CN107065124B - 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法 - Google Patents

一种基于液晶空间光调制器实现光束聚焦反馈控制的方法 Download PDF

Info

Publication number
CN107065124B
CN107065124B CN201710356859.XA CN201710356859A CN107065124B CN 107065124 B CN107065124 B CN 107065124B CN 201710356859 A CN201710356859 A CN 201710356859A CN 107065124 B CN107065124 B CN 107065124B
Authority
CN
China
Prior art keywords
light beam
liquid crystal
spot
light
crystal spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710356859.XA
Other languages
English (en)
Other versions
CN107065124A (zh
Inventor
陈志峰
谢志坤
钱伟岸
张金辉
李少锋
卫冠
邓荣标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN201710356859.XA priority Critical patent/CN107065124B/zh
Publication of CN107065124A publication Critical patent/CN107065124A/zh
Application granted granted Critical
Publication of CN107065124B publication Critical patent/CN107065124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明公开了一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,利用液晶空间光调制器产生可编程的菲涅尔透镜结构,通过对光束进行位相或振幅调制,实现对光束焦点的轴向偏移与横向偏移的精确调节;在此基础上利用面阵探测器检测光束焦点的三维偏移信息,结合闭环算法及图像处理,进一步实现对光束聚焦点三维位置的实时反馈控制。本发明具有速度快、精度高、体积小以及可以便于实现聚焦位置三维控制的优点。

