CN107065895A - A kind of plant protection unmanned plane determines high-tech - Google Patents

A kind of plant protection unmanned plane determines high-tech Download PDF

Info

Publication number
CN107065895A
CN107065895A CN201710006131.4A CN201710006131A CN107065895A CN 107065895 A CN107065895 A CN 107065895A CN 201710006131 A CN201710006131 A CN 201710006131A CN 107065895 A CN107065895 A CN 107065895A
Authority
CN
China
Prior art keywords
mtd
msub
mrow
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710006131.4A
Other languages
Chinese (zh)
Inventor
徐诚
王东振
黄大庆
韩伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710006131.4A priority Critical patent/CN107065895A/en
Publication of CN107065895A publication Critical patent/CN107065895A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Determine high-tech the invention discloses a kind of plant protection unmanned plane, comprise the following steps that:Step 1, using the video camera of unmanned plane carry to front side shooting figure piece sequence;Step 2, feature point extraction is carried out to shooting picture;Step 3, Feature Points Matching is carried out to the characteristic point of extraction using SAD algorithms;Step 4, cross bearing;According to angle of the same place of matching to the position of set and aircraft, posture and video camera, the three-dimensional coordinate of each same place is calculated;Step 5, based on above-mentioned localization method, the multistation location model based on weighted least square is set up in the multiple measurement to target point of the same name;Technology disclosed by the invention has preferable antijamming capability, and equipment is simple, cheap;Only need to one picture pick-up device of carry on common plant protection unmanned plane and the fixed height of unmanned plane can be achieved, be easy to deployment, with larger application prospect.

Description

A kind of plant protection unmanned plane determines high-tech
Technical field
The invention belongs to agricultural technology field, high-tech is determined in particular to a kind of plant protection unmanned plane.
Background technology
In recent years, agricultural plant protection unmanned plane is widely used, for these area sprays such as paddy field, hills, mountain region machinery And the area that fixed-wing manned aircraft can not be put to good use, plant protection unmanned plane have uniqueness advantage.Unmanned plane is in operation Need to keep 1~2 meter of relative altitude with crops all the time in journey, to ensure the uniform efficient sprinkling of agricultural chemicals.But in reality In operation process, the uneven whole situation in farmland is frequently encountered, the factor such as weather, illumination also determines Gao Ying to plant protection unmanned plane Sound is very big, therefore, reasonably determines high scheme for one and is just particularly important.
Current fixed high scheme mainly has GPS, barometer, ultrasonic wave and laser ranging etc..What GPS was obtained is relatively extra large Degree of lifting, error is big and refreshes slow;What barometer was obtained is absolute altitude, is not aircraft to the distance between crops, and air pressure, The extraneous factors such as wind cause to survey high inaccurate;Ultrasound height penetrates readily through vegetation, and larger by temperature, pressure influence, anti-interference Ability is slightly worse;Laser ranging mode precision is high, strong antijamming capability, but equipment price is expensive, is not suitable for widely using.
The fixed high scheme of these tradition has larger limitation, and the consequence brought is that plant protection unmanned plane leaks in operation process Spray, respray, influence spray effect, or even cause aircraft bombing accident because falling height.Therefore the plant protection that one rational, applicability is wide is proposed The fixed high scheme of unmanned plane is very necessary.
The content of the invention
For problems of the prior art, high-tech is determined the invention discloses a kind of plant protection unmanned plane, the technology is Based on stereovision technique, wherein stereovision technique can reconstruct the depth information of imaging region, so as to be view-based access control model Unmanned plane is fixed high there is provided theoretical foundation and approach, and the present invention installs monocular camera on unmanned plane, from data precision and calculating Two aspects of real-time consider, and select quasi- dense matching to carry out three-dimensional reconstruction, so that it is guaranteed that plant protection unmanned plane is accurate fixed It is high.
The present invention is achieved in that a kind of plant protection unmanned plane determines high-tech, it is characterised in that comprise the following steps that:
Step 1, ground scenery is shot to front side using the video camera of unmanned plane carry, and constant duration preserves picture sequence Row;The purpose for the arrangement is that in view of collection, transmission image and calculate be both needed to elapsed time, in order to ensure surely high data and Shi Gengxin, therefore use the strategy of video camera forward sight;
Step 2, feature point extraction is carried out to the photo current frame of shooting;
Step 3, it is reverse from the sequence of pictures of preservation to extract n frame pictures, the characteristic point of extraction is carried out using SAD algorithms Feature Points Matching;
Step 4, if n=2, cross bearing is used;According to the same place of matching to set, the position of aircraft, posture and The angle of video camera, calculates the three-dimensional coordinate of each same place;
Step 5, if n>2, using the multistation location based on weighted least square, calculate the three-dimensional seat of each same place Mark.
Further, described step 2 is comprised the following steps that:
2.1, using SILC image segmentation algorithms, super-pixel segmentation is carried out to kth frame image, and calculate each region unit Center-of-mass coordinate, obtains point set I1
2.2, the angular coordinate of kth frame image is extracted using Harris Corner Detections, point set I is obtained2, and merge I1And I2, Obtain feature point set I to be matched somebody with somebodyp
Further, described step 3 is comprised the following steps that:
3.1, characteristic point periphery chooses a N × n-quadrant and is used as template;
3.2, the matching of the template is then found in the two field picture of kth -1, wherein region of search is limited to (Nsearch× Nsearch) characteristic point peripheral region;The similarity measurement of matching is represented with following formula:
SAD(dx,dy)=∑ | template (x, y)-imagek (x+dx,y+dy)|
In formula, x, y is characterized coordinate a little, dx, and dy is relative x, y coordinate offset;
3.3, change search window centre point position, to reduce similarity measurement to greatest extent, when similarity measurement is minimum When, the point is match point;
Further, described step 4 concretely comprises the following steps cross bearing, specific as follows:
If aerial C1And C2Two points are photographed on a surface target, and picture points of the ground target point P on the photograph of left and right is p1With p2;Obviously, ray C of the same name1p1And C2p2Intersect at ground target point P;
According to perspective projection imaging relation, C can be derived1And C2Imaging collinearity equation be respectively:
Wherein, (xi,yi), i=1,2 is P point actual imaging point coordinates;(Fx,Fy) it is equivalent focal length;(Cx,Cy) it is as main Point coordinates;It is P points in CiThe coordinate taken the photograph under the camera coordinate system of station;
According to the relative pose relation of camera coordinate system and world coordinate system, it can obtain:
Wherein, (X, Y, Z) is coordinate of the target point in world coordinate system, r0~r8It is that world coordinate system and video camera are sat The spin matrix component that mark system posture is consistent and needs;Tx, Ty, TzWorld coordinate system origin is moved on to camera coordinate system by representative The translational movement of origin;
Using the geographic coordinate system of first measurement point as world coordinate system, then first time measurement point Tx=Ty=Tz=0, The T of second measurement pointx, Ty, TzValue difference positioned by satellite positioning receiver twice calculated;
By Inertial Measurement Unit and camera cradle head, aircraft crab angle φ, angle of pitch γ, roll angle θ and shooting are obtained The azimuth angle alpha and angle of site β of machine, can be obtained:
Simultaneous can solve point P coordinate (X, Y, Z) with equation.
Further, described step 5 is specific as follows:
Unmanned plane carries out n (n in the flight course of preset flight path to target point>2) secondary shooting, obtains n images;
Then according to collinearity equation, have
Z=H (S)
Wherein:Z=[x1 y1 ... xn yn]T, S=[X, Y, Z]T
Above formula is subjected to first order Taylor expansion at initial value, can be obtained:
Z=H (S0)+B·(S-S0)+Δn
Wherein:
Order
U=Z-H (S0)
V=S-S0
Therefore,
U=BV+ Δs n
According to least-squares estimation, it can obtain
Unmanned plane is in each measurement point, and the posture of aircraft is all different, in this case, even if using same shooting Machine, but be due to that external parameters of cameras is different, cause each measurement spot placement accuracy difference, the contribution to error is also different.Cause This, introduces weighted least square;Make R-1For weighting matrix, and
Then
Therefore,
S0It can be tried to achieve according to cross bearing principle.Because the site error of initial value is larger, add what linearisation was brought Error so that try to achieve for the first timeAnd actual value deviation is larger.Using iterative method, when positioning result tends to stationary value, iteration knot Beam.
The estimation of weighting matrix is more difficult, generally selects diagonal matrix or simpler unit matrix, although selection Weight matrix have error, but unbiased esti-mator is still to the weighted least square of unknown parameter.Present invention employs one kind The method of convenient, science obtains weight matrix, and good effect is obtained in practicality.Its core concept is:For causing error Larger measurement point, gives less weights, and the less measurement point of error gives larger weights, so as to increase preferably " contribution " of measurement point, improves the precision of least-squares estimation.In position fixing process, measurement point distance objective point is more remote, positioning Precision is poorer, and measurement point and the distance of target point are pointed to angle by the elevation and measurement point camera optical axis of measurement point and determined jointly It is fixed, meet basic triangle relation.It can thus be concluded that,
Wherein, σ is the element in weight matrix, and ε is that camera optical axis points to angle, and H is measurement point height.
The present invention is relative to the beneficial effect of prior art:The present invention can obtain accurately, in real time unmanned plane with Depth information between crops, compare plant protection larger by temperature, pressure influence with existing plant protection unmanned plane, of the invention without Man-machine technology has preferable antijamming capability, and equipment is simple, cheap;Only need to the carry on common plant protection unmanned plane One picture pick-up device is that the fixed height of unmanned plane can be achieved, and is easy to deployment, with larger application prospect.
Brief description of the drawings
Fig. 1 be a kind of plant protection unmanned plane of the invention determine high-tech high-tech box is determined based on monocular sequence image Figure;
Fig. 2 is the SAD search strategy schematic diagrames that a kind of plant protection unmanned plane of the invention determines high-tech;
Fig. 3 is the cross bearing schematic diagram that a kind of plant protection unmanned plane of the invention determines high-tech.
Embodiment
The present invention provides a kind of plant protection unmanned plane and determines high-tech, to make the purpose of the present invention, technical scheme and effect more It is clear, clearly, and referring to the drawings and give an actual example that the present invention is described in more detail.It should be understood that described herein specific Implement only to explain the present invention, be not intended to limit the present invention.
Step 1, using the video camera of unmanned plane carry to front side shooting figure piece sequence;
Camera intrinsic parameter is demarcated first:Camera calibration is substantially a process for determining camera interior and exterior parameter, The demarcation of wherein inner parameter refers to the inner geometry and optical parametric for determining that video camera is intrinsic, unrelated with location parameter, bag Include picture centre coordinate, focal length, scale factor and lens distortion etc..In the present invention plant protection unmanned plane equipment DVB, Inertial Measurement Unit (IMU), video camera, graphic transmission equipment etc..When unmanned plane carries out plant protection work, unmanned plane carry is taken the photograph Camera is to front side shooting figure piece sequence, the purpose for the arrangement is that elapsed time is both needed in view of collection, transmission image and calculating, In order to ensure upgrading in time for surely high data, therefore use the strategy of video camera forward sight.
The method for the video camera that Zhang Zhengyou is proposed facilitates easy to operate, moderate accuracy, the quilt in Calibration of camera intrinsic parameters Widely used (Zhang Z.A Flexible New Technique for Camera Calibration [J] .IEEE Transactions on Pattern Analysis&Machine Intelligence,2000,22(11):1330- 1334.).In the method, it is desirable to which video camera shoots a plane target drone, video camera and 2D targets in two or more different azimuth It can move freely through, it is not necessary to know kinematic parameter.In calibration process, it is assumed that intrinsic parameters of the camera is constant all the time, No matter i.e. video camera is from any angle shot target, intrinsic parameters of the camera is all constant, and only external parameter changes.
The embodiment of the present invention utilizes Zhang Zhengyou method calibrating camera intrinsic parameters, and video camera shoots 15 width figures of different azimuth Picture, in order to improve stated accuracy, reduces the size of random error, and the image of acquisition is distributed in the range of each in visual field, together When have the depth of certain size on shooting distance, the placed angle of target etc. will also have abundant change.
Step 2, feature point extraction is carried out to the photo current frame of shooting:
2.1, as shown in figure 1, using SILC image segmentation algorithms, super-pixel segmentation is carried out to kth frame image, and calculate every The center-of-mass coordinate of individual region unit, obtains point set I1
2.2, the angular coordinate of kth frame image is extracted using Harris Corner Detections, point set I is obtained2, and merge I1And I2, Obtain feature point set I to be matched somebody with somebodyp
Step 3, Feature Points Matching:Using SAD algorithms, in the two field picture of kth -1, point set I is detectedpIn each put it is corresponding Match point, obtains point set Ic, it is specific as follows:
As shown in Fig. 2 choosing a N × n-quadrant on characteristic point periphery is used as template.It is then attempt in the two field picture of kth -1 In find the matching of the template.In order to reduce search space, this region of search is limited to (Nsearch×Nsearch) characteristic point week Region is enclosed, the similarity measurement of matching is represented with following formula.
SAD(dx,dy)=∑ | template (x, y)-imagek (x+dx,y+dy)|
In formula, x, y is characterized coordinate a little, dx, and dy is relative x, y coordinate offset;
Change search window centre point position,, should when similarity measurement is minimum to reduce similarity measurement to greatest extent Point is match point.
Step 4, if n=2, cross bearing is used;According to the same place of matching to set, the position of aircraft, posture and The angle of video camera, calculates the three-dimensional coordinate of each same place;
As shown in figure 3, setting aerial C1And C2Two points are photographed on a surface target, obtain a cubic phase pair, ground target point Picture points of the P on the photograph of left and right is p1And p2.Obviously, ray C of the same name1p1And C2p2Intersect at ground target point P.
According to perspective projection imaging relation, C can be derived1And C2Imaging collinearity equation be respectively:
Wherein, (xi,yi), i=1,2 is P point actual imaging point coordinates;(Fx,Fy) it is equivalent focal length;(Cx,Cy) it is as main Point coordinates;It is P points in CiThe coordinate taken the photograph under the camera coordinate system of station.
According to the relative pose relation of camera coordinate system and world coordinate system, it can obtain:
Wherein, (X, Y, Z) is coordinate of the target point in world coordinate system, r0~r8It is that world coordinate system and video camera are sat The spin matrix component that mark system posture is consistent and needs;Tx, Ty, TzWorld coordinate system origin is moved on to camera coordinate system by representative The translational movement of origin.
Using the geographic coordinate system of first measurement point as world coordinate system, then first time measurement point Tx=Ty=Tz=0, The T of second measurement pointx, Ty, TzValue can position difference twice by satellite positioning receiver and calculate.Surveyed by inertia Unit and camera cradle head are measured, azimuth angle alpha and the angle of site of aircraft crab angle φ, angle of pitch γ, roll angle θ and video camera is obtained β, can be obtained:
Simultaneous can solve point P coordinate (X, Y, Z) with equation.
Step 5, if n>2, using the multistation location based on weighted least square, calculate the three-dimensional seat of each same place Mark
Above-mentioned localization method, result of calculation is very sensitive to various noises, using the multiple measurement to target point of the same name, utilizes Multistation location model based on weighted least square, by optimal derivation algorithm, improves precision and the Shandong of location algorithm Rod.
Unmanned plane carries out n (n in the flight course of preset flight path to target point>2) secondary shooting, obtains n images.
Then according to collinearity equation, have
Z=H (S)
Wherein:Z=[x1 y1 ... xn yn]T, S=[X, Y, Z]T
Above formula is subjected to first order Taylor expansion at initial value, can be obtained
Z=H (S0)+B·(S-S0)+Δn
Wherein:
Order
U=Z-H (S0)
V=S-S0
Therefore,
U=BV+ Δs n
According to least-squares estimation, it can obtain
Unmanned plane is in each measurement point, and the posture of aircraft is all different, in this case, even if using same shooting Machine, but be due to that external parameters of cameras is different, cause each measurement spot placement accuracy difference, the contribution to error is also different.Cause This, introduces weighted least square.
Make R-1For weighting matrix, and
Then
Therefore,
S0It can be tried to achieve according to cross bearing principle.Because the site error of initial value is larger, add what linearisation was brought Error so that try to achieve for the first timeAnd actual value deviation is larger.Using iterative method, when positioning result tends to stationary value, iteration knot Beam.
The estimation of weighting matrix is more difficult, generally selects diagonal matrix or simpler unit matrix, although selection Weight matrix have error, but unbiased esti-mator is still to the weighted least square of unknown parameter.Present invention employs one kind The method of convenient, science obtains weight matrix, and good effect is obtained in practicality.Its core concept is:For causing error Larger measurement point, gives less weights, and the less measurement point of error gives larger weights, so as to increase preferably " contribution " of measurement point, improves the precision of least-squares estimation.In position fixing process, measurement point distance objective point is more remote, positioning Precision is poorer, and measurement point and the distance of target point are pointed to angle by the elevation and measurement point camera optical axis of measurement point and determined jointly It is fixed, meet basic triangle relation.It can thus be concluded that,
Wherein, σ is the element in weight matrix, and ε is that camera optical axis points to angle, and H is measurement point height.

Claims (5)

1. a kind of plant protection unmanned plane determines high-tech, it is characterised in that comprise the following steps that:
Step 1, ground scenery is shot to front side using the video camera of unmanned plane carry, and constant duration preserves sequence of pictures;
Step 2, feature point extraction is carried out to the photo current frame of shooting;
Step 3, it is reverse from the sequence of pictures of preservation to extract n frame pictures, feature is carried out to the characteristic point of extraction using SAD algorithms Point matching;
Step 4, if n=2, cross bearing is used;According to the same place of matching to set, the position of aircraft, posture and shooting The angle of machine, calculates the three-dimensional coordinate of each same place;
Step 5, if n>2, using the multistation location based on weighted least square, calculate the three-dimensional coordinate of each same place.
2. a kind of plant protection unmanned plane according to claim 1 determines high-tech, it is characterised in that described step 2 it is specific Step is as follows:
2.1, using SILC image segmentation algorithms, super-pixel segmentation is carried out to kth frame image, and calculate the barycenter of each region unit Coordinate, obtains point set I1
2.2, the angular coordinate of kth frame image is extracted using Harris Corner Detections, point set I is obtained2, and merge I1And I2, obtain Feature point set I to be matched somebody with somebodyp
3. a kind of plant protection unmanned plane according to claim 2 determines high-tech, it is characterised in that described step 3 it is specific Step is as follows:
3.1, characteristic point periphery chooses a N × n-quadrant and is used as template;
3.2, the matching of the template is then found in the two field picture of kth -1, wherein region of search is limited to (Nsearch×Nsearch) Characteristic point peripheral region;The similarity measurement of matching is represented with following formula:
SAD(dx,dy)=∑ | template (x, y)-imagek+1 (x+dx,y+dy)|
In formula, x, y is characterized coordinate a little, dx, and dy is relative x, y coordinate offset;
3.3, change search window centre point position,, should when similarity measurement is minimum to reduce similarity measurement to greatest extent Point is match point;
<mrow> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <msub> <mi>d</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>d</mi> <mi>y</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mi>S</mi> <mi>A</mi> <mi>D</mi> <mo>(</mo> <mrow> <msub> <mi>d</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>d</mi> <mi>y</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
4. a kind of plant protection unmanned plane according to claim 3 determines high-tech, it is characterised in that described step 4 it is specific Step is cross bearing, specific as follows:
If aerial C1And C2Two points are photographed on a surface target, and picture points of the ground target point P on the photograph of left and right is p1And p2
According to perspective projection imaging relation, C is derived1And C2Imaging collinearity equation be respectively:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>F</mi> <mi>x</mi> </msub> <mfrac> <msub> <mi>X</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>x</mi> <mn>2</mn> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>F</mi> <mi>y</mi> </msub> <mfrac> <msub> <mi>Y</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>y</mi> <mn>2</mn> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, (xi,yi), i=1,2 is P point actual imaging point coordinates;(Fx,Fy) it is equivalent focal length;(Cx,Cy) sat for principal point Mark;It is P points in CiThe coordinate taken the photograph under the camera coordinate system of station;
According to the relative pose relation of camera coordinate system and world coordinate system, it can obtain:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>X</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mi>X</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mi>Y</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mi>Z</mi> <mo>+</mo> <msub> <mi>T</mi> <mi>X</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Y</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>r</mi> <mn>3</mn> </msub> <mi>X</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>4</mn> </msub> <mi>Y</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>5</mn> </msub> <mi>Z</mi> <mo>+</mo> <msub> <mi>T</mi> <mi>Y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>r</mi> <mn>6</mn> </msub> <mi>X</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>7</mn> </msub> <mi>Y</mi> <mo>+</mo> <msub> <mi>r</mi> <mn>8</mn> </msub> <mi>Z</mi> <mo>+</mo> <msub> <mi>T</mi> <mi>Z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, (X, Y, Z) is coordinate of the target point in world coordinate system, r0~r8For world coordinate system and camera coordinate system The spin matrix component that posture is consistent and needs;Tx, Ty, TzWorld coordinate system origin is moved on to camera coordinate system origin by representative Translational movement;
Using the geographic coordinate system of first measurement point as world coordinate system, then first time measurement point Tx=Ty=Tz=0, second The T of individual measurement pointx, Ty, TzValue difference positioned by satellite positioning receiver twice calculated;
By Inertial Measurement Unit and camera cradle head, aircraft crab angle φ, angle of pitch γ, roll angle θ and video camera are obtained Azimuth angle alpha and angle of site β, can be obtained:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>R</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>r</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>4</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>5</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>r</mi> <mn>6</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>7</mn> </msub> </mtd> <mtd> <msub> <mi>r</mi> <mn>8</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Simultaneous can solve point P coordinate (X, Y, Z) with equation.
5. a kind of plant protection unmanned plane according to claim 3 determines high-tech, it is characterised in that described step 5 is specific such as Under:
Unmanned plane carries out n (n in the flight course of preset flight path to target point>2) secondary shooting, obtains n images;
Then according to collinearity equation, draw:
Z=H (S)
Wherein:Z=[x1 y1 ... xn yn]T, S=[X, Y, Z]T
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mi>x</mi> </msub> <mfrac> <msub> <mi>X</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>x</mi> <mn>1</mn> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mi>y</mi> </msub> <mfrac> <msub> <mi>Y</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>y</mi> <mn>1</mn> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mi>x</mi> </msub> <mfrac> <msub> <mi>X</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>x</mi> <mi>n</mi> </msub> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mi>y</mi> </msub> <mfrac> <msub> <mi>Y</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </msub> <msub> <mi>Z</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <msub> <mi>y</mi> <mi>n</mi> </msub> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Above formula is subjected to first order Taylor expansion at initial value, can be obtained:
Z=H (S0)+B·(S-S0)+Δn
Wherein:
<mrow> <mi>B</mi> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Y</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Z</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Y</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Z</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mrow> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mrow> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Y</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mrow> <mn>2</mn> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Z</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>2</mn> <mi>n</mi> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mrow>
Order
U=Z-H (S0)
V=S-S0
Therefore,
U=BV+ Δs n
According to least-squares estimation, it can obtain
<mrow> <mover> <mi>V</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mi>T</mi> </msup> <mi>B</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>B</mi> <mi>T</mi> </msup> <mi>U</mi> </mrow>
Introduce weighted least square;Make R-1For weighting matrix, and
<mrow> <mi>R</mi> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;sigma;</mi> <msub> <mi>x</mi> <mn>1</mn> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;sigma;</mi> <msub> <mi>y</mi> <mn>1</mn> </msub> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;sigma;</mi> <msub> <mi>x</mi> <mn>2</mn> </msub> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>&amp;sigma;</mi> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>2</mn> <mi>n</mi> <mo>&amp;times;</mo> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mrow>
Then
<mrow> <mover> <mi>V</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mi>T</mi> </msup> <msup> <mi>R</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>B</mi> <mi>T</mi> </msup> <msup> <mi>R</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>U</mi> </mrow>
Therefore,
<mrow> <mover> <mi>S</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>B</mi> <mi>T</mi> </msup> <msup> <mi>R</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>B</mi> <mi>T</mi> </msup> <msup> <mi>R</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>Z</mi> <mo>-</mo> <mi>H</mi> <mo>(</mo> <msup> <mi>S</mi> <mn>0</mn> </msup> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>S</mi> <mn>0</mn> </msup> </mrow>
S0It can be tried to achieve according to cross bearing principle;Using iterative method, when positioning result tends to stationary value, iteration terminates;
For causing the larger measurement point of error, less weights are given, the less measurement point of error gives larger weights;
It can thus be concluded that,
<mrow> <mi>&amp;sigma;</mi> <mo>&amp;Proportional;</mo> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;epsiv;</mi> </mrow> <mi>H</mi> </mfrac> </mrow>
Wherein, σ is the element in weight matrix, and ε is that camera optical axis points to angle, and H is measurement point height.
CN201710006131.4A 2017-01-05 2017-01-05 A kind of plant protection unmanned plane determines high-tech Pending CN107065895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006131.4A CN107065895A (en) 2017-01-05 2017-01-05 A kind of plant protection unmanned plane determines high-tech

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006131.4A CN107065895A (en) 2017-01-05 2017-01-05 A kind of plant protection unmanned plane determines high-tech

Publications (1)

Publication Number Publication Date
CN107065895A true CN107065895A (en) 2017-08-18

Family

ID=59623648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006131.4A Pending CN107065895A (en) 2017-01-05 2017-01-05 A kind of plant protection unmanned plane determines high-tech

Country Status (1)

Country Link
CN (1) CN107065895A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140245A (en) * 2017-12-25 2018-06-08 深圳市道通智能航空技术有限公司 Distance measuring method, device and unmanned plane
CN109141396A (en) * 2018-07-16 2019-01-04 南京航空航天大学 The UAV position and orientation estimation method that auxiliary information is merged with random sampling unification algorism
CN109410281A (en) * 2018-11-05 2019-03-01 珠海格力电器股份有限公司 A kind of position control method, device, storage medium and logistics system
CN109916406A (en) * 2019-01-10 2019-06-21 浙江大学 A kind of circular object localization method based on unmanned aerial vehicle group
CN110658540A (en) * 2019-09-18 2020-01-07 华南农业大学 Method for testing satellite navigation automatic operation accuracy of transplanter by using unmanned aerial vehicle low-altitude flight target positioning technology
CN111367302A (en) * 2020-03-03 2020-07-03 大连海洋大学 Unmanned aerial vehicle self-adaptive height-fixing method for offshore cage culture inspection
CN111627043A (en) * 2020-04-13 2020-09-04 浙江工业大学 Simple human body curve acquisition method based on marker and feature filter
CN116580099A (en) * 2023-07-14 2023-08-11 山东艺术学院 Forest land target positioning method based on fusion of video and three-dimensional model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182974A (en) * 2014-08-12 2014-12-03 大连理工大学 A speeded up method of executing image matching based on feature points
CN104501779A (en) * 2015-01-09 2015-04-08 中国人民解放军63961部队 High-accuracy target positioning method of unmanned plane on basis of multi-station measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182974A (en) * 2014-08-12 2014-12-03 大连理工大学 A speeded up method of executing image matching based on feature points
CN104501779A (en) * 2015-01-09 2015-04-08 中国人民解放军63961部队 High-accuracy target positioning method of unmanned plane on basis of multi-station measurement

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吉淑娇 等: ""基于兴趣区域的特征匹配的电子稳像方法"", 《吉林大学学报(信息科学版)》 *
徐诚 等: ""基于光电测量平台的多目标定位算法"", 《中南大学学报(自然科学版)》 *
徐诚: ""无人机高精度目标定位若干关键技术研究"", 《万方数据》 *
沈楠 等: ""一种遥感图象自动配准方法"", 《计算机工程与应用》 *
肖靖 等: ""基于特征点的飞行器局部模板匹配"", 《信息技术》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140245A (en) * 2017-12-25 2018-06-08 深圳市道通智能航空技术有限公司 Distance measuring method, device and unmanned plane
CN108140245B (en) * 2017-12-25 2022-08-23 深圳市道通智能航空技术股份有限公司 Distance measurement method and device and unmanned aerial vehicle
CN109141396B (en) * 2018-07-16 2022-04-26 南京航空航天大学 Unmanned aerial vehicle pose estimation method with fusion of auxiliary information and random sampling consistency algorithm
CN109141396A (en) * 2018-07-16 2019-01-04 南京航空航天大学 The UAV position and orientation estimation method that auxiliary information is merged with random sampling unification algorism
CN109410281A (en) * 2018-11-05 2019-03-01 珠海格力电器股份有限公司 A kind of position control method, device, storage medium and logistics system
CN109916406A (en) * 2019-01-10 2019-06-21 浙江大学 A kind of circular object localization method based on unmanned aerial vehicle group
CN109916406B (en) * 2019-01-10 2020-10-13 浙江大学 Surrounding target positioning method based on unmanned aerial vehicle cluster
CN110658540A (en) * 2019-09-18 2020-01-07 华南农业大学 Method for testing satellite navigation automatic operation accuracy of transplanter by using unmanned aerial vehicle low-altitude flight target positioning technology
CN111367302A (en) * 2020-03-03 2020-07-03 大连海洋大学 Unmanned aerial vehicle self-adaptive height-fixing method for offshore cage culture inspection
CN111367302B (en) * 2020-03-03 2023-03-21 大连海洋大学 Unmanned aerial vehicle self-adaptive height-fixing method for offshore cage culture inspection
CN111627043A (en) * 2020-04-13 2020-09-04 浙江工业大学 Simple human body curve acquisition method based on marker and feature filter
CN111627043B (en) * 2020-04-13 2023-09-19 浙江工业大学 Simple human body curve acquisition method based on markers and feature screeners
CN116580099A (en) * 2023-07-14 2023-08-11 山东艺术学院 Forest land target positioning method based on fusion of video and three-dimensional model

Similar Documents

Publication Publication Date Title
CN107065895A (en) A kind of plant protection unmanned plane determines high-tech
CN112525162B (en) System and method for measuring image distance of power transmission line by unmanned aerial vehicle
CN106408601B (en) A kind of binocular fusion localization method and device based on GPS
Xiang et al. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform
CN106767714B (en) Improve the equivalent mismatch model multistage Calibration Method of satellite image positioning accuracy
US7751651B2 (en) Processing architecture for automatic image registration
CN103047985B (en) A kind of method for rapidly positioning of extraterrestrial target
CN106155081B (en) A kind of a wide range of target monitoring of rotor wing unmanned aerial vehicle and accurate positioning method
CN104501779A (en) High-accuracy target positioning method of unmanned plane on basis of multi-station measurement
CN105424006A (en) Unmanned aerial vehicle hovering precision measurement method based on binocular vision
CN104200086A (en) Wide-baseline visible light camera pose estimation method
CN108665499B (en) Near distance airplane pose measuring method based on parallax method
CN106971408A (en) A kind of camera marking method based on space-time conversion thought
CN109269525B (en) Optical measurement system and method for take-off or landing process of space probe
CN107390704A (en) A kind of multi-rotor unmanned aerial vehicle light stream hovering method based on IMU pose compensations
CN108955685A (en) A kind of tanker aircraft tapered sleeve pose measuring method based on stereoscopic vision
CN106403900A (en) Flyer tracking and locating system and method
CN110400330A (en) Photoelectric nacelle image tracking method and tracking system based on fusion IMU
CN108007437B (en) Method for measuring farmland boundary and internal obstacles based on multi-rotor aircraft
CN112184786A (en) Target positioning method based on synthetic vision
CN108594223A (en) On-board SAR image object localization method
Hill et al. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren
CN105403886B (en) A kind of carried SAR scaler picture position extraction method
CN113340272B (en) Ground target real-time positioning method based on micro-group of unmanned aerial vehicle
CN107784633A (en) Suitable for the unmanned plane image calibrating method of plane survey

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818

RJ01 Rejection of invention patent application after publication