CN107061492B - 一种球形磁悬浮轴承装置 - Google Patents

一种球形磁悬浮轴承装置 Download PDF

Info

Publication number
CN107061492B
CN107061492B CN201710259999.5A CN201710259999A CN107061492B CN 107061492 B CN107061492 B CN 107061492B CN 201710259999 A CN201710259999 A CN 201710259999A CN 107061492 B CN107061492 B CN 107061492B
Authority
CN
China
Prior art keywords
magnetic
bearing
magnetic suspension
magnetic bearing
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710259999.5A
Other languages
English (en)
Other versions
CN107061492A (zh
Inventor
韩邦成
李海涛
郑世强
周新秀
乐韵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710259999.5A priority Critical patent/CN107061492B/zh
Publication of CN107061492A publication Critical patent/CN107061492A/zh
Application granted granted Critical
Publication of CN107061492B publication Critical patent/CN107061492B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0485Active magnetic bearings for rotary movement with active support of three degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开了一种球形磁悬浮轴承装置,可作为动力学仿真平台、三自由度转台、万向动量轮等系统的三自由度无接触支承装置,主要由上磁轴承、下磁轴承、位置传感器、辅助轴承、辅助轴承座、磁悬浮转子、轴座及锁紧螺母等部件组成。由球形磁悬浮轴承装置中心向外依次为轴座、上磁轴承、下磁轴承、位置传感器、辅助轴承和锁紧螺母,在辅助轴承外侧为辅助轴承座,磁悬浮转子处于整个装置的外侧,磁悬浮转子的内表面与上、下磁轴承外表面和位置传感器探头表面为同心球面,通过控制系统保持磁悬浮转子的中心位置不变,并保证磁悬浮转子具有三个旋转自由度。本发明具有运动角度范围大、结构简单、成体低、可靠性高和使用寿命长等优点。