Description

一种基于液晶空间光调制器实现光束聚焦反馈控制的方法
技术领域
本发明涉及激光调控技术领域,尤其涉及一种基于液晶空间光调制器实现光束聚焦反馈控制的方法。
背景技术
激光具有指向性好、能量集中的特点,被广泛应用于通信、测量、加工等众多领域以及前沿科学研究。在实际应用中,如精密测量、激光加工等,往往需要精密控制光束聚焦点位置,快速调整激光的聚焦距离。而对于自由空间光通信等需要较长距离传输的应用,由于传输路径中光学元件的不稳定性以及各种环境扰动因素的影响,也需要对光束聚焦进行精密的反馈控制以保证传输的实时稳定性。因此对光束聚焦控制方法的研究具有重要的实际意义。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,基于液晶空间光调制器实现对光束聚焦点三维位置的可编程控制,结合面阵探测可进一步实现对聚焦点位置的实时反馈控制;对比传统的机电控制方法,本发明具有速度快、精度高、体积小以及可以便于实现聚焦点位置三维控制的优点。
为解决上述技术问题,本发明提供如下技术方案:一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,利用液晶空间光调制器产生可编程的菲涅尔透镜结构,通过对光束进行位相或振幅调制,实现对光束焦点的轴向偏移与横向偏移的精确调节;在此基础上用面阵探测器检测光束焦点的三维偏移信息,结合闭环算法及图像处理,进一步实现对光束聚焦点三维位置的实时反馈控制。
进一步地,所述利用液晶空间光调制器产生可编程的菲涅尔透镜结构以实现动态的聚焦控制,液晶空间光调制器对光束的调制方式采用位相调制或者振幅调制;
所述对光束进行位相调制,其具体为:利用液晶空间光调制器产生同心圆环状的波带型位相结构,将每个波带划分台阶;设波带数为N,每个波带划分L个台阶,则其中第k个台阶调制的位相φ为:
Figure BDA0001299326970000021
第j个波带的半径rj为:
Figure BDA0001299326970000022
式中,λ为入射光波长,fz为焦距;
所述对光束进行振幅调制,具体为:
利用液晶空间光调制器产生同心圆环状的波带结构,奇数波带振幅透过率为1,偶数波带振幅透过率为0;其中,第j个波带的半径rj为:
Figure BDA0001299326970000023
式中,λ为入射光波长,fz为焦距。
进一步地,所述对光束焦点的轴向偏移与横向偏移的精确调节,其中,对轴向偏移的精确调节是通过改变可编程菲涅尔透镜结构的波带半径实现的;对横向偏移的精确调节,是通过偏心透镜法实现的;所述偏心透镜法,利用平行光束焦点始终落在透镜光轴上特点,控制菲涅尔波带中心平移,光束焦点也会同向平移相同的距离,而焦点位置坐标的轴向分量不变。
进一步地,所述利用面阵探测器检测光束焦点的轴向偏移与横向偏移信息,具体为:
其中,光束焦点的横向偏移由探测器上的光斑中心坐标
Figure BDA0001299326970000024
给出,具体通过如下一阶矩法获得:
Figure BDA0001299326970000025
式中,(xi,yi)为探测器任意像素元的位置坐标,I为该像素元测得的光强度值;
光束焦点的轴向偏移通过测量探测面上的光斑大小间接判断;所述光斑大小利用如下二阶矩法计算光斑的二维半径(wx,wy):
Figure BDA0001299326970000031
光斑的平均半径R=(wx+wy)/2反映了轴向的离焦程度,R越大表明实际焦面距离探测面越远。
进一步地,所述结合闭环算法及图像处理,其具体为:由计算机程序对液晶空间光调制器和面阵探测器进行统一控制,所述闭环算法采用比例-积分-微分算法进行闭环控制,具体控制步骤为:
S31、程序初始化:设定光束焦点的目标位置,目标位置包括轴向目标位置和横向二维目标位置;在实际应用中,光束焦点的轴向目标位置对应光斑平均半径R取极小的点,而横向二维目标位置由后端系统决定,或者由控制程序初始设定;
S32、面阵探测器采集光斑图像,计算光斑半径以及中心位置坐标,结合光束焦点的目标位置信息判断轴向与横向的偏移量;
S33、根据PID算法确定焦点的轴向和横向位置的调整量,调整动态菲涅尔透镜结构分布并重新加载到液晶空间光调制器中;
S34、重复步骤S31-S33,直至光斑平均半径R以及光斑中心的横向二维偏离量降至最小或低于误差上限。
进一步地,所述步骤S32中面阵探测器采集光斑图像,在面阵探测器获取的光斑图像质量较差的情况下,先对光斑图像进行滤波去噪处理,具体为:先将光斑图像数据变换到小波域,滤波后进行逆小波变换并对其阈值化处理。
采用上述技术方案后,本发明至少具有如下有益效果:
1、本发明利用液晶空间光调制器产生可编程的菲涅尔透镜结构,同时运用PID算法高速地反馈调控,实现激光聚焦焦点三维位置的精密、快速控制;
