CN107055630A - 三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3及其制备方法和应用 - Google Patents

三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3及其制备方法和应用 Download PDF

Info

Publication number
CN107055630A
CN107055630A CN201710135557.XA CN201710135557A CN107055630A CN 107055630 A CN107055630 A CN 107055630A CN 201710135557 A CN201710135557 A CN 201710135557A CN 107055630 A CN107055630 A CN 107055630A
Authority
CN
China
Prior art keywords
3dom
smcoo
dimensional ordered
ordered macroporous
perovskite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710135557.XA
Other languages
English (en)
Other versions
CN107055630B (zh
Inventor
周嵬
何娟
张振宝
戴洁
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710135557.XA priority Critical patent/CN107055630B/zh
Publication of CN107055630A publication Critical patent/CN107055630A/zh
Application granted granted Critical
Publication of CN107055630B publication Critical patent/CN107055630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/70Cobaltates containing rare earth, e.g. LaCoO3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3及其制备方法和应用,属于功能性材料和电催化领域。三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3大孔孔径为400~600nm,在大孔孔壁上还分布着介孔。以PMMA胶晶模板法来合成三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3,并将此法制备的3DOM‑SmCoO3与溶胶‑凝胶法制备的SmCoO3对过氧化氢的无酶电化学检测性能进行对比,发现3DOM‑SmCoO3具有更高的灵敏度(~730和~425μA mM‑1cm‑2),更大的线性范围(0.1~4000和4000~8000μM),更低的检测限(~0.082μM)以及更强的抗干扰能力。优越的电催化性能以及相关的检测都体现了三维有序大孔结构的钙钛矿材料3DOM‑SmCoO3在无酶生物传感检测方面的巨大应用前景。