Description

一种球形磁悬浮轴承装置
技术领域
本发明涉及磁悬浮轴承的技术领域,具体涉及一种球形磁悬浮轴承装置,可作为空间动力学仿真平台、三自由度转台、机器人关节、万向动量轮等系统的多自由度无接触支承装置。
背景技术
空间动力学仿真平台、机器人关节、三轴转台、万向动量轮等装置都要求具有多自由度运动能力,为减小这些装置的结构复杂性、体积和重量,并提高其使用寿命和可靠性(特别是工作在空间环境下的装置),所以迫切需求多自由度支承系统,尤其是球形支承机构。另外,球形电机技术的进步及其应用也受到了球形支承技术的限制。通过机械接触方式实现球形支承机构存在的主要缺点有机械零件加工制造困难,机械安装复杂,存在运动干涉,体积大,需要润滑,由于存在摩擦和磨损而寿命短,可靠性较差。而球形气浮轴承存在气浮轴承的间隙大、刚度不可控、占用空间大(需要气源,如泵房或气瓶)和噪声大等缺点,且主要应用于三自由度航天器仿真装置。而球形磁悬浮装置与其相比,实现了无接触支承,无需润滑和密封,轴承间隙小,其刚度主动可控,无振动、噪声小。另外,还不需气源等附加装置,并可应用于空间环境,对各种恶劣环境有很好的适应性。目前有的大型航天器姿态机动装置中应用于球形磁悬浮轴承装置,美国专利号:No.4785212,1988结构的大角度磁悬浮装置,存在结构复杂、制造和加工难度大等缺点,而且只应用于大型航天器的姿态控制;美国专利号:No.6351049,2002结构的球连形磁轴承,存在耦合问题的将导致控制难度大和稳定差,定子铁心采用实心铁磁性材料,将导致损耗大,且没有保护轴承和非接触位移传感器等装置;由于存在上述缺陷,故现有的球形磁悬浮轴承装置存在结构复杂、功耗大、成本高和控制难度大等缺点。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种结构简单、运动范围大,而且可靠性高、使用寿命长和不存在化学污染的球形磁悬浮轴承装置。
本发明解决上述技术问题采用的技术方案是:一种球形磁悬浮轴承装置,由静止和转动两部分组成,静止部分包括上磁轴承的静止部分、下磁轴承的静止部分、辅助轴承、位置传感器、辅助轴承座、轴座和锁紧螺母;转动部分包括磁悬浮转子。轴座外于球形磁悬浮轴承装置的中部,由轴座中部向外分别为上磁轴承的静止部分、下磁轴承的静止部分、位置传感器、辅助轴承和锁紧螺母,在辅助轴承外侧为辅助轴承座。上磁轴承的静止部分和下磁轴承的静止部分和位置传感器分别与轴座相连接,辅助轴承通过锁紧螺母固定在轴座上,辅助轴承座与辅助轴承连接,磁悬浮转子处于整个装置外侧,辅助轴承座与磁悬浮转子之间形成保护间隙,磁悬浮转子的内表面与上磁轴承定子磁极外表面、下磁轴承定子磁极外表面和位置传感器探头表面为同心球面。位置传感器输出的电信号与外加控制器的输入端相连,该控制器的输出端分别与上磁轴承和下磁轴承的激磁线圈相连接,形成电的闭环回路,通过控制系统保持磁悬浮转子的中心位置不变,并保证磁悬浮转子具有三个旋转自由度。
其中,所述的上磁轴承和下磁轴承均为非机械接触的电磁偏置磁悬浮轴承,而且上磁轴承的定子磁极表面和下磁轴承定子磁极表面均为球面四边形,上磁轴承的定子和下磁轴承定子均由4个磁极对组成,相对球心对称放置,上磁轴承的定子和下磁轴承定子的铁心采用导磁性能良好的软磁材料冲压迭制而成。
其中,所述的上磁轴承和下磁轴承同时为磁悬浮转子提供径向支承和轴向支承作用,省去了普通的轴向磁轴承。
其中,所述的两个辅助轴承座的外表面和磁悬浮转子的内表面均为同心球面,两个辅助轴承座的外表面分别与磁悬浮转子的内表面之间形成0.1-0.2mm的保护间隙。
其中,所述的两个位置传感器分别具有四个探头,探头的探测面为球面。
本发明的原理是:通过上磁轴承和下磁轴承保持球形磁悬浮轴承装置的上磁轴承静止部分和下磁轴承静止部分与磁悬浮转子之间的球面间隙均匀以及保持非接触稳定悬浮,同时保证内表面为球形的磁悬浮转子具有三个旋转自由度,磁悬浮转子的内表面与上磁轴承定子磁极外表面、下磁轴承定子磁极外表面和位置传感器探头表面为同心球面。上磁轴承磁极和下磁轴承磁极产生的磁场都指向球心,这保证了每对磁极产生的合力都通过磁悬浮转子的球心,不会对磁悬浮转子产生转动方向的力矩。3个平动方向的控制力不会干扰转动方向的控制。当磁悬浮转子受到某一扰动因素的干扰后,将使上磁轴承静止部分和下磁轴承静止与磁悬浮转子之间的球面间隙发生变化,这时位置传感器将及时检测出球面间隙的变化,发出检测信号,外加控制器通过增加或减小上磁轴承和下磁轴承上的激磁线圈中的电流,增大或减小上磁轴承和下磁轴承的磁力,从而保持上磁轴承静止部分和下磁轴承静止部分与磁悬浮转子之间的球面间隙均匀和非接触稳定悬浮,消除干扰的影响,保持球形磁悬浮转子的中心位置不变,维持球形磁悬浮轴承装置在三个旋转自由度上的正常稳定运行。当磁悬浮转子产生x轴负方向上的位移时,位于x轴左侧的上磁轴承磁极和下磁轴承磁极中的电流减小,位于x轴右侧的上磁轴承磁极和下磁轴承磁极中的电流加大,从而产生x轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变。当磁悬浮转子产生z轴负方向上的位移时,位于z轴上半部的上磁轴承的4对磁极中的电流加大,位于z轴下半部的下磁轴承的4对磁极的电流减小,从而产生z轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变。
本发明与现有技术相比的优点在于:本发明由于采用了上磁轴承和下磁轴承技术,提高了球形支承装置的使用寿命和精度,上磁轴承和下磁轴承同时为磁悬浮转子提供径向支承和轴向支承作用,省去了普通的轴向磁轴承,不需要润滑,通过保护轴承提高了系统的可靠性,而且控制简单、调节方便。上磁轴承定子铁心和下磁轴承定子铁心采用导磁性能良好的软磁材料冲压迭制而成,从而减小了球形磁悬浮轴承装置的涡流损耗。