2、本发明所采用方法在调节过程中不同偏移量之间不存在耦合影响,且横向偏移调节对光传输距离不敏感,因而有利于调节速度和精度的提高;
3、本发明利用可编程的菲涅尔透镜代替传统电控机械移动的方式控制激光光束聚焦偏移,对比传统方式,本方法具有速度快、精度高、体积小以及可以实现偏转与聚焦控制于一体的优点;
4、本发明中稳定快速的数字图像处理方法,使用多贝西小波变换结合自适应的阈值处理方案,实现高效快速的图像去噪算法;
5、本发明使用PID控制算法,大幅优化控制速度,同时建立闭环反馈控制流程,实现对激光束聚焦和偏移的自动控制。
附图说明
图1为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中使用的光路系统原理图;
图2为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中光斑图像小波变换处理后的三维图;
图3为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中闭环控制流程图;
图4为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中光束轴向聚焦控制流程图;
图5为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中光束横向偏移调节原理图;
图6为本发明一种基于液晶空间光调制器实现光束聚焦反馈控制的方法中光束横向偏移控制流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,下面结合附图和具体实施例对本申请作进一步详细说明。
本发明提供了一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,利用液晶空间光调制器产生可编程的菲涅尔透镜结构,通过对光束进行位相或振幅调制,实现对光束焦点的轴向偏移与横向偏移的精确调节;在此基础上利用面阵探测器检测光束焦点的三维偏移信息,结合闭环算法及图像处理,进一步实现对光束聚焦点三维位置的实时反馈控制。
本发明对光束聚焦控制的核心原理是利用可编程的菲涅尔透镜调控光束。
可编程菲涅尔透镜是利用液晶空间光调制器动态调制激光位相或振幅,从而产生动态相息图(呈菲涅尔波带分布)予以实现的。光束通过相息图发生衍射会聚在对应焦距的位置上,并且该焦点总是在菲涅尔透镜中心轴线上,通过编程改变相息图中菲涅尔透镜的环带分布,可以改变其有效焦距,从而实现对光束聚焦点的轴向控制。此外,使用偏心透镜法,通过编程移动菲涅尔透镜,使得其中心与光轴产生一定的偏移,实现焦点在该焦面上的二维移动,即实现了光束聚焦点的横向偏移。
调制方式可以采用位相或振幅调制。对于位相调制,利用液晶空间光调制器产生同心圆环状的波带型位相结构,将每个波带划分台阶;设波带数为N,每个波带划分L个台阶,则其中第k个台阶调制的位相φ为:
Figure BDA0001299326970000051
第j个波带的半径rj为:
Figure BDA0001299326970000052
式中,λ为入射光波长,fz为焦距;
对于振幅调制,利用液晶空间光调制器产生同心圆环状的波带结构,奇数波带振幅透过率为1,偶数波带振幅透过率为0;其中,第j个波带的半径rj为:
Figure BDA0001299326970000053
式中,λ为入射光波长,fz为焦距。
结合使用面阵探测器,可进一步实现光束焦点三维位置的实时反馈控制。面阵探测器采集记录聚焦光斑图像反馈回计算机。计算机根据相应算法调节可编程菲涅尔透镜,使光束焦点移动并将其光斑图像再次采集与反馈。如此不断反馈调节,直到光束聚焦在指定空间三维位置。此时,光束完成自动聚焦和自动偏移。
系统的整体架构及光路原理如图1所示,1为扩束准直器,2、4为偏振片,3为空间光调制器,5为分束器,6为衰减片,7为面阵探测器,其中空间光调制器3和探测器7连接计算机构建反馈调节系统。激光(Laser)进入系统后,经过扩束准直器1并通过偏振片2到达空间光调制器3(LC-SLM),经过调制后的聚焦光斑经分束器5分光后被面阵探测器7所接收,分束器5另一侧光束用于后续的工作系统。
由于空间光调制器本身固有的像素结构导致了入射相干光的衍射,容易产生多个次级衍射光斑,所以系统工作前,可由人工调整面阵探测器或可编程菲涅尔透镜使零级衍射像入射到面阵探测器中,方便后续应用。系统工作时,面阵探测器实时测得的光斑图像输入到基于C++开发的计算机(PC)软件中,计算光斑半径以及中心位置坐标,结合光束焦点的目标位置信息判断轴向与横向的偏移量,反馈调控可编程菲涅尔透镜的参数,使激光光束聚焦到指定空间位置。
下面对系统各部分的实施方案进行论述。
一、数字处理算法及参数计算