Description

三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和 应用
技术领域
本发明涉及一种三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用,属于功能性材料和电催化领域。
背景技术
生物体在进行呼吸代谢的过程中会产生H2O2,如果其含量过高会对体内的一些器官和大分子物质造成不同程度的损害(如肝脏,蛋白质和DNA等)。并且H2O2是一种强氧化剂,具有漂白、氧化、消毒、杀菌等多种功效,广泛应用于医疗卫生、食品加工、军用工业、农牧业纺织、造纸、化工、电子、轻工、污水处理等工业。因而对H2O2的检测变得愈加重要,一方面,无酶电化学生物传感器近年来也掀起了研究的热潮,它不仅具有较高的灵敏度、而且克服了酶基传感器对保存和检测环境要求苛刻,使用寿命短、稳定性差,电极组装繁琐等缺陷。另一方面,在众多结构和形貌的金属氧化物催化剂中(如CuO,MnO2,CoOx,La0.6Sr0.4FeO3,LaNi0.5Ti0.5O3,Sr0.85Ce0.15FeO3等),具有ABO3构型的非贵金属钙钛矿类材料,因其特殊的结构、较高的催化活性,较低的成本和较好的稳定性等特点,被广泛应用于多种生物分子的无酶电催化传感器的研究中。
由于大量研究表明,钴基类的钙钛矿材料对H2O2具有优异的电化学催化活性,可用作H2O2无酶传感器的构筑。我们发现SmCoO3钙钛矿型材料对H2O2的电催化性能较好而且其抗干扰性能也较强。然而,利用传统方法(例如溶胶-凝胶法,固相法等)制备钙钛矿材料时,较高的温度往往会破坏材料的多孔结构,降低比表面,从而对材料的催化性能不利。最近,我们发现三维有序大孔结构(3DOM)的钙钛矿材料大大提高了材料的比表面积和催化性能,特别是在生物传感器方面的检测。
3DOM钙钛矿型材料一般采用胶晶模板法制备,已有相关文献报道采用此法制备钙钛矿型催化材料。例如:Kim等采用聚甲基丙烯酸甲酯(PMMA)微球为模板,以硝酸镧,醋酸锰和醋酸钙为金属原材料,以乙二醇和甲醇为溶剂,制得前驱体,再通过600℃空气氛围下的煅烧即可获得3DOM结构的La0.7Ca0.3MnO3(Y.N.Kim,et al.,Solid State Communication,2003,128:339-343)。Ha等也以PMMA微球为硬模板,以硝酸镧,硝酸锶,硝酸钴和硝酸铁为金属原,将前驱体在空气氛围以及750℃的条件下煅烧,从而获得形貌比较好的3DOM-LaSrCoFeO6-δ双钙钛矿材料(M.N.Ha,G.Lu,Z.Liu,L.Wang,Z.Zhao,J.Mater.Chem.A.2016,DOI:10.1039/C6TA05402A.)。
故将溶胶-凝胶法制备的SmCoO3与用PMMA模板法制备的三维有序大孔结构的3DOM-SmCoO3这两种材料对H2O2传感性能进行对比,发现3DOM-SmCoO3具有更高的灵敏度,更大的线性范围,更低的检测限尤其是具有更强的抗干扰能力。并通过XRD,SEM电镜图,BET数据等表征发现3DOM-SmCoO3不仅仍保持模板排列的结构而且其比表面积和孔体积大大提高,从而表现出在生物传感器方面有待开发的无限应用价值。
发明内容
本发明的目的是提供一种具有三维有序大孔结构的钙钛矿材料3DOM-SmCoO3,本发明还提供了上述具有三维有序大孔结构的钙钛矿材料3DOM-SmCoO3的制备方法,本发明的另一目的是提供了这种具有三维有序大孔结构的钙钛矿材料3DOM-SmCoO3对H2O2的无酶电化学检测方面的应用,此种材料制备方法较为简单,适合放大和实际应用。
本发明的技术方案为:一种三维有序大孔结构的钙钛矿材料3DOM-SmCoO3,其特征在于,3DOM-SmCoO3是维持PMMA模板块状的三维有序大孔结构材料,其中大孔孔径为400~600nm。优选在3DOM-SmCoO3大孔的孔壁上存在介孔,介孔孔径为20~50nm。优选三维有序大孔结构的3DOM-SmCoO3比表面积为8.25~9.30m2g-1,孔体积为0.05~0.08cm3g-1
本发明所使用的PMMA模板是按照参考文献:M.N.Ha,G.Lu,Z.Liu,L.Wang,Z.Zhao,J.Mater.Chem.A.2016,DOI:10.1039/C6TA05402A.制备的,所制备出的PMMA尺寸为750~800nm,大小均匀,排列有序。
本发明还提供了上述具有三维有序大孔结构的钙钛矿材料3DOM-SmCoO3的制备方法,其具体步骤如下:
首先称取等摩尔比的硝酸盐Sm(NO3)3·6H2O和Co(NO3)2·6H2O于烧杯中,然后加入乙二醇溶液搅拌使硝酸盐溶解,其次加入甲醇溶液搅拌均匀得到混合液,再将PMMA模板浸泡到此混合溶液中,浸泡时间为3~5h;最后将多余的溶液抽滤掉,并在室温下干燥得到带有模板的前驱体,再将此前驱体置于空气气氛下,以0.8~1.2℃/min的升温速率加热到600~700℃并恒温煅烧4~5h,最后自然降到室温,即得到3DOM-SmCoO3材料。