附图说明
图1为本发明所述的一种球形磁悬浮轴承装置局部剖分图;
图2为本发明的一种球形磁悬浮轴承装置剖面图;
图3为本发明的一种球形磁悬浮轴承,当磁悬浮转子位于中心位置时的磁力线分布图;
图4为图3相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小;
图5为本发明的一种球形磁悬浮轴承,当磁悬浮转子产生x轴负方向位移时的磁力线分布图;
图6为图5相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小;
图7为本发明的一种球形磁悬浮轴承,当磁悬浮转子产生z轴负方向位移时的磁力线分布图;
图8为图7相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小;
图9为本发明的磁轴承剖面图;
图10为本发明的磁轴承截面图;
图11为本发明的位置传感器结构主视图;
图12为图11的俯视图;
图13为本发明的磁悬浮转子局部剖分图。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1和图2所示,本发明技术解决方案的一种球形磁悬浮轴承装置,由静止和转动两部分组成,静止部分包括上磁轴承5的静止部分、下磁轴承6的静止部分、辅助轴承3、位置传感器4、辅助轴承座2、轴座7和锁紧螺母8;转动部分包括磁悬浮转子1。轴座7处于球形磁悬浮轴承装置的中部,由轴座7中部向外分别为上磁轴承5的静止部分、下磁轴承6的静止部分、位置传感器4、辅助轴承3和锁紧螺母8,在辅助轴承3外侧为辅助轴承座2。上磁轴承5的静止部分和下磁轴承6的静止部分和位置传感器4分别与轴座7相连接,辅助轴承3通过锁紧螺母8固定在轴座7上,辅助轴承座2与辅助轴承3连接,磁悬浮转子1处于整个装置外侧,辅助轴承座2与磁悬浮转子1之间形成保护间隙。磁悬浮转子1的内表面与上磁轴承5定子磁极外表面、下磁轴承6定子磁极外表面和位置传感器4探头表面为同心球面。位置传感器4输出的电信号与外加控制器的输入端相连,该控制器的输出端分别与上磁轴承5和下磁轴承6的激磁线圈相连接,形成电的闭环回路,通过控制系统保持磁悬浮转子1的中心位置不变,并保证磁悬浮转子1具有三个旋转自由度。
两个辅助轴承座2的外表面和磁悬浮转子1的内表面均为同心球面,两个辅助轴承座2的外表面分别与磁悬浮转子1的内表面之间形成0.1-0.2mm(本实施例为0.15mm左右)的保护间隙。
本发明的上磁轴承5和下磁轴承6均为非机械接触轴承,是纯电励磁的磁悬浮轴承。
图3为本发明的一种球形磁悬浮轴承,当磁悬浮转子位于中心位置时的磁力线分布图,图4为图3相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小。当磁悬浮转子位于中心位置时,上磁轴承的4对定子磁极和下磁轴承的4对定子磁极激磁线圈中通过相等的偏置电流,在上磁轴承定子磁极和下磁轴承定子磁极与磁悬浮转子间的球面气隙中产生相等静态偏置磁场,磁场方向都指向球心,因此,上磁轴承和下磁轴承定子磁极产生的合力也指向球心,磁悬浮转子所受合力为零。
图5为本发明的一种球形磁悬浮轴承,当磁悬浮转子产生x轴负方向位移时的磁力线分布图;图6为图5相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小。当磁悬浮转子产生x轴负方向上的位移时,位于x轴左侧的上磁轴承定子磁极和下磁轴承定子磁极中的电流加大,位于x轴右侧的上磁轴承定子磁极和下磁轴承定子磁极中的电流减小,从而产生x轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变。
图7为本发明的一种球形磁悬浮轴承,当磁悬浮转子产生z轴负方向位移时的磁力线分布图;图8为图7相对应的磁悬浮转子受力图,箭头表示磁悬浮转子受力方向和大小。当磁悬浮转子产生z轴负方向上的位移时,位于z轴上半部的上磁轴承的4对定子磁极中的电流加大,位于z轴下半部的下磁轴承的4对定子磁极的电流减小,从而产生z轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变。
图9和图10分别为本发明的磁轴承剖面图和截面图,在该种磁轴承中,主要由定子铁心51、磁轴承安装座52、激磁线圈53和空气隙54和磁悬浮转子19组成。其中定子铁心51、磁轴承安装座52、激磁线圈53为静止部分,磁悬浮转子1为旋转部分。
图11和图12分别为本发明的位置传感器的主视图和俯视图,四个位置传感器探头42、43、44和45均布在传感器座的外圆周上,彼此成90°角,位置传感器探头42、43、44、45和探测体41之间分别形成球面探测间隙46,位置传感器探头42、43、44、45的探测方向与探测体41垂直,位置传感器探头42、43、44、45的轴线通过探测体41的球心位置,球面探测间隙46一般为0.5mm~1.25mm。两个位置传感器探头42和43组成一对,分别位于Y轴的两个方向成180°角,同时检测探测体41运动的位移信号,另两个径向位移传感器探头44和45组成另一对,分别位于X轴的两个方向成180°角,同时检测探测体41运动的位移信号。
图13为本发明的磁悬浮转子局部剖分图,主要由上磁悬浮转子11、锁紧螺钉12和下磁悬浮转子13组成,上磁悬浮转子11和下磁悬浮转子13的内表面为球面的一部分,由导磁性能良好的软磁材料加工而成,通过锁紧螺钉12连接在一起。

Claims (1)

1.一种球形磁悬浮轴承装置,由静止和转动两部分组成,其特征在于:静止部分包括上磁轴承(5)的静止部分、下磁轴承(6)的静止部分、辅助轴承(3)、位置传感器(4)、辅助轴承座(2)、轴座(7)和锁紧螺母(8);转动部分包括磁悬浮转子(1),轴座(7)处于球形磁悬浮轴承装置的中部,由轴座(7)中部向外分别为上磁轴承(5)的静止部分、下磁轴承(6)的静止部分、位置传感器(4)、辅助轴承(3)和锁紧螺母(8),在辅助轴承(3)外侧为辅助轴承座(2),上磁轴承(5)的静止部分和下磁轴承(6)的静止部分和位置传感器(4)分别与轴座(7)相连接,辅助轴承(3)通过锁紧螺母(8)固定在轴座(7)上,辅助轴承座(2)与辅助轴承(3)连接,磁悬浮转子(1)处于整个装置外侧,辅助轴承座(2)与磁悬浮转子(1)之间形成保护间隙,磁悬浮转子(1)的内表面与上磁轴承(5)定子磁极外表面、下磁轴承(6)定子磁极外表面和位置传感器(4)探头表面为同心球面,位置传感器(4)输出的电信号与外加控制器的输入端相连,该控制器的输出端分别与上磁轴承(5)和下磁轴承(6)的激磁线圈相连接,形成电的闭环回路,通过控制系统保持磁悬浮转子(1)的中心位置不变,并保证磁悬浮转子(1)具有三个旋转自由度;
所述的上磁轴承(5)和下磁轴承(6)均为非机械接触的电磁偏置磁悬浮轴承,而且上磁轴承(5)的定子磁极表面和下磁轴承(6)定子磁极表面均为球面四边形,上磁轴承(5)的定子和下磁轴承(6)定子均由4个磁极对组成,相对球心对称放置,上磁轴承(5)的定子和下磁轴承(6)定子的铁心采用导磁性能良好的软磁材料冲压迭制而成;
所述的上磁轴承(5)和下磁轴承(6)同时为磁悬浮转子(1)提供径向支承和轴向支承作用,省去了普通的轴向磁轴承;
两个辅助轴承座(2)的外表面和磁悬浮转子(1)的内表面均为同心球面,两个辅助轴承座(2)的外表面分别与磁悬浮转子(1)的内表面之间形成0.1-0.2mm的保护间隙;
两个位置传感器(4)分别具有四个探头,探头的探测面为球面;
通过上磁轴承和下磁轴承保持球形磁悬浮轴承装置的上磁轴承静止部分和下磁轴承静止部分与磁悬浮转子之间的球面间隙均匀以及保持非接触稳定悬浮,同时保证内表面为球形的磁悬浮转子具有三个旋转自由度,磁悬浮转子的内表面与上磁轴承定子磁极外表面、下磁轴承定子磁极外表面和位置传感器探头表面为同心球面,上磁轴承磁极和下磁轴承磁极产生的磁场都指向球心,这保证了每对磁极产生的合力都通过磁悬浮转子的球心,不会对磁悬浮转子产生转动方向的力矩,3个平动方向的控制力不会干扰转动方向的控制,当磁悬浮转子受到某一扰动因素的干扰后,将使上磁轴承静止部分和下磁轴承静止与磁悬浮转子之间的球面间隙发生变化,这时位置传感器将及时检测出球面间隙的变化,发出检测信号,外加控制器通过增加或减小上磁轴承和下磁轴承上的激磁线圈中的电流,增大或减小上磁轴承和下磁轴承的磁力,从而保持上磁轴承静止部分和下磁轴承静止部分与磁悬浮转子之间的球面间隙均匀和非接触稳定悬浮,消除干扰的影响,保持球形磁悬浮转子的中心位置不变,维持球形磁悬浮轴承装置在三个旋转自由度上的正常稳定运行,当磁悬浮转子产生x轴负方向上的位移时,位于x轴左侧的上磁轴承磁极和下磁轴承磁极中的电流减小,位于x轴右侧的上磁轴承磁极和下磁轴承磁极中的电流加大,从而产生x轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变,当磁悬浮转子产生z轴负方向上的位移时,位于z轴上半部的上磁轴承的4对磁极中的电流加大,位于z轴下半部的下磁轴承的4对磁极的电流减小,从而产生z轴正方向的合力直到将磁悬浮转子重新拉回到中心位置不变。
CN201710259999.5A 2017-04-20 2017-04-20 一种球形磁悬浮轴承装置 Expired - Fee Related CN107061492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710259999.5A CN107061492B (zh) 2017-04-20 2017-04-20 一种球形磁悬浮轴承装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710259999.5A CN107061492B (zh) 2017-04-20 2017-04-20 一种球形磁悬浮轴承装置

Publications (2)

Publication Number Publication Date
CN107061492A CN107061492A (zh) 2017-08-18
CN107061492B true CN107061492B (zh) 2018-09-04

Family

ID=59599907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710259999.5A Expired - Fee Related CN107061492B (zh) 2017-04-20 2017-04-20 一种球形磁悬浮轴承装置

Country Status (1)

Country Link
CN (1) CN107061492B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149022A (zh) * 2019-07-03 2019-08-20 天津飞旋科技有限公司 一种剖分式磁悬浮轴承电机
CN110683080A (zh) * 2019-08-30 2020-01-14 北京航空航天大学 一种磁悬浮球碗轴承装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797477B1 (fr) * 1999-08-09 2001-10-12 Cit Alcatel Palier magnetique du type rotule pour corps basculant
CN202151865U (zh) * 2011-06-03 2012-02-29 扬州大学 正交绕组感应式磁悬浮球形主动关节
CN103233984B (zh) * 2013-04-07 2015-12-02 哈尔滨工程大学 一种立式磁悬浮飞轮转子的辅助支承
CN106151271A (zh) * 2016-08-15 2016-11-23 江苏大学 一种五自由度外转子永磁偏置球形磁轴承

Also Published As

Publication number Publication date
CN107061492A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN105438500B (zh) 一种外转子磁悬浮锥形球面陀螺飞轮
CN100538270C (zh) 双框架磁悬浮控制力矩陀螺
CN104533945B (zh) 一种由轴向混合磁轴承实现转子五自由度悬浮结构
CN109515755B (zh) 一种五自由度单框架磁悬浮控制力矩陀螺
CN100437031C (zh) 完全非接触单框架磁悬浮控制力矩陀螺
CN107097978B (zh) 一种磁悬浮控制力矩陀螺装置
KR101166854B1 (ko) 자기베어링 구조 및 이를 구비한 터보기기
CN107061492B (zh) 一种球形磁悬浮轴承装置
CN101922510B (zh) 一种双永磁体内转子永磁偏置径向磁轴承
Dyck et al. Magnetically levitated rotary table with six degrees of freedom
CN116182765B (zh) 基于磁悬浮轴承的位移传感器的自校准控制方法及装置
CN104389903B (zh) 一种双永磁体外转子永磁偏置球面径向磁轴承
CN108591750A (zh) 大型精密磁悬浮旋转工作台
CN106931035B (zh) 一种永磁偏置低功耗球形磁悬浮轴承装置
He et al. Development of a novel 5-DOF controlled maglev local actuator for high-speed electrical discharge machining
Zhou et al. One-axis hysteresis motor driven magnetically suspended reaction sphere
Zhang et al. A survey on design of reaction spheres and associated speed and orientation measurement technologies
CN107813963A (zh) 一种全悬浮双端支撑的单框架控制力矩陀螺
CN107792397B (zh) 一种完全非接触的双框架磁悬浮控制力矩陀螺
Zheng et al. Wide-range displacement sensor for vibration measurement of magnetically suspended air-blower
CN109229426A (zh) 一种五自由度双框架磁悬浮控制力矩陀螺
Wildmann et al. 10 Mrpm spinning ball motor: Preparing the next generation of ultra-high speed drive systems
Park et al. A magnetically suspended miniature spindle and its application for tool orbit control
CN104314977A (zh) 一种两自由度外转子永磁偏置球形径向磁轴承
JP4155546B2 (ja) 球面超音波モータ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180904