要对激光束实现实时的聚焦控制,首先要在面阵探测器上对其进行定位。由上述光路原理可知,对激光束定位实际上是要确定面阵探测器上的光斑中心坐标。采用CMOS、CCD等面阵探测器,相比于较常用于光电定向的四象限探测器而言,可以获得聚焦光斑的绝对位置以及全面的光强横向分布,对于一般的聚焦光斑图像经过基本的阈值处理后使用一阶矩法和二阶矩法就可以得到较好的效果。但一些实际应用中光束通过LC-SLM后存在多级衍射环,且各类噪声及背景光会干扰后续光斑参数的计算,以上方法难以胜任,因此可以先用小波算法进行去噪处理。
具体而言,先将光斑图像变换到小波域,滤波后进行逆小波变换并对其阈值化处理。处理后的光斑图像质量将得到明显改善,但不会改变原光斑特征。此处选择使用多分辨率多贝西小波变换,在保证运算速度的同时尽量有效去噪,处理效果如图2所示。
通过处理面阵探测器采集的光斑图像,计算光斑中心坐标与半径大小。光斑中心坐标利用一阶矩法计算,此方法能够充分利用面阵探测器采集的光斑图像数据,对光斑落在感光面上的任意情形均可获得精确的光斑中心坐标信息,一阶矩计算式如下:
Figure BDA0001299326970000071
通过计算光强分布的二阶矩可以获得光斑半径大小wx、wy,二阶矩计算式如下:
Figure BDA0001299326970000072
二、控制方案
本方法可以实现光束聚焦的闭环反馈控制,具体控制方案如图3所示,具体闭环控制流程如下:
1.通过面阵探测器编程采集激光聚焦光斑图像;
2.对聚焦光斑图像进行数字图像处理,滤波并计算聚焦光斑中心坐标与半径大小;
3.利用自动控制算法调整生成的菲涅尔透镜重新输出到空间光调制器;
4.重复1-3步,直到聚焦光斑位置达到设定的预期值。
闭环反馈控制的基本算法是PID算法,如下公式是一个典型PID算法:
Figure BDA0001299326970000073
其中u(n)为闭环控制中第n次输出的值,e(n)为第n次输入的值,即设定值与实际值的差值,KP、Ki、Kd分别为比例、积分、微分放大系数。
针对反馈控制中的不同环节调节各个放大系数参数,可使实测值快速收敛到预期值,提高调控精度、调节速度以及稳定性。具体应用到本方法中主要分轴向自动聚焦控制和横向自动偏移控制。
1、激光轴向聚焦控制
以振幅调制方式为例,在轴向自动聚焦方面采用PID算法。大体的控制流程是根据面阵探测器所采集光斑半径的大小R,通过算法计算后产生新的波带半径参数rj,然后根据新的rj重新产生菲涅尔透镜结构,从而改变激光聚焦的轴向位置,即在面阵探测器上再次获得了新的光斑半径大小R。重复以上步骤,最终使焦点位置落在面阵探测器的中心上。此时光斑半径R最小。
具体的算法运用,如图4所示,其中ΔRi是当前的偏差,ΔRi-1,ΔRi-2是之前的偏差,Kp是比例系数,Ki是积分系数,Kd是微分系数,Δr是波带半径的增量。程序一开始假设第一次获得的光斑半径R为最小值。在之后的运算过程中,每当找到比当前最小值小的半径时就令此半径为最小值。当长时间出现当前的半径R与最小的半径Rmin相等的情况时,则说明焦点已落在面阵探测器的中心位置。在实际中,根据面阵探测器的像素大小且经过多次的验证后,我们将光斑半径的最小值直接设为20um。若出现光斑半径小于或等于这个最小值,则可认为调节已经完成。当出现收敛较慢时,我们则调节PID各项系数,以提高聚焦速度。总的来说,运用PID算法后能够大幅度地提高控制速度。
2、激光横向偏移控制实现方案
在激光横向偏移方面,如图5所示,由于焦点位置总是跟随菲涅尔透镜的光轴位置变化而变化,所以通过偏心透镜法,编程控制菲涅耳透镜平移,使透镜中心与入射激光光轴偏离一定距离,从而实现激光焦点的横向偏移。
使用基于可编程的菲涅尔透镜的控制方案可以实现小角度偏移调控,且理论精度为LC-SLM像素间距和面阵探测器像素间距的较小者dmin,即最小可分辨光斑聚焦中心dmin距离的偏移。通过更换具有更小像素元的LC-SLM和面阵探测器有利于提高控制精度。为了提高控制速度,可借助PID算法加快控制值收敛于预期值,具体偏移控制细节如下:
借助上文所述的PID控制算法,通过面阵探测器采集的图像计算得到光斑中心坐标,运用图6所示的算法,反馈调节波带参数,进而实现焦点横向偏移。其中ΔXi,ΔYi是当前的偏差,ΔXi-1,ΔYi-1是之前的偏差,Xi+1,Yi+1为改变波带参数后新焦点的位置坐标,ΔXtarget,ΔYtarget是设定位置坐标,Kp是比例系数,Ki是积分系数,ΔC是坐标增量,Lx,i+1,Ly,i+1为新的波带中心位置坐标,Lx,i,Ly,i为当前的波带中心位置坐标。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解的是,在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种等效的变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

Claims (4)

1.一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,其特征在于,利用液晶空间光调制器产生可编程的菲涅尔透镜结构,通过对光束进行位相或振幅调制,实现对光束焦点的轴向偏移与横向偏移的精确调节;在此基础上用面阵探测器检测光束焦点的三维偏移信息,结合闭环算法及图像处理,进一步实现对光束聚焦点三维位置的实时反馈控制;
所述对光束焦点的轴向偏移与横向偏移的精确调节,其中,对轴向偏移的精确调节是通过改变可编程菲涅尔透镜结构的波带半径实现的;对横向偏移的精确调节,是通过偏心透镜法实现的;所述偏心透镜法,利用平行光束焦点始终落在透镜光轴上的特点,控制菲涅尔波带中心平移,光束焦点也会同向平移相同的距离,而焦点位置坐标的轴向分量不变;
所述结合闭环算法及图像处理,其具体为:由计算机程序对液晶空间光调制器和面阵探测器进行统一控制,所述闭环算法采用比例-积分-微分算法进行闭环控制,具体控制步骤为:
S11、程序初始化:设定光束焦点的目标位置,目标位置包括轴向目标位置和横向二维目标位置;在实际应用中,光束焦点的轴向目标位置对应光斑平均半径R取极小的点,而横向二维目标位置由后端系统决定,或者由控制程序初始设定;
S12、面阵探测器采集光斑图像,计算光斑半径以及光斑中心位置坐标,结合光束焦点的目标位置信息判断轴向与横向的偏移量;
S13、根据PID算法确定焦点的轴向和横向位置的调整量,调整动态菲涅尔透镜结构分布,并重新加载到液晶空间光调制器中;
S14、重复步骤S11-S13,直至光斑平均半径R以及光斑中心的横向二维偏离量降至最小或低于误差上限;
步骤S13中,所述根据PID算法确定焦点的轴向和横向位置的调整量,调整动态菲涅尔透镜结构分布,具体包括:
根据面阵探测器所采集光斑半径的大小,通过PID算法计算后产生新的波带半径参数rj,然后根据新的rj重新产生菲涅尔透镜结构,从而改变激光聚焦的轴向位置,即在面阵探测器上再次获得了新的光斑半径大小;
使用基于可编程的菲涅尔透镜的控制方案实现小角度偏移调控,理论精度为液晶空间光调制器像素间距和面阵探测器像素间距的较小者dmin,即最小可分辨光斑聚焦中心dmin距离的偏移。
2.根据权利要求1所述的一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,其特征在于,所述利用液晶空间光调制器产生可编程的菲涅尔透镜结构以实现动态的聚焦控制,液晶空间光调制器对光束的调制方式采用位相调制或者振幅调制;
所述对光束进行位相调制,其具体为:利用液晶空间光调制器产生同心圆环状的波带型位相结构,将每个波带划分台阶;设波带数为N,每个波带划分L个台阶,则其中第k个台阶调制的位相φ为:
Figure FDA0002262910830000021
第j个波带的半径rj为:
Figure FDA0002262910830000022
式中,λ为入射光波长,fz为焦距;
所述对光束进行振幅调制,具体为:
利用液晶空间光调制器产生同心圆环状的波带结构,奇数波带振幅透过率为1,偶数波带振幅透过率为0;其中,第j个波带的半径rj为:
Figure FDA0002262910830000023
式中,λ为入射光波长,fz为焦距。
3.根据权利要求1所述的一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,其特征在于,所述利用面阵探测器检测光束焦点的轴向偏移与横向偏移信息,具体为:
其中,光束焦点的横向偏移由探测器上的光斑中心坐标
Figure FDA0002262910830000024
给出,具体通过如下一阶矩法获得:
Figure FDA0002262910830000025
式中,(xi,yi)为探测器任意像素元的位置坐标,I为该像素元测得的光强度值;
光束焦点的轴向偏移通过测量探测面上的光斑大小间接判断;所述光斑大小利用如下二阶矩法计算光斑的二维半径(wx,wy):
Figure FDA0002262910830000031
光斑的平均半径R=(wx+wy)/2反映了轴向的离焦程度,R越大表明实际焦面距离探测面越远。
4.根据权利要求1所述的一种基于液晶空间光调制器实现光束聚焦反馈控制的方法,其特征在于,所述步骤S12中面阵探测器采集光斑图像,在面阵探测器获取的光斑图像质量较差的情况下,先对光斑图像进行滤波去噪处理,具体为:先将光斑图像数据变换到小波域,滤波后进行逆小波变换并对其阈值化处理。
CN201710356859.XA 2017-05-19 2017-05-19 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法 Active CN107065124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710356859.XA CN107065124B (zh) 2017-05-19 2017-05-19 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710356859.XA CN107065124B (zh) 2017-05-19 2017-05-19 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法

Publications (2)

Publication Number Publication Date
CN107065124A CN107065124A (zh) 2017-08-18
CN107065124B true CN107065124B (zh) 2020-04-14

Family

ID=59610193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710356859.XA Active CN107065124B (zh) 2017-05-19 2017-05-19 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法

Country Status (1)

Country Link
CN (1) CN107065124B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076655B (zh) * 2017-09-27 2020-10-02 深圳前海达闼云端智能科技有限公司 用于物质检测的焦点检测方法、装置、存储介质及设备
CN111735535B (zh) * 2019-03-25 2024-01-02 中国科学院上海光学精密机械研究所 三维聚焦阵列实时动态精密调控装置及方法
CN110286541A (zh) * 2019-07-08 2019-09-27 中国科学院光电技术研究所 一种基于液晶的光束偏转系统控制方法
CN110751686B (zh) * 2019-11-06 2024-03-22 哈工大机器人(岳阳)军民融合研究院 一种测量霍尔离子源离子束流偏心角度的方法及装置
CN113671702A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种多焦图像生成装置、抬头显示装置、相关方法及设备
CN111722182A (zh) * 2020-06-28 2020-09-29 中国兵器装备研究院 多孔径激光发射定位检测装置及方法
CN111884019B (zh) * 2020-08-17 2021-03-30 武汉金顿激光科技有限公司 一种三维多光束激光参数调控方法及系统
CN112045302B (zh) * 2020-09-01 2022-06-07 湖北工业大学 一种激光多焦点和焦线组合加工系统及加工方法
CN112558229B (zh) * 2020-12-11 2023-02-03 浙江奥智光电科技有限公司 一种高精度光纤聚焦器的工艺制作方法
CN113126290B (zh) * 2021-04-27 2023-03-21 西北大学 一种用于产生可控多焦点阵列的相位调制方法
CN114827428B (zh) * 2022-05-31 2023-11-03 合肥埃科光电科技股份有限公司 用于棱镜分光多光谱相机的安装校准方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072563A1 (ja) * 2007-12-05 2009-06-11 Hamamatsu Photonics K.K. 位相変調装置及び位相変調方法
CN203101711U (zh) * 2013-01-29 2013-07-31 苏州舜新仪器有限公司 一种激光外差干涉测量光束的自聚焦装置
CN104471465A (zh) * 2012-07-26 2015-03-25 浜松光子学株式会社 光调制方法、光调制程序、光调制装置、及光照射装置
CN104620163A (zh) * 2012-09-13 2015-05-13 浜松光子学株式会社 光调制控制方法、控制程序、控制装置和激光照射装置
CN104730709A (zh) * 2015-04-15 2015-06-24 重庆大学 相位调制型微镜阵列可编程菲涅尔波带片及其变焦方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289128B (zh) * 2011-06-16 2012-12-19 中国人民解放军国防科学技术大学 一种新型二维光束偏转方法及装置
CN102354068A (zh) * 2011-10-24 2012-02-15 苏州科技学院 一种基于液晶空间光调制器实现可变焦透镜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072563A1 (ja) * 2007-12-05 2009-06-11 Hamamatsu Photonics K.K. 位相変調装置及び位相変調方法
CN104471465A (zh) * 2012-07-26 2015-03-25 浜松光子学株式会社 光调制方法、光调制程序、光调制装置、及光照射装置
CN104620163A (zh) * 2012-09-13 2015-05-13 浜松光子学株式会社 光调制控制方法、控制程序、控制装置和激光照射装置
CN203101711U (zh) * 2013-01-29 2013-07-31 苏州舜新仪器有限公司 一种激光外差干涉测量光束的自聚焦装置
CN104730709A (zh) * 2015-04-15 2015-06-24 重庆大学 相位调制型微镜阵列可编程菲涅尔波带片及其变焦方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于空间光调制的光束聚焦实时反馈控制方法及系统;谢志坤 等;《激光与光电子学进展》;20170329;第54卷(第7期);第072201-1至072201-8页 *