优选上述甲醇与乙二醇溶液的体积比为1:(1.25~2);优选混合溶液中金属离子的总浓度为1.5~2.5M;优选所使用的PMMA模板尺寸为750~800nm;优选使用普通马弗炉或管式炉对前驱体进行煅烧。
对于PMMA模板的浸泡量并没有严格的要求,只要能达到模板可以被混合溶液充分浸泡即可。
本发明还提供了将具有三维有序大孔结构的钙钛矿材料3DOM-SmCoO3对H2O2的无酶电化学检测方面的应用,其特征在于,对H2O2传感性能大大提升,其中检测的灵敏度为720~730和420~425μA mM-1cm-2,线性范围为0.1~4000和4000~8000μM,检测限低至0.080~0.082μM。尤其是超强的抗干扰能力,相比溶胶-凝胶法制备的SmCoO3,对葡萄糖(Glucose),多巴胺(DA),尿酸(UA)和抗坏血酸(AA)抗干扰能力分别提升0.08%~1.00%,5%~6%,1.2%~1.5%,2.3%~2.5%。具体测试步骤如下:
采用可旋转的三电极体系进行所有的电化学检测,将3DOM-SmCoO3修饰的玻碳电极(记为3DOM-SC/GCE)为工作电极,铂丝为对电极,银氯化银(3M饱和的氯化钾溶液)为参比电极。将3DOM-SC/GCE放置0.1M NaOH(或包含10Mm H2O2)的电解液中,0.05V/s的扫速进行循环伏安法(CV)测试。
使用计时电流法(I-t)检测3DOM-SC/GCE对H2O2的传感性能,例如电流随浓度的变化(I-c),以及干扰试验等。这种检测是在恒定的氧化峰电压下进行的,其中氧化峰电压是根据3DOM-SC/GCE电极在0.1M NaOH包含10mM H2O2的电解液中进行CV测试结果中获得的,其峰电压都为0.32V。I-t测试是在以1500rpm的电极旋转速度,300rpm的溶液搅拌速度以及不断加入不同浓度的H2O2或干扰物质的条件下进行。其中干扰物质有葡萄糖(Glucose),多巴胺(DA),尿酸(UA)和抗坏血酸(AA)等。
有益效果:
三维有序大孔结构的钙钛矿材料3DOM-SmCoO3相比溶胶-凝胶法制备的SmCoO3,不仅比表面积和孔体积分别增加了1~1.2倍和4~6倍,而且其对H2O2的传感性能大大提升,其中检测的灵敏度为720~730和420~425μA mM-1cm-2,线性范围为0.1~4000和4000~8000μM,检测限低至0.080~0.082μM。尤其是超强的抗干扰能力,对葡萄糖(Glucose),多巴胺(DA),尿酸(UA)和抗坏血酸(AA)抗干扰能力分别提升0.08%~1.00%,5%~6%,1.2%~1.5%,2.3%~2.5%。
附图说明
图1为本发明实施例1中750~800nm PMMA模板的电镜图;其中a为放大15000倍,b为放大5000倍;
图2为本发明实施例2中孔径为400~520nm的3DOM-SmCoO3的电镜图,其中a为放大50000倍,b为放大10000倍;
图3为本发明实施例3中孔径为520~600nm的3DOM-SmCoO3的电镜图,其中a为放大50000倍,b为放大10000倍;
图4为比较例1中SmCoO3的电镜图,其中a为放大20000倍,b为放大10000倍;
图5为本发明实施例和比较例的X射线衍射曲线图;其中a为实施例2,b为实施例3,c为比较例1;
图6为本发明实施例2和的孔径分布图(a)和N2吸脱附恒温曲线图(b);图中a为实施例2,b为比较例1;
图7为本发明实施例4中3DOM-SC/GCE(a)和Bare GCE(b)电极在0.1M NaOH含有10mM H2O2溶液以及3DOM-SC/GCE(c)和Bare GCE(d)电极在不含有10mM H2O2溶液中的CV测试曲线图;
图8为本发明实施例4中的3DOM-SC/GCE(a)和SC/GCE(b)两种电极对H2O2的I-t测试曲线图;
图9为本发明实施例4中的3DOM-SC/GCE(a)和SC/GCE(b)两种电极对H2O2的I-c线性拟合图;
图10为本发明实施例4中的3DOM-SC/GCE(a)和SC/GCE(b)两种电极对H2O2进行抗干扰检测的I-t曲线图;
表1为本发明实施例4中的3DOM-SC/GCE和SC/GCE两种电极对H2O2传感性能检测数据列表。
具体实施方式
本发明所涉及的方法和应用包含但并不局限于以下实例中的材料。
实施例1:PMMA模板的制备:
PMMA模板的制备是按照Ha等人所述方法合成的(M.N.Ha,G.Lu,Z.Liu,L.Wang,Z.Zhao,J.Mater.Chem.A.2016,DOI:10.1039/C6TA05402A.)。具体步骤为:首先分别称取0.075g过硫酸钾,100g去离子水和200g甲醇混合到500mL的三口烧瓶中,并以150rpm的搅拌速度加热到70℃,温度恒定后再加入10g甲基丙烯酸甲酯,冷凝回流,N2气氛保护,持续搅拌5h。最后将乳白色的混合溶液转移到50mL的离心管中以3000rpm的转速离心2h,再在真空干燥箱(50℃)中放置24h即可得到大小为750~800nm左右的PMMA模板(如图1所示)。
实施例2:孔径大小为400~520nm的3DOM-SmCoO3材料的制备:
首先称取0.025mol的Sm(NO3)3·6H2O和0.025mol的Co(NO3)2·6H2O于100mL的烧杯中,加入12mL的乙二醇搅拌2h,再加入6mL甲醇溶液使最终的溶液体积为25mL(即总的金属离子浓度为2mol),再取大约2g实施例1制备的PMMA模板浸泡到此溶液中,浸泡时间为3h。最后将多余的溶液抽滤掉,并在室温下干燥一夜得到带有模板的前驱体,再将此前驱体置于普通马弗炉中,以1℃/min的升温速率升到600℃,煅烧5h,最后自然降到室温。此实例制备的三维有序大孔结构的3DOM-SmCoO3大孔孔经为400~520nm,孔壁上的介孔孔径为30~50nm(如图2所示),比表面积为8.28m2g-1,孔体积为0.056cm3g-1(如图6所示)。
实施例3:孔径大小为520~600nm的3DOM-SmCoO3材料的制备:
首先称取0.03mol的Sm(NO3)3·6H2O和0.03mol的Co(NO3)2·6H2O于100mL的烧杯中,加入10mL的乙二醇搅拌2h,再加入8mL甲醇溶液使最终的溶液体积为25mL(即总的金属离子浓度为2.4mol),再取大约3g实施例1制备的PMMA模板浸泡到此溶液中,浸泡时间为4h。最后将多余的溶液抽滤掉,并在室温下干燥一夜得到带有模板的前驱体,再将此前驱体置于内径为44mm的管式炉中,以60ml/min的空气流量,1.2℃/min的升温速率升到700℃,并恒温煅烧4h,最后自然降到室温。此实例制备的三维有序大孔结构的3DOM-SmCoO3大孔孔经为520~600nm,孔壁上的介孔孔径为20~30nm(如图3所示),比表面积为9.30m2g-1,孔体积为0.08cm3g-1
比较例1:溶胶-凝胶法制备的SmCoO3
首先将0.05mol的Sm(NO3)3·6H2O和0.05mol的Co(NO3)2·6H2O以及适量的水溶于烧杯中,再将已溶解42.03g一水合柠檬酸(CA),29.22g的乙二胺四乙酸(EDTA)和80ml左右氨水的混合液倒入上述烧杯中,90℃温度条件下持续搅拌直到呈现溶胶-凝胶状态,其中CA:EDTA:总离子数=2:1:1(摩尔比)。
将上述胶体溶液至于250℃的烘箱中持续烘5h左右得到已经碳化的前驱体,再将此前驱体放置马弗炉中以5℃/min的升温速率加热到800℃并恒温煅烧5h。自然降温即可得到钙钛矿材料SmCoO3,其比表面积为4.36m2g-1,孔体积为0.013cm3g-1的SmCoO3粉体(如图4和6所示)。
实施例4:将实施例2和3制备的3DOM-SmCoO3和实施例4制备的SmCoO3对H2O2的电催化传感性能的检测:
步骤1、催化剂浆料的制备:分别取20mg 3DOM-SmCoO3(或SmCoO3)粉体和10mg石墨粉于2mL的玻璃瓶中,再加入1.0mL的无水乙醇和0.1mL,5%的Nafion溶液(粘结剂),将此混合液超声1h得到均匀的浆料。
步骤2、电极的修饰:首先将5mm的玻碳电极(GCE)用0.05μm的氧化铝打磨光滑,再用移液枪取5μL步骤1中的催化剂浆料均匀地滴涂在电极表面,室温下晾干。
步骤3、H2O2传感性能的检测:采用可旋转的三电极体系进行所有的电化学检测,将SmCO3,3DOM-SmCoO3修饰的玻碳电极以及裸露的玻碳电极(分别记为SC/GCE,3DOM-SC/GCE和Bare GCE)为工作电极,铂丝为对电极,银氯化银(3M饱和的氯化钾溶液)为参比电极。将SC/GCE,3DOM-SC/GCE和Bare GCE分别放置0.1M NaOH(或包含10mM H2O2)的电解液中,0.05V/s的扫速进行循环伏安法(CV)测试,其结果如图7所示。
使用计时电流法(I-t)分别检测SC/GCE,3DOM-SC/GCE对H2O2的电流随浓度的变化(I-c),以及干扰试验。这两种检测都是在恒定的氧化峰电压下进行,其中氧化峰电压是根据SC/GCE,3DOM-SC/GCE两种电极在0.1M NaOH包含10mM H2O2的电解液中进行CV测试结果获得的,其峰电压都为0.32V。所有的I-t测试均在1500rpm的电极旋转速度,300rpm的溶液搅拌速度以及不断加入不同浓度的H2O2或干扰物质的条件下进行(如图8、9和10)。其中干扰物质有葡萄糖(Glucose),多巴胺(DA),尿酸(UA)和抗坏血酸(AA)。
表1为本实施例4中的3DOM-SC/GCE和SC/GCE两种电极对H2O2传感性能检测数据列表。

Claims (9)

1.一种三维有序大孔结构的钙钛矿材料3DOM-SmCoO3,其特征在于,3DOM-SmCoO3是维持PMMA模板块状的三维有序大孔结构材料,其中大孔孔径为400~600nm。
2.根据权利要求1所述的三维有序大孔结构的钙钛矿材料3DOM-SmCoO3,其特征在于,在3DOM-SmCoO3大孔的孔壁上存在介孔,介孔孔径为20~50nm。
3.根据权利要求2所述的三维有序大孔结构的钙钛矿材料3DOM-SmCoO3,其特征在于,三维有序大孔结构的3DOM-SmCoO3比表面积为8.25~9.30m2g-1,孔体积为0.05~0.08cm3g-1
4.一种制备如权利要求1所述的三维有序大孔结构的钙钛矿材料3DOM-SmCoO3的方法,其具体步骤如下:
首先称取等摩尔比的硝酸盐Sm(NO3)3·6H2O和Co(NO3)2·6H2O于烧杯中,然后加入乙二醇溶液搅拌使硝酸盐溶解,其次加入甲醇溶液搅拌均匀得到混合液,再将PMMA模板浸泡到此混合溶液中,浸泡时间为3~5h;最后将多余的溶液抽滤掉,干燥后得到带有模板的前驱体,再将此前驱体置于空气气氛下,以0.8~1.2℃/min的升温速率加热到600~700℃并恒温煅烧4~5h,最后自然降温,即得到3DOM-SmCoO3材料。
5.根据权利要求4所述的方法,其特征在于甲醇与乙二醇溶液的体积比为1:(1.25~2)。
6.根据权利要求4所述的方法,其特征在于混合溶液中金属离子的总浓度为1.5~2.5M。
7.根据权利要求4所述的方法,其特征在于所使用的PMMA模板尺寸为750~800nm。
8.根据权利要求4所述的方法,其特征在于煅烧用马弗炉或管式炉对前驱体进行煅烧。
9.一种如权利要求1所述的三维有序大孔结构的钙钛矿材料3DOM-SmCoO3对H2O2的无酶电化学检测方面的应用。
CN201710135557.XA 2017-03-09 2017-03-09 三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用 Active CN107055630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710135557.XA CN107055630B (zh) 2017-03-09 2017-03-09 三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710135557.XA CN107055630B (zh) 2017-03-09 2017-03-09 三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107055630A true CN107055630A (zh) 2017-08-18
CN107055630B CN107055630B (zh) 2019-08-09

Family

ID=59622532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710135557.XA Active CN107055630B (zh) 2017-03-09 2017-03-09 三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107055630B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673411A (zh) * 2017-10-17 2018-02-09 宁波大学 一种大孔‑介孔钙钛矿氧化物的制备方法
CN107973339A (zh) * 2017-11-24 2018-05-01 武汉理工大学 一种多孔纳米片构筑的三维有序大孔钛酸钙光子晶体及其合成方法
CN113433187A (zh) * 2021-07-01 2021-09-24 常州大学 一种LaMnO3/壳聚糖非酶过氧化氢电化学传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482584A1 (en) * 2002-03-04 2004-12-01 Mitsubishi Materials Corporation Electrode for solid oxide type fuel cell and solid oxide type fuel cell
CN1837790A (zh) * 2006-04-26 2006-09-27 东北电力大学 用拉曼散射分析镧系稀土钴氧化物的晶体结构的方法
CN103936082A (zh) * 2014-04-10 2014-07-23 东北大学 一种钴酸钐纳米粉体的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482584A1 (en) * 2002-03-04 2004-12-01 Mitsubishi Materials Corporation Electrode for solid oxide type fuel cell and solid oxide type fuel cell
CN1837790A (zh) * 2006-04-26 2006-09-27 东北电力大学 用拉曼散射分析镧系稀土钴氧化物的晶体结构的方法
CN103936082A (zh) * 2014-04-10 2014-07-23 东北大学 一种钴酸钐纳米粉体的合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MASAHIRO SADAKANE等: "Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3with tunable pore diameters: High porosity and photonic property", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
PING XIAO等: "Effect of Textural Structure on the Catalytic Performance of LaCoO3 for CO Oxidation", 《CHEMCATCHEM》 *
TAKAHIRO YATSUNAMI等: "Amperometric Nitrite-Ion Sensor Based on Electrodeposited Sm-Based Perovskite-Type Oxide Thick-Film Electrode", 《SENSORS AND MATERIALS》 *
ZHEN ZHANG等: "A novel nonenzymatic sensor based on LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose", 《ANALYTICA CHIMICA ACTA》 *
刘雨溪: "3DOM LaMnO_3,Au/3DOM La_(0.6)Sr_(0.4)MnO_3,Au/meso Co_3O_4和3DOM BiVO_4催化剂可控制备及有机污染物氧化的催化性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673411A (zh) * 2017-10-17 2018-02-09 宁波大学 一种大孔‑介孔钙钛矿氧化物的制备方法
CN107673411B (zh) * 2017-10-17 2019-05-28 宁波大学 一种大孔-介孔钙钛矿氧化物的制备方法
CN107973339A (zh) * 2017-11-24 2018-05-01 武汉理工大学 一种多孔纳米片构筑的三维有序大孔钛酸钙光子晶体及其合成方法
CN107973339B (zh) * 2017-11-24 2020-04-21 武汉理工大学 一种多孔纳米片构筑的三维有序大孔钛酸钙光子晶体及其合成方法
CN113433187A (zh) * 2021-07-01 2021-09-24 常州大学 一种LaMnO3/壳聚糖非酶过氧化氢电化学传感器及其制备方法

Also Published As

Publication number Publication date
CN107055630B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
Zhang et al. Hollow POM@ MOF hybrid-derived porous Co 3 O 4/CoMoO 4 nanocages for enhanced electrocatalytic water oxidation
CN110412096B (zh) 还原氧化石墨烯@zif-8复合膜修饰电极的制备方法和检测应用
Riaz et al. Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms
CN107238650B (zh) 一种二维镍钴双金属MOFs纳米片及其在葡萄糖检测中应用
CN109216712A (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
He et al. 3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection
CN107703195B (zh) 一种石墨烯-金属有机框架复合材料修饰电极的制备方法
Asadi et al. Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine
CN107315042B (zh) 锌金属有机骨架纳米材料及其应用
CN106744806B (zh) 金属有机骨架为模板的氮掺杂多孔碳材料及其应用
Feng et al. An ultrasensitive luteolin sensor based on MOFs derived CuCo coated nitrogen-doped porous carbon polyhedron
Zhang et al. Crystallization design of MnO 2 via acid towards better oxygen reduction activity
CN107055630B (zh) 三维有序大孔结构的钙钛矿材料3DOM-SmCoO3及其制备方法和应用
CN109796038A (zh) 一种分级纳米多孔氧化铜材料的制备方法及其传感应用
Cao et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC
CN103018304A (zh) 一种氧化镍-石墨烯纳米材料修饰的玻碳电极及其制备方法和应用
CN112285174A (zh) 一种无酶葡萄糖传感器及其制备方法和用途
CN105606672A (zh) 一种纳米尺度空心球状金属氧化物材料的制备方法及应用
CN106872545B (zh) 一种蛛网状复合材料、及其制备方法和在生物传感器方面的应用
CN106238747A (zh) 一种多级铜/氧化亚铜纳米线材料的制备方法和基于该材料的葡萄糖传感器电极
CN108414589A (zh) 泡沫状多孔碳网/镍纳米粒子三维复合物及其合成方法和应用
CN104258892A (zh) N掺杂的介孔/大孔多级孔碳氧还原催化剂材料及其制备方法
Devadas et al. Controlled electrochemical synthesis of yttrium (III) hexacyanoferrate micro flowers and their composite with multiwalled carbon nanotubes, and its application for sensing catechin in tea samples
Kim et al. RuO 2–ReO 3 composite nanofibers for efficient electrocatalytic responses
Muthumariappan et al. Evaluating an effective electrocatalyst for the rapid determination of triptan drug (Maxalt™) from (mono and binary) transition metal (Co, Mn, CoMn, MnCo) oxides via electrochemical approaches

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant