithm for Spacecraft that the present invention is provided, exists for rotary inertia and takes the photograph Dynamic Flexible Spacecraft control problem, devises a kind of sliding moding structure gesture stability algorithm.The purpose of the invention algorithm It is to solve Flexible Spacecraft control, suppresses the problem of flexible appendage has vibration.The invention is using Quaternion Method come table Show the kinematical equation of Flexible Spacecraft, set up the complexity that Rigid Base has perturbation with flexible appendage, rotary inertia Spacecraft dynamics equation, gives the simplified Flexible Spacecraft kinetics equation based on hybrid coordinate.Then utilize Lyapunov direct methods, have devised sliding moding structure attitude controller, and for being buffeted present in Sliding mode variable structure control Problem, is improved and optimizated, and original switch function in sliding formwork control is substituted with " the positive traditional method of indicating the pronunciation of a Chinese character " function, suppresses system Flutter in system.Finally, the validity of the control algolithm designed with the simulink module verifications in MATLAB.
Above content is to combine specific preferred embodiment further description made for the present invention, it is impossible to assert The specific implementation of the present invention is confined to these explanations.For general technical staff of the technical field of the invention, On the premise of not departing from present inventive concept, some simple deduction or replace can also be made, should all be considered as belonging to the present invention's Protection domain.

Claims (5)

1. a kind of sliding moding structure gesture stability algorithm of Spacecraft, it is characterised in that:Set up Spacecraft and be based on four The kinematical equation and kinetics equation of first number are as follows:
<mrow> <mo>{</mo> <mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>v</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>q</mi> <mi>v</mi> <mi>T</mi> </msubsup> <mi>&amp;omega;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mrow>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mi>&amp;omega;</mi> <mo>+</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>C</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>K</mi> <mi>&amp;eta;</mi> <mo>-</mo> <mi>C</mi> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>&amp;psi;</mi> <mo>-</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>C</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>K</mi> <mi>&amp;eta;</mi> <mo>-</mo> <mi>C</mi> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mi>J</mi> <mo>-</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mi>&amp;delta;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>J</mi> <mo>=</mo> <msub> <mi>J</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>J</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, T (q0,qv)=(q0I3+[qv×]),
<mrow> <mo>&amp;lsqb;</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> <mo>&amp;times;</mo> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, q0,qvThe respectively scalar component and vector portion of attitude quaternion;ω is the attitude angle of spacecraft;δ is flexibility Coupling matrix between the flex section and rigid body main body of spacecraft;C, K are respectively damping matrix and stiffness matrix,
<mrow> <mi>C</mi> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <mn>2</mn> <msub> <mi>&amp;zeta;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> <mo>}</mo> <mo>,</mo> <mi>K</mi> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> <mo>}</mo> </mrow>
ωni, i=1,2 ..., N is natural frequency, ζi, i=1 ..., N is damped coefficient;J0It is rotary inertia nominal value, JmbFor The rotary inertia of rigid body portion, △ J are rotary inertia uncertainty coefficient, and spacecraft carries flexible appendage, and rotary inertia contains There is perturbing term.
2. the sliding moding structure gesture stability algorithm of Spacecraft according to claim 1, it is characterised in that:Assuming that scratching Under the property measurable situation of mode, the sliding-mode surface of design is as follows:
S=w+Gqv
The sliding mode control law based on feedback of status of design is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>u</mi> <mo>=</mo> <mo>-</mo> <mi>W</mi> <mi>s</mi> <mo>-</mo> <mi>D</mi> <mi>F</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> <mn>0</mn> </mrow> </msub> <mi>&amp;omega;</mi> <mo>+</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>C</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>K</mi> <mi>&amp;eta;</mi> <mo>-</mo> <mi>C</mi> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> <mn>0</mn> </mrow> </msub> <mi>G</mi> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>T</mi> <mo>(</mo> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>q</mi> <mn>4</mn> </msub> </mrow> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
F (s)={ sgn (s1),sgn(s2),sgn(s3)}T
<mrow> <mi>sgn</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow>
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
<mrow> <mi>&amp;Psi;</mi> <mo>=</mo> <mo>-</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mi>&amp;Delta;</mi> <mi>J</mi> <mi>&amp;omega;</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>J</mi> <mi>G</mi> <mrow> <mo>(</mo> <mfrac> <mi>I</mi> <mn>2</mn> </mfrac> <mi>T</mi> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> </mrow> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>J</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mi>s</mi> <mo>,</mo> </mrow>
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix.
3. the sliding moding structure gesture stability algorithm of Spacecraft according to claim 2, it is characterised in that:It will be based on The switching function F (s) that the sliding mode control law of feedback of status is included is substituted for following F1(s):
F1(s)={ f (s1),f(s2),f(s3)}T
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&gt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>arctan</mi> <mrow> <mo>(</mo> <msub> <mi>xs</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3.</mn> </mrow>
4. the sliding moding structure gesture stability algorithm of Spacecraft according to claim 1, it is characterised in that:Flexible mold Under the immesurable situation of state, following mode observation device is designed:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>K</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>+</mo> <msup> <mi>P</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>C</mi> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>(</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>+</mo> <msub> <mi>G&amp;delta;q</mi> <mi>v</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> <mi>G</mi> <mi>&amp;delta;</mi> <mo>&amp;lsqb;</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mo>&amp;rsqb;</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> <mo>)</mo> </mrow>
Wherein, matrix P is following Lyapunov non trivial solutions:
<mrow> <mi>P</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>K</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>K</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <msup> <mi>P</mi> <mi>T</mi> </msup> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>Q</mi> </mrow>
The sliding-mode surface of design is as follows:
S=w+Gqv
The sliding mode control law based on observer of design is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>u</mi> <mo>=</mo> <mo>-</mo> <mi>W</mi> <mi>s</mi> <mo>-</mo> <mi>D</mi> <mi>F</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> <mn>0</mn> </mrow> </msub> <mi>&amp;omega;</mi> <mo>+</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msup> <mi>&amp;delta;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>C</mi> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>+</mo> <mi>K</mi> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>C</mi> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>J</mi> <mrow> <mi>m</mi> <mi>b</mi> <mn>0</mn> </mrow> </msub> <mi>G</mi> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>T</mi> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> </mrow> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;tau;</mi> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
F (s)={ sgn (s1),sgn(s2),sgn(s3)}T
<mrow> <mi>sgn</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow>
τ=[τ1 τ2 τ3]T
τi=-gi(ω,q0,qv)sgn(si),
<mrow> <mi>&amp;Psi;</mi> <mo>=</mo> <mo>-</mo> <mi>&amp;omega;</mi> <mo>&amp;times;</mo> <mi>&amp;Delta;</mi> <mi>J</mi> <mi>&amp;omega;</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>J</mi> <mi>G</mi> <mrow> <mo>(</mo> <mfrac> <mi>I</mi> <mn>2</mn> </mfrac> <mi>T</mi> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>v</mi> </msub> </mrow> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>J</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mi>s</mi> <mo>,</mo> </mrow>
gi(ω,q0,qv)≥maxΨi(ω,q0,qv).
Wherein, W, D, G are positive definite diagonal matrix, and matrix P is following Lyapunov non trivial solutions
<mrow> <mi>P</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>K</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>K</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <msup> <mi>P</mi> <mi>T</mi> </msup> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>Q</mi> <mo>.</mo> </mrow> 2
5. the sliding moding structure gesture stability algorithm of Spacecraft according to claim 4, it is characterised in that:It will be based on The switching function F (s) that the sliding mode control law of observer is included is substituted for following F1(s):
F1(s)={ f (s1),f(s2),f(s3)}T
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&gt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>arctan</mi> <mrow> <mo>(</mo> <msub> <mi>xs</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3.</mn> </mrow> 3
CN201710326702.2A 2017-05-10 2017-05-10 Sliding mode variable structure attitude control method of flexible spacecraft Expired - Fee Related CN107065913B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710326702.2A CN107065913B (en) 2017-05-10 2017-05-10 Sliding mode variable structure attitude control method of flexible spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710326702.2A CN107065913B (en) 2017-05-10 2017-05-10 Sliding mode variable structure attitude control method of flexible spacecraft

Publications (2)

Publication Number Publication Date
CN107065913A true CN107065913A (en) 2017-08-18
CN107065913B CN107065913B (en) 2019-12-31

Family

ID=59596796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710326702.2A Expired - Fee Related CN107065913B (en) 2017-05-10 2017-05-10 Sliding mode variable structure attitude control method of flexible spacecraft

Country Status (1)

Country Link
CN (1) CN107065913B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831775A (en) * 2017-11-14 2018-03-23 哈尔滨工业大学深圳研究生院 The attitude control method without angular velocity measurement based on Spacecraft
CN107943062A (en) * 2017-09-13 2018-04-20 哈尔滨工业大学深圳研究生院 Flexible Satellite Attitude sliding-mode control with external disturbance torque
CN109213184A (en) * 2018-11-06 2019-01-15 哈尔滨工业大学(深圳) The multi-modal Sliding Mode Attitude control algolithm of the finite time of flexible spacecraft
CN109507892A (en) * 2019-01-22 2019-03-22 哈尔滨工业大学(深圳) The adaptive sliding mode pose stabilization control method of flexible spacecraft
CN110083171A (en) * 2019-04-30 2019-08-02 哈尔滨工业大学(深圳) The method and system of the Dynamic sliding mode Attitude tracking control of flexible spacecraft
CN111498147A (en) * 2020-04-03 2020-08-07 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Finite time segmentation sliding mode attitude tracking control algorithm of flexible spacecraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144397A (en) * 1992-11-05 1994-05-24 Hitachi Ltd Orbit control method for spacecraft
CN102073276A (en) * 2011-02-21 2011-05-25 哈尔滨工业大学 Method for controlling flexible structure and self-adaptive changing structure by radial basis function (RBF) neural network
CN103412491A (en) * 2013-08-27 2013-11-27 北京理工大学 Method for controlling index time-varying slide mode of flexible spacecraft characteristic shaft attitude maneuver
CN104460679A (en) * 2014-11-28 2015-03-25 南京航空航天大学 Flexible spacecraft underactuated system based on switching control method and attitude control method thereof
CN105843240A (en) * 2016-04-08 2016-08-10 北京航空航天大学 Spacecraft attitude integral sliding mode fault tolerance control method taking consideration of performer fault

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144397A (en) * 1992-11-05 1994-05-24 Hitachi Ltd Orbit control method for spacecraft
CN102073276A (en) * 2011-02-21 2011-05-25 哈尔滨工业大学 Method for controlling flexible structure and self-adaptive changing structure by radial basis function (RBF) neural network
CN103412491A (en) * 2013-08-27 2013-11-27 北京理工大学 Method for controlling index time-varying slide mode of flexible spacecraft characteristic shaft attitude maneuver
CN104460679A (en) * 2014-11-28 2015-03-25 南京航空航天大学 Flexible spacecraft underactuated system based on switching control method and attitude control method thereof
CN105843240A (en) * 2016-04-08 2016-08-10 北京航空航天大学 Spacecraft attitude integral sliding mode fault tolerance control method taking consideration of performer fault

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DONG YE 等: "Variable structure tracking control for flexible spacecraft", 《AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY》 *
WANG QI 等: "Sliding mode attitude control for flexible spacecraft", 《INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (MCE 2014)》 *
宋斌 等: "基于自适应滑模方法的航天器位置与姿态控制", 《哈尔滨工业大学学报》 *
钟晨星 等: "挠性航天器滑模变结构控制及抖振抑制研究", 《空间控制技术与应用》 *
靳永强 等: "含有参数不确定性的挠性航天器姿态跟踪滑模控制", 《控制理论与应用》 *
靳潇潇 等: "基于内模的挠性航天器姿态滑模变结构控制", 《PROCEEDINGS OF THE 33RD CHINESE CONTROL CONFERENCE》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107943062A (en) * 2017-09-13 2018-04-20 哈尔滨工业大学深圳研究生院 Flexible Satellite Attitude sliding-mode control with external disturbance torque
CN107831775A (en) * 2017-11-14 2018-03-23 哈尔滨工业大学深圳研究生院 The attitude control method without angular velocity measurement based on Spacecraft
CN107831775B (en) * 2017-11-14 2021-06-08 哈尔滨工业大学深圳研究生院 Attitude control method based on flexible spacecraft non-angular velocity measurement
CN109213184A (en) * 2018-11-06 2019-01-15 哈尔滨工业大学(深圳) The multi-modal Sliding Mode Attitude control algolithm of the finite time of flexible spacecraft
CN109213184B (en) * 2018-11-06 2021-06-08 哈尔滨工业大学(深圳) Finite-time multi-mode sliding mode attitude control algorithm of flexible spacecraft
CN109507892A (en) * 2019-01-22 2019-03-22 哈尔滨工业大学(深圳) The adaptive sliding mode pose stabilization control method of flexible spacecraft
CN110083171A (en) * 2019-04-30 2019-08-02 哈尔滨工业大学(深圳) The method and system of the Dynamic sliding mode Attitude tracking control of flexible spacecraft
CN111498147A (en) * 2020-04-03 2020-08-07 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Finite time segmentation sliding mode attitude tracking control algorithm of flexible spacecraft
CN111498147B (en) * 2020-04-03 2021-09-21 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Finite time segmentation sliding mode attitude tracking control algorithm of flexible spacecraft

Also Published As

Publication number Publication date
CN107065913B (en) 2019-12-31

Similar Documents

Publication Publication Date Title
CN107065913A (en) The sliding moding structure gesture stability algorithm of Spacecraft
CN106843254A (en) One kind actively reconstructs fault tolerant control method in real time
CN104950678B (en) A kind of Neural Network Inversion control method of flexible mechanical arm system
CN103728882B (en) The self-adaptation inverting non-singular terminal sliding-mode control of gyroscope
CN104020778B (en) Flexible Satellite Attitude maneuver autopilot method based on tracking time energy consumption optimal control orbit
CN103792945B (en) A kind of attitude control and liquid fuel of filled Spacecraft system rock inhibition method
CN106094528A (en) A kind of spatial flexible robot arm vibration suppression algorithm
CN113306747B (en) Flexible spacecraft attitude stabilization control method and system based on SO (3) group
CN107831655A (en) The adaptive inverting modified fuzzy sliding mode controlling method of fractional order of gyroscope
CN111874266B (en) Unwinding-resistant sliding mode attitude maneuver control method and system of rigid spacecraft
CN110083171A (en) The method and system of the Dynamic sliding mode Attitude tracking control of flexible spacecraft
CN106774379A (en) A kind of strong robust attitude control method of intelligent supercoil
CN106249596A (en) The indirect self-adaptive of gyroscope fuzzy overall situation fast terminal sliding-mode control
CN107247411A (en) Non-singular terminal sliding formwork Track In Track control method based on disturbance observer
CN115686048B (en) Dynamic triggering limited time control method for executor limited spacecraft intersection system
Hu et al. Adaptive fuzzy integral sliding mode control for flexible air-breathing hypersonic vehicles subject to input nonlinearity
CN108804846A (en) A kind of data-driven attitude controller design method of noncooperative target assembly spacecraft
CN107515612A (en) Elastic vibration suppressing method based on side spray flow control
CN107678281A (en) Spacecraft Adaptive Attitude control law based on amendment type rodrigue parameters
CN111498147A (en) Finite time segmentation sliding mode attitude tracking control algorithm of flexible spacecraft
CN109213184A (en) The multi-modal Sliding Mode Attitude control algolithm of the finite time of flexible spacecraft
CN103455035B (en) Based on the PD+ attitude control law method for designing of Backstepping design and nonlinear feedback
Fan et al. Robust dexterous manipulation under object dynamics uncertainties
CN104460678B (en) Spacecraft posture control method based on Sigmoid nonlinear sliding mode function
CN107831775A (en) The attitude control method without angular velocity measurement based on Spacecraft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191231

Termination date: 20200510