Also Published As

Publication number Publication date
CN107065124A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107065124B (zh) 一种基于液晶空间光调制器实现光束聚焦反馈控制的方法
CN111900597B (zh) 一种平面多光束激光参数调控方法及系统
CN109164662B (zh) 基于液晶光学相控阵的光束偏转控制方法
US4958376A (en) Robotic vision, optical correlation system
WO2017094129A1 (ja) ホログラム光情報再生装置
CN106125445B (zh) 一种液晶光学相控阵衍射效率优化系统及方法
TWI664446B (zh) 光束成形模組及用於該光束成形模組的控制系統
CN108332679B (zh) 一种精密离焦检测装置及检测方法
CN109901303B (zh) 基于自适应并行坐标算法的多模光纤出射光斑聚焦方法与系统
CN110554510A (zh) 一种透射式衍射光学元件的光学成像系统
CN111609817A (zh) 一种小型化高精度激光束指向稳定装置
CN110609392A (zh) 一种基于反射式衍射光学元件的光学成像系统及方法
CN111273451A (zh) 一种大范围高精度移动圆艾里光束自聚焦点的装置及方法
CN113448077A (zh) 一种基于dmd生成多参量可调光场的方法、装置及系统
US20170061603A1 (en) Method of enabling spatially varying auto focusing of objects and an image capturing system thereof
CN1769855A (zh) 一种基于正支共焦非稳腔腔镜失调监测系统及其监测方法
CN114185175B (zh) 一种激光光束整形装置及方法
CN111884019B (zh) 一种三维多光束激光参数调控方法及系统
CN217122085U (zh) 一种生成多焦点可调环光斑的激光焊接系统
CN114371549B (zh) 一种基于多焦复用透镜的定量相位成像方法及系统
CN108227407B (zh) 一种基于相干图像反馈的数字光成型方法
CN210573037U (zh) 一种基于反射式衍射光学元件的光学成像系统
CN112965182B (zh) 一种实现多焦点阵列与多芯光纤自动对准耦合系统和方法
CN210666225U (zh) 一种透射式衍射光学元件的光学成像系统
US20120008476A1 (en) Information reproduction apparatus and method for controlling same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant