CN107050763A - 一种新型踝关节康复机器人其控制方法 - Google Patents

一种新型踝关节康复机器人其控制方法 Download PDF

Info

Publication number
CN107050763A
CN107050763A CN201710445971.0A CN201710445971A CN107050763A CN 107050763 A CN107050763 A CN 107050763A CN 201710445971 A CN201710445971 A CN 201710445971A CN 107050763 A CN107050763 A CN 107050763A
Authority
CN
China
Prior art keywords
robot
mrow
rrr
rehabilitation
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710445971.0A
Other languages
English (en)
Other versions
CN107050763B (zh
Inventor
魏志丽
叶晖
李福运
胡庆国
李梓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoguan Spark Creates Guest Science And Technology Ltd Co
Original Assignee
Shaoguan Spark Creates Guest Science And Technology Ltd Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguan Spark Creates Guest Science And Technology Ltd Co filed Critical Shaoguan Spark Creates Guest Science And Technology Ltd Co
Priority to CN201710445971.0A priority Critical patent/CN107050763B/zh
Publication of CN107050763A publication Critical patent/CN107050763A/zh
Application granted granted Critical
Publication of CN107050763B publication Critical patent/CN107050763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/08Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs for ankle joints
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0075Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user

Abstract

本发明涉及一种新型踝关节康复机器人,包括电控箱、基座、驱动电机、编码器、3‑RRR球面并联机构及脚部踏板;3‑RRR球面并联机构位于底部基座及上方脚部踏板之间,3‑RRR球面并联机构具有三条相同的运动支链,每条支链由三个转动副和两个连杆组成,该3‑RRR球面机构具有三个纯转动自由度,且各转动轴线交于一点,该点是3‑RRR球面机构的转动中心O点,每条运动支链的各个转动副轴线也交于O点。具有三转动自由度,并且工作空间应当满足踝关节各运动的角度范围;同时,还满足踝关节转动灵活性高、承载能力强的生理特点。

Description

一种新型踝关节康复机器人其控制方法
技术领域
本发明属于康复机器人技术领域,涉及一种新型踝关节康复机器人其控制方法。
背景技术
康复机器人是一类辅助病患或老年人进行日常锻炼的自动化装置。近年来,机器人辅助物理治疗的研究方兴未艾,主要源于康复训练是一项大量重复性的工作,康复师工作量大且容易疲惫,而这一类型工作正是机器人的强项。踝关节康复机器人便是典型代表。踝关节是人体保持步态平衡和承重的重要关节,具有绕解剖平面三自由度的旋转运动功能。踝关节扭伤是一种常见的下肢运动损伤,且具有恢复缓慢的特点。利用机器人技术进行踝关节辅助康复训练,便于康复师制定多种针对性康复训练方案,同时可以定量化地评估和收集训练数据,对于损伤患者的快速康复具有重要意义。
针对踝关节辅助康复训练,国内外很多学者对此进行了研究,并研制成功了多种不同构型、不同控制方法的康复设备。Girone在1999年基于六自由度的Stewart机构研制了“Rutgers Ankle”机器人[1],并利用力反馈技术和虚拟现实技术构建了多种训练场景,可实现平衡、力量、灵活性训练。该设备成功利用并联机构作为踝部康复设备,但是具有多余自由度,带来控制复杂性。其气动驱动方式并不适合医疗或家用环境要求的静音、便携特点。Liu在2006年利用三自由度并联机构3RSS/S研制了电机驱动的踝关节康复设备,结构较为紧凑[2]。Saglia2009年研制了两自由度并联康复机器人[3],该设备具有三支链,冗余驱动的特点。其关节驱动采用了一种新型的绳驱动将电机转动转化为活塞直线运动的装置。根据踝关节的生理结构,多数学者提出的康复设备均采用三转动自由度的配置形式。Tsoi提出了一种3-UPS结构的并联康复设备,并讨论了自适应的交互控制方法[4]。李大顺将3-RSS机构用于踝关节康复机器人的研制[5]。曾达幸提出了一种PU-CRRU-CRRR机构,具有三自由度并联解耦的特点[6]。
踝关节术后康复一般分为早期、中期、后期三个阶段,病患会循序渐进地恢复关节活动范围和肌肉力量。在早期阶段,康复训练一般被动活动为主;而在中后期阶段,则主动活动为主,被动活动为辅。因此,康复机器人的控制方式分为主动和被动两种方式,分别控制机器人末端的运动轨迹和输出力/力矩。Saglia开发的康复设备采用位置控制方式,机器人引导患者踝关节运动套,适应于早期康复训练。胡进将康复机器人的力控制分为力位混合控制和阻抗控制两种方法[7]。Ju利用模糊控制器实现了两自由度康复机器人的力位混合控制[8]。Tsoi则采用阻抗控制方式,施加一定的阻力到患者踝部,从而实现患者的主动训练[4]。
踝关节康复机器人的工作空间和自由度配置必须与踝关节的结构和运动特性保持一致。通常,踝关节的运动可认为是绕着三个解剖平面(即额状面、矢状面、水平面)的法线方向旋转运动,如图1所示。其中,绕着矢状面法线的旋转称为背伸/跖屈运动;绕水平面法线的旋转称为外伸/内展运动,绕额状面法线的旋转称为内翻/外翻运动。这三个解剖平面是相互正交的,所以踝关节的运动可等价于绕某一转动中心做球面运动。如表1所示,每种运动的转动范围并不相同,但其运动范围都比较小[9]。
表1 踝关节各运动的角度范围
参考文献
[1] Girone M, Burdea G, Bouzit M, et al. A Stewart Platform-Based Systemfor Ankle Telerehabilitation[J]. Autonomous Robots, 2001, 10(2):203-212.
[2] Liu G, Gao J, Yue H, et al. Design and Kinematics Simulation ofParallel Robots for Ankle Rehabilitation[C] Mechatronics and Automation,Proceedings of the 2006 IEEE International Conference on. IEEE, 2006:1109-1113.
[3] Saglia J A, Tsagarakis N G, Dai J S, et al. A High-performanceRedundantly Actuated Parallel Mechanism for Ankle Rehabilitation[J].International Journal of Robotics Research, 2009, 28(9):1216-1227.
[4] Tsoi Y H, Xie S Q. Design and control of a parallel robot for anklerehabilitation.[J]. International Journal of Intelligent Systems Technologies& Applications, 2010, 8:100-113.
[5] 李大顺, 李剑锋, 王飒,等. 并联3-RRS踝关节康复机构及运动分析[J]. 机械设计与制造, 2015(8):4-8.
[6] 曾达幸, 胡志涛, 侯雨雷,等. 一种新型并联式解耦踝关节康复机构及其优化[J]. 机械工程学报, 2015(09):1-9.
[7] 胡进, 侯增广, 陈翼雄,等. 下肢康复机器人及其交互控制方法[J]. 自动化学报, 2014(11):2377-2390.
[8] Ju M S, Lin C C, Lin D H, et al. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitationrobot.[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering APublication of the IEEE Engineering in Medicine & Biology Society, 2005, 13(3):349-358.
[9] S, Siegler, J, Chen, C D, Schneck. The three-dimensional kinematicsand flexibility characteristics of the human ankle and subtalar joints- PartI: Kinematics[J]. Journal of Biomechanical Engineering, 1988, 110(4):364-373。
发明内容
为了克服现有技术的上述缺点,本发明提供一种新型踝关节康复机器人其控制方法,它具有三转动自由度,并且工作空间应当满足踝关节各运动的角度范围;同时,还满足踝关节转动灵活性高、承载能力强的生理特点。
本发明解决其技术问题所采用的技术方案是:一种新型踝关节康复机器人,包括电控箱、基座、驱动电机、编码器、3-RRR球面并联机构及脚部踏板;其中,3-RRR球面并联机构位于底部基座及上方脚部踏板之间,3-RRR球面并联机构具有三条相同的运动支链,每条支链由三个转动副和两个连杆组成,该3-RRR球面机构是一种典型的球面并联机构(SPM),具有三个纯转动自由度,且各转动轴线交于一点,该点是3-RRR球面机构的转动中心O点,每条运动支链的各个转动副轴线也交于O点,首先,在转动中心O点处建立固连于静平台的静坐标系OX 0 Y 0 Z 0Z 0指向静平台的法线方向向上,X 0指向O点与运动支链靠近静平台的转动副中心连续在静平台上的投影方向,Y 0由右手定则确定,其次,在同样在转动中心O点处建立固连于动平台的动坐标系OX 0 'Y 0 'Z 0 ',该坐标系会随着动平台的运动而运动,在初始位置,动坐标系与静坐标系重合;
定义方向矢量u i (i=1,2,3),指向运动支链i中连架杆与静平台之间转动副的轴线方向;定义v i (i=1,2,3),指向运动支链i中连杆与动平台之间的转动副的轴线方向;定义w i (i=1,2,3),指向同一运动支链上两连杆之间转动副的轴线方向;
因为三条运动支链完全相同,所以对其结构参数研究时,可以将3-RRR机构的简化为一条支链作为研究对象,单条运动支链共有四个结构参数:
α 1——连架杆两端转动副轴线的夹角;
α 2——连杆两端转动副轴线的夹角;
β 1——方向矢量u i 与静平台法线方向OH的夹角;
β 2——方向矢量v i 与静平台法线方向OH'的夹角;
这些结构参数对机构的工作空间、灵活度产生影响,为了获得较好的灵活度指标,同时考虑到机构对称性,对四个参数进行尺寸综合,确定优化结果为α 1=90°,α 2=90°,β 1=54°,β 2=54°,此时3-RRR球面并联机构呈现正交特点,方向矢量v i 垂直于w i
将各条运动支链的驱动输入定义为θ i (i=1,2,3),因为3-RRR球面并联机构为纯转动机构,可用欧拉角表示其动平台的姿态角,采用ZXY欧拉角[ϕ,θ,ψ]来表示姿态,动坐标系OX 0 'Y 0 'Z 0 '相对于静坐标系OX 0 Y 0 Z 0的坐标变换过程为:
(1)坐标系OX 0 Y 0 Z 0Z 0转动ϕ角,得到中间坐标系OX 1 Y 1 Z 1
(2)坐标系OX 1 Y 1 Z 1X 1轴转动θ角,得到中间坐标系OX 2 Y 2 Z 2
(3)坐标系OX 2 Y 2 Z 2Y 2轴转动ψ角,得到动坐标系OX 0 'Y 0 'Z 0 '
由以上变换过程可以写出从定坐标系OX 0 Y 0 Z 0系到动坐标系OX 0 'Y 0 'Z 0 '的旋转矩阵R E
所述3-RRR球面并联机构具有一个静平台和一个动平台,基座与3-RRR球面并联机构的静平台固定相连,动平台则与脚部踏板固定相连。
所述运动支链靠近静平台的连杆为连架杆。
在3-RRR球面并联结构中还增加了一条支链,由一个球运动副组成,球铰的中心与3-RRR球面并联机构的转动中心重合,该支链并无驱动,主要用于优化机构刚度,增加承载能力。
一种新型踝关节康复机器人的控制方法,包括两种康复模式:运动功能训练模式和肌肉力量训练模式,分别适合踝关节损伤的病患在术后恢复前期和中后期的训练治疗,康复机器人本体结构、硬件、控制软件及交互系统构成了完整的使用环境,硬件控制系统采用上下位机的架构方式,上位机是基于普通台式电脑或家用笔记本电脑,运行训练虚拟场景计算、位置控制、运动学计算、力计算等高层控制算法;下位机则是基于嵌入式系统,执行编码器采集、电机驱动控制、通信控制等底层控制算法;上下位机采用以太网通信方式,可实现高速数据传输,且利于联网操作和多机器人扩展;其中运动功能训练模式的人机交互界面负责提供训练者可视化的虚拟训练场景,以提供一定沉浸感的训练体验。用户通过人机交互界面选择训练模式,机器人运动规划器根据训练者的输入,在数据库中查找该模式对应的训练计划,运动规划器根据训练计划设定的运动范围、运动速度进行插值计算,输出机器人动平台姿态数据给运动学逆解模块进行逆解计算,求得各个关节的控制量,并交由下位机的PID控制器进行位置控制,关节编码器负责采集电机转角,作为PID控制器的输入,同时反馈到上位机的运动学正解模块中,计算机器人动平台的实时姿态,经过虚拟场景渲染,反馈到训练者,提供具有沉浸感的训练效果,从而有效提升训练过程中的乐趣;踝关节康复的中后期则主要使用肌肉力量训练模式,在该训练模式下,不同于位置控制下的牵引运动,机器人须提供一种阻力给训练者,康复机器人采用阻抗控制作为肌肉力量训练时的力控模型,训练者向康复机器人施加踝部运动,机器人则根据与训练者脚部相连的动平台姿态变化,计算反馈力并输出给训练者。采用经典的“质量-阻尼-弹簧”模型作为反馈力计算方法:
其中,F为机器人向训练者反馈的力,M表示惯性系数,B表示阻尼系数,K表示刚度系数,X表示训练者向机器人施加的运动;
反馈力F需经过静力学反解,得到各个驱动关节的驱动力矩τ i (i=1,2,3),并最终转换为电机电流进行伺服控制,根据虚功原理,有:
将公式(8)带入公式(17)中,可得:
J T 为机构的力雅可比矩阵,表示机器人动平台输出的反馈力矩与关节驱动力矩的映射关系;
康复训练者与康复机器人的交互包括运动输入、视觉反馈和力反馈,机器人工作在一种被动模式下,关节编码器采集驱动电机转角,经过运动学正解模块计算机器人动平台姿态角,输入阻抗控制器模块计算反馈力,并经过静力学反解,计算关节的驱动力矩,经过底层的闭环控制实现反馈力的输出。
所述训练计划文件是采用一种类自然语言的自定义脚本,存储于数据库中,具有良好的扩展性。对于不同病患的不同阶段,康复师只需制定康复训练计划,即可转换为脚本文件,供机器人运动规划器调取作为机器人动平台姿态规划的依据。
本发明的有益效果是:采用3-RRR球面并联机构作为机器人的基础构型,具有灵活性好、刚度高、紧凑便携,符合踝关节生理结构特征等优点;在机构设计的基础上完成了机械结构设计;完成了3-RRR球面并联机构的建模分析,通过坐标变换矩阵和机构几何约束方程推导了运动学逆解。针对并联机构运动学正解求解困难的问题,根据机构关节空间和操作空间的速度映射关系,设计了一种迭代算法计算机构的运动学正解,通过算例证明了算法具有精度高、迭代速度快的特点;根据踝关节术后康复的不同时期,设计了两种康复训练模式:运动功能训练模式和肌肉力量训练模式。运动功能训练模式下采用位置控制方式建立机器人的控制系统结构;在肌肉力量训练模式下采用阻抗控制方式,采用“质量-阻尼-弹簧”力模型,保证了机器人在被动工作下,与人交互具有良好的柔顺性和安全性。
附图说明
图1踝关节运动自由度示意图;
图2是踝关节康复机器人结构示意图;
图3是 3-RRR球面并联机构建模图;
图4 是运动功能训练模式方框示意图;
图5肌肉力量训练模式方框示意图。
图中:1-基座,2-3-RRR球面并联机构,3-踏板,4-驱动电机,5-电控箱。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
参见图1~图5,一种新型踝关节康复机器人,包括电控箱5、基座1、驱动电机4、编码器、3-RRR球面并联机构2及脚部踏板3;其中,3-RRR球面并联机构2位于底部基座1及上方脚部踏板3之间,3-RRR球面并联机构2具有三条相同的运动支链,每条支链由三个转动副和两个连杆组成,该3-RRR球面机构是一种典型的球面并联机构(SPM),具有三个纯转动自由度,且各转动轴线交于一点,该点是3-RRR球面机构的转动中心O点,每条运动支链的各个转动副轴线也交于O点,首先,在转动中心O点处建立固连于静平台的静坐标系OX 0 Y 0 Z 0Z 0指向静平台的法线方向向上,X 0指向O点与运动支链靠近静平台的转动副中心连续在静平台上的投影方向,Y 0由右手定则确定,其次,在同样在转动中心O点处建立固连于动平台的动坐标系OX 0 'Y 0 'Z 0 ',该坐标系会随着动平台的运动而运动,在初始位置,动坐标系与静坐标系重合;
定义方向矢量u i (i=1,2,3),指向运动支链i中连架杆与静平台之间转动副的轴线方向;定义v i (i=1,2,3),指向运动支链i中连杆与动平台之间的转动副的轴线方向;定义w i (i=1,2,3),指向同一运动支链上两连杆之间转动副的轴线方向。
因为三条运动支链完全相同,所以对其结构参数研究时,可以将3-RRR机构的简化为一条支链作为研究对象,单条运动支链共有四个结构参数:
α 1——连架杆两端转动副轴线的夹角;
α 2——连杆两端转动副轴线的夹角;
β 1——方向矢量u i 与静平台法线方向OH的夹角;
β 2——方向矢量v i 与静平台法线方向OH'的夹角;
这些结构参数对机构的工作空间、灵活度产生影响,为了获得较好的灵活度指标,同时考虑到机构对称性,对四个参数进行尺寸综合,确定优化结果为α 1=90°,α 2=90°,β 1=54°,β 2=54°,此时3-RRR球面并联机构2呈现正交特点,方向矢量v i 垂直于w i
将各条运动支链的驱动输入定义为θ i (i=1,2,3),因为3-RRR球面并联机构2为纯转动机构,可用欧拉角表示其动平台的姿态角,采用ZXY欧拉角[ϕ,θ,ψ]来表示姿态,动坐标系OX 0 'Y 0 'Z 0 '相对于静坐标系OX 0 Y 0 Z 0的坐标变换过程为:
(1)坐标系OX 0 Y 0 Z 0Z 0转动ϕ角,得到中间坐标系OX 1 Y 1 Z 1
(2)坐标系OX 1 Y 1 Z 1X 1轴转动θ角,得到中间坐标系OX 2 Y 2 Z 2
(3)坐标系OX 2 Y 2 Z 2Y 2轴转动ψ角,得到动坐标系OX 0 'Y 0 'Z 0 '
由以上变换过程可以写出从定坐标系OX 0 Y 0 Z 0系到动坐标系OX 0 'Y 0 'Z 0 '的旋转矩阵R E
所述3-RRR球面并联机构2具有一个静平台和一个动平台,基座1与3-RRR球面并联机构2的静平台固定相连,动平台则与脚部踏板3固定相连。
所述运动支链靠近静平台的连杆为连架杆。
在3-RRR球面并联结构中还增加了一条支链,由一个球运动副组成,球铰的中心与3-RRR球面并联机构2的转动中心重合,该支链并无驱动,主要用于优化机构刚度,增加承载能力。
一种新型踝关节康复机器人的控制方法,包括两种康复模式:运动功能训练模式和肌肉力量训练模式,分别适合踝关节损伤的病患在术后恢复前期和中后期的训练治疗,康复机器人本体结构、硬件、控制软件及交互系统构成了完整的使用环境,硬件控制系统采用上下位机的架构方式,上位机是基于普通台式电脑或家用笔记本电脑,运行训练虚拟场景计算、位置控制、运动学计算、力计算等高层控制算法;下位机则是基于嵌入式系统,执行编码器采集、电机驱动控制、通信控制等底层控制算法;上下位机采用以太网通信方式,可实现高速数据传输,且利于联网操作和多机器人扩展;其中运动功能训练模式的人机交互界面负责提供训练者可视化的虚拟训练场景,以提供一定沉浸感的训练体验,用户通过人机交互界面选择训练模式,机器人运动规划器根据训练者的输入,在数据库中查找该模式对应的训练计划,运动规划器根据训练计划设定的运动范围、运动速度进行插值计算,输出机器人动平台姿态数据给运动学逆解模块进行逆解计算,求得各个关节的控制量,并交由下位机的PID控制器进行位置控制,关节编码器负责采集电机转角,作为PID控制器的输入,同时反馈到上位机的运动学正解模块中,计算机器人动平台的实时姿态,经过虚拟场景渲染,反馈到训练者,提供具有沉浸感的训练效果,从而有效提升训练过程中的乐趣;踝关节康复的中后期则主要使用肌肉力量训练模式,在该训练模式下,不同于位置控制下的牵引运动,机器人须提供一种阻力给训练者,康复机器人采用阻抗控制作为肌肉力量训练时的力控模型,训练者向康复机器人施加踝部运动,机器人则根据与训练者脚部相连的动平台姿态变化,计算反馈力并输出给训练者。采用经典的“质量-阻尼-弹簧”模型作为反馈力计算方法:
其中,F为机器人向训练者反馈的力,M表示惯性系数,B表示阻尼系数,K表示刚度系数,X表示训练者向机器人施加的运动;
反馈力F需经过静力学反解,得到各个驱动关节的驱动力矩τ i (i=1,2,3),并最终转换为电机电流进行伺服控制,根据虚功原理,有:
将公式(8)带入公式(17)中,可得:
J T 为机构的力雅可比矩阵,表示机器人动平台输出的反馈力矩与关节驱动力矩的映射关系;
康复训练者与康复机器人的交互包括运动输入、视觉反馈和力反馈,机器人工作在一种被动模式下,关节编码器采集驱动电机4转角,经过运动学正解模块计算机器人动平台姿态角,输入阻抗控制器模块计算反馈力,并经过静力学反解,计算关节的驱动力矩,经过底层的闭环控制实现反馈力的输出。
所述训练计划文件是采用一种类自然语言的自定义脚本,存储于数据库中,具有良好的扩展性。对于不同病患的不同阶段,康复师只需制定康复训练计划,即可转换为脚本文件,供机器人运动规划器调取作为机器人动平台姿态规划的依据。
本发明采用3-RRR球面并联机构2作为机器人的基础构型,具有灵活性好、刚度高、紧凑便携,符合踝关节生理结构特征等优点;在机构设计的基础上完成了机械结构设计;完成了3-RRR球面并联机构2的建模分析,通过坐标变换矩阵和机构几何约束方程推导了运动学逆解。针对并联机构运动学正解求解困难的问题,根据机构关节空间和操作空间的速度映射关系,设计了一种迭代算法计算机构的运动学正解,通过算例证明了算法具有精度高、迭代速度快的特点;根据踝关节术后康复的不同时期,设计了两种康复训练模式:运动功能训练模式和肌肉力量训练模式。运动功能训练模式下采用位置控制方式建立机器人的控制系统结构;在肌肉力量训练模式下采用阻抗控制方式,采用“质量-阻尼-弹簧”力模型,保证了机器人在被动工作下,与人交互具有良好的柔顺性和安全性。

Claims (6)

1.一种新型踝关节康复机器人,其特征在于:包括电控箱、基座、驱动电机、编码器、3-RRR球面并联机构及脚部踏板;其中,3-RRR球面并联机构位于底部基座及上方脚部踏板之间,3-RRR球面并联机构具有三条相同的运动支链,每条支链由三个转动副和两个连杆组成,该3-RRR球面机构是一种典型的球面并联机构,具有三个纯转动自由度,且各转动轴线交于一点,该点是3-RRR球面机构的转动中心O点,每条运动支链的各个转动副轴线也交于O点,首先,在转动中心O点处建立固连于静平台的静坐标系OX 0 Y 0 Z 0Z 0指向静平台的法线方向向上,X 0指向O点与运动支链靠近静平台的转动副中心连续在静平台上的投影方向,Y 0由右手定则确定,其次,在同样在转动中心O点处建立固连于动平台的动坐标系OX 0 'Y 0 'Z 0 ',该坐标系会随着动平台的运动而运动,在初始位置,动坐标系与静坐标系重合;
定义方向矢量u i (i=1,2,3),指向运动支链i中连架杆与静平台之间转动副的轴线方向;定义v i (i=1,2,3),指向运动支链i中连杆与动平台之间的转动副的轴线方向;定义w i (i=1,2,3),指向同一运动支链上两连杆之间转动副的轴线方向;
因为三条运动支链完全相同,所以对其结构参数研究时,可以将3-RRR机构的简化为一条支链作为研究对象,单条运动支链共有四个结构参数:
α 1——连架杆两端转动副轴线的夹角;
α 2——连杆两端转动副轴线的夹角;
β 1——方向矢量u i 与静平台法线方向OH的夹角;
β 2——方向矢量v i 与静平台法线方向OH'的夹角;
这些结构参数对机构的工作空间、灵活度产生影响,为了获得较好的灵活度指标,同时考虑到机构对称性,对四个参数进行尺寸综合,确定优化结果为α 1=90°,α 2=90°,β 1=54°,β 2=54°,此时3-RRR球面并联机构呈现正交特点,方向矢量v i 垂直于w i
将各条运动支链的驱动输入定义为θ i (i=1,2,3),因为3-RRR球面并联机构为纯转动机构,可用欧拉角表示其动平台的姿态角,采用ZXY欧拉角[ϕ,θ,ψ]来表示姿态,动坐标系OX 0 'Y 0 'Z 0 '相对于静坐标系OX 0 Y 0 Z 0的坐标变换过程为:
(1)坐标系OX 0 Y 0 Z 0Z 0转动ϕ角,得到中间坐标系OX 1 Y 1 Z 1
(2)坐标系OX 1 Y 1 Z 1X 1轴转动θ角,得到中间坐标系OX 2 Y 2 Z 2
(3)坐标系OX 2 Y 2 Z 2Y 2轴转动ψ角,得到动坐标系OX 0 'Y 0 'Z 0 '
由以上变换过程可以写出从定坐标系OX 0 Y 0 Z 0系到动坐标系OX 0 'Y 0 'Z 0 '的旋转矩阵R E
<math display = 'block'> <mrow> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>=</mo> <mfenced open = '[' close = ']'> <mtable rowalign='center'> <mtr> <mtd> <mrow> <mi>c</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>&amp;psi;</mi> <mo>&amp;minus;</mo> <mi>s</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>s</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mo>&amp;minus;</mo> <mi>s</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>s</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>c</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>s</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>s</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mo>&amp;minus;</mo> <mi>c</mi> <mi>&amp;phi;</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;minus;</mo> <mi>c</mi> <mi>&amp;theta;</mi> <mi>s</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>s</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>。
2.如权利要求1所述新型踝关节康复机器人,其特征在于:所述3-RRR球面并联机构具有一个静平台和一个动平台,基座与3-RRR球面并联机构的静平台固定相连,动平台则与脚部踏板固定相连。
3.如权利要求1所述新型踝关节康复机器人,其特征在于:所述运动支链靠近静平台的连杆为连架杆。
4.如权利要求1所述新型踝关节康复机器人,其特征在于:在3-RRR球面并联结构中还增加了一条支链,由一个球运动副组成,球铰的中心与3-RRR球面并联机构的转动中心重合,该支链并无驱动,主要用于优化机构刚度,增加承载能力。
5.一种新型踝关节康复机器人的控制方法,其特征在于:包括两种康复模式:运动功能训练模式和肌肉力量训练模式,分别适合踝关节损伤的病患在术后恢复前期和中后期的训练治疗,康复机器人本体结构、硬件、控制软件及交互系统构成了完整的使用环境,硬件控制系统采用上下位机的架构方式,上位机是基于普通台式电脑或家用笔记本电脑,运行训练虚拟场景计算、位置控制、运动学计算、力计算等高层控制算法;下位机则是基于嵌入式系统,执行编码器采集、电机驱动控制、通信控制等底层控制算法;上下位机采用以太网通信方式,可实现高速数据传输,且利于联网操作和多机器人扩展;其中运动功能训练模式的人机交互界面负责提供训练者可视化的虚拟训练场景,以提供一定沉浸感的训练体验;用户通过人机交互界面选择训练模式,机器人运动规划器根据训练者的输入,在数据库中查找该模式对应的训练计划,运动规划器根据训练计划设定的运动范围、运动速度进行插值计算,输出机器人动平台姿态数据给运动学逆解模块进行逆解计算,求得各个关节的控制量,并交由下位机的PID控制器进行位置控制,关节编码器负责采集电机转角,作为PID控制器的输入,同时反馈到上位机的运动学正解模块中,计算机器人动平台的实时姿态,经过虚拟场景渲染,反馈到训练者,提供具有沉浸感的训练效果,从而有效提升训练过程中的乐趣;踝关节康复的中后期则主要使用肌肉力量训练模式,在该训练模式下,不同于位置控制下的牵引运动,机器人须提供一种阻力给训练者,康复机器人采用阻抗控制作为肌肉力量训练时的力控模型,训练者向康复机器人施加踝部运动,机器人则根据与训练者脚部相连的动平台姿态变化,计算反馈力并输出给训练者;采用经典的“质量-阻尼-弹簧”模型作为反馈力计算方法:
其中,F为机器人向训练者反馈的力,M表示惯性系数,B表示阻尼系数,K表示刚度系数,X表示训练者向机器人施加的运动;
反馈力F需经过静力学反解,得到各个驱动关节的驱动力矩τ i (i=1,2,3),并最终转换为电机电流进行伺服控制,根据虚功原理,有:
将公式(8)带入公式(17)中,可得:
J T 为机构的力雅可比矩阵,表示机器人动平台输出的反馈力矩与关节驱动力矩的映射关系;
康复训练者与康复机器人的交互包括运动输入、视觉反馈和力反馈,机器人工作在一种被动模式下,关节编码器采集驱动电机转角,经过运动学正解模块计算机器人动平台姿态角,输入阻抗控制器模块计算反馈力,并经过静力学反解,计算关节的驱动力矩,经过底层的闭环控制实现反馈力的输出。
6.如权利要求5所述一种新型踝关节康复机器人的控制方法,其特征在于:所述训练计划文件是采用一种类自然语言的自定义脚本,存储于数据库中,具有良好的扩展性;对于不同病患的不同阶段,康复师只需制定康复训练计划,即可转换为脚本文件,供机器人运动规划器调取作为机器人动平台姿态规划的依据。
CN201710445971.0A 2017-06-14 2017-06-14 一种新型踝关节康复机器人其控制方法 Active CN107050763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710445971.0A CN107050763B (zh) 2017-06-14 2017-06-14 一种新型踝关节康复机器人其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710445971.0A CN107050763B (zh) 2017-06-14 2017-06-14 一种新型踝关节康复机器人其控制方法

Publications (2)

Publication Number Publication Date
CN107050763A true CN107050763A (zh) 2017-08-18
CN107050763B CN107050763B (zh) 2022-12-06

Family

ID=59595113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710445971.0A Active CN107050763B (zh) 2017-06-14 2017-06-14 一种新型踝关节康复机器人其控制方法

Country Status (1)

Country Link
CN (1) CN107050763B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758734A (zh) * 2019-01-03 2019-05-17 华中科技大学 一种具有肌力反馈功能的多模式肌力训练装置及方法
CN109998867A (zh) * 2019-05-23 2019-07-12 华北理工大学 欠驱动的上下肢康复训练机器人
CN110265112A (zh) * 2019-07-17 2019-09-20 北京航空航天大学 一种下肢康复机器人的三维步态康复训练方法
CN111096871A (zh) * 2020-02-03 2020-05-05 河南理工大学 一种踝关节康复机器人的尺寸参数确定方法
CN111345971A (zh) * 2020-03-14 2020-06-30 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法
CN112494285A (zh) * 2021-01-19 2021-03-16 刘坤 一种平衡控制训练机器人
CN113183131A (zh) * 2021-04-23 2021-07-30 中国科学院深圳先进技术研究院 一种具有双柔性驱动分支的外骨骼机器人踝关节
CN114831847A (zh) * 2022-03-29 2022-08-02 中国农业大学 一种四支链并联机构颈部康复训练机器人及其力控制方法
CN116869490A (zh) * 2023-09-08 2023-10-13 广州舒瑞医疗科技有限公司 基于人工智能的前庭康复训练动态评估系统

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605220A (en) * 1985-04-12 1986-08-12 Wikco Industries, Inc. Ankle exerciser
EP1880702A2 (en) * 2006-07-20 2008-01-23 Universita'Degli Studi di Roma "La Sapienza" Motorized platform for the therapeutic treatment of patients
CN101292935A (zh) * 2008-02-02 2008-10-29 河北工业大学 一种踝关节康复机器人
CN101301755A (zh) * 2008-05-29 2008-11-12 燕山大学 具有偏置输出的3自由度球面并联仿生肩关节
CN101497198A (zh) * 2009-02-24 2009-08-05 燕山大学 具有远程运动中心的三自由度转动并联机构
US20100331150A1 (en) * 2009-06-24 2010-12-30 Sabanci University A Reconfigurable Ankle Exoskeleton Device
CN101978940A (zh) * 2010-10-25 2011-02-23 北京航空航天大学 一种虚实结合的机器人辅助手指运动功能康复训练系统
CN102275163A (zh) * 2011-07-08 2011-12-14 常州大学 一种球面并联运动机构
CN202192619U (zh) * 2011-07-29 2012-04-18 万向钱潮股份有限公司 具有直线运动伸缩补偿功能的3-rrr机构
US20120330198A1 (en) * 2011-06-21 2012-12-27 Volkan Patoglu Exoskeleton
CN103006415A (zh) * 2012-12-25 2013-04-03 上海大学 上肢运动训练机器人的控制装置及控制方法
CN103070757A (zh) * 2013-01-08 2013-05-01 北京工业大学 并联式主动/被动踝关节康复训练装置
ITMI20112325A1 (it) * 2011-12-20 2013-06-21 Consiglio Nazionale Ricerche Dispositivo e metodo per la riabilitazione dei movimenti del piede
US20150082934A1 (en) * 2013-09-26 2015-03-26 Wen-Der TRUI Spherical Coordinates Manipulating Mechanism
CN104887452A (zh) * 2015-07-03 2015-09-09 南通美嘉机器人科技有限公司 一种并联式踝关节康复机器人
RU2579728C1 (ru) * 2015-02-20 2016-04-10 Роман Сергеевич Затиральный Силовой тренажер романа затирального
CN105943307A (zh) * 2016-05-31 2016-09-21 天津大学 一种踝关节并联康复装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605220A (en) * 1985-04-12 1986-08-12 Wikco Industries, Inc. Ankle exerciser
EP1880702A2 (en) * 2006-07-20 2008-01-23 Universita'Degli Studi di Roma "La Sapienza" Motorized platform for the therapeutic treatment of patients
CN101292935A (zh) * 2008-02-02 2008-10-29 河北工业大学 一种踝关节康复机器人
CN101301755A (zh) * 2008-05-29 2008-11-12 燕山大学 具有偏置输出的3自由度球面并联仿生肩关节
CN101497198A (zh) * 2009-02-24 2009-08-05 燕山大学 具有远程运动中心的三自由度转动并联机构
US20100331150A1 (en) * 2009-06-24 2010-12-30 Sabanci University A Reconfigurable Ankle Exoskeleton Device
CN101978940A (zh) * 2010-10-25 2011-02-23 北京航空航天大学 一种虚实结合的机器人辅助手指运动功能康复训练系统
US20120330198A1 (en) * 2011-06-21 2012-12-27 Volkan Patoglu Exoskeleton
CN102275163A (zh) * 2011-07-08 2011-12-14 常州大学 一种球面并联运动机构
CN202192619U (zh) * 2011-07-29 2012-04-18 万向钱潮股份有限公司 具有直线运动伸缩补偿功能的3-rrr机构
ITMI20112325A1 (it) * 2011-12-20 2013-06-21 Consiglio Nazionale Ricerche Dispositivo e metodo per la riabilitazione dei movimenti del piede
EP2793793A1 (en) * 2011-12-20 2014-10-29 Consiglio Nazionale delle Ricerche Device for the rehabilitation of movements of the foot
US20140378876A1 (en) * 2011-12-20 2014-12-25 Consiglio Nazionale Delle Ricerche Device for the rehabilitation of movements of the foot
CN103006415A (zh) * 2012-12-25 2013-04-03 上海大学 上肢运动训练机器人的控制装置及控制方法
CN103070757A (zh) * 2013-01-08 2013-05-01 北京工业大学 并联式主动/被动踝关节康复训练装置
US20150082934A1 (en) * 2013-09-26 2015-03-26 Wen-Der TRUI Spherical Coordinates Manipulating Mechanism
RU2579728C1 (ru) * 2015-02-20 2016-04-10 Роман Сергеевич Затиральный Силовой тренажер романа затирального
CN104887452A (zh) * 2015-07-03 2015-09-09 南通美嘉机器人科技有限公司 一种并联式踝关节康复机器人
CN105943307A (zh) * 2016-05-31 2016-09-21 天津大学 一种踝关节并联康复装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
周玉林等: "3-RRR 3自由度球面并联机构静刚度分析", 《机械工程学报》 *
戚开诚等: "具有并联关节的两足步行机器人运动学反解分析", 《机械设计》 *
李剑锋等: "基于3-UPS/RRR的并联踝关节康复机构及其性能分析", 《自动化学报》 *
杨加伦等: "正交三自由度球面并联机构的位置正反解新方法", 《机械设计与研究》 *
胡进等: "下肢康复机器人及其交互控制方法", 《自动化学报》 *
荣誉等: "三分支非均匀分布球面并联机器人的工作空间分析", 《机械设计与制造》 *
钟相强等: "基于螺旋理论的3-RRR并联机构设计与仿真", 《安徽工程大学学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758734A (zh) * 2019-01-03 2019-05-17 华中科技大学 一种具有肌力反馈功能的多模式肌力训练装置及方法
CN109998867B (zh) * 2019-05-23 2023-09-19 华北理工大学 欠驱动的上下肢康复训练机器人
CN109998867A (zh) * 2019-05-23 2019-07-12 华北理工大学 欠驱动的上下肢康复训练机器人
CN110265112A (zh) * 2019-07-17 2019-09-20 北京航空航天大学 一种下肢康复机器人的三维步态康复训练方法
CN111096871A (zh) * 2020-02-03 2020-05-05 河南理工大学 一种踝关节康复机器人的尺寸参数确定方法
CN111345971A (zh) * 2020-03-14 2020-06-30 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法
CN112494285A (zh) * 2021-01-19 2021-03-16 刘坤 一种平衡控制训练机器人
CN113183131A (zh) * 2021-04-23 2021-07-30 中国科学院深圳先进技术研究院 一种具有双柔性驱动分支的外骨骼机器人踝关节
CN113183131B (zh) * 2021-04-23 2023-10-03 中国科学院深圳先进技术研究院 一种具有双柔性驱动分支的外骨骼机器人踝关节
CN114831847A (zh) * 2022-03-29 2022-08-02 中国农业大学 一种四支链并联机构颈部康复训练机器人及其力控制方法
CN114831847B (zh) * 2022-03-29 2023-06-09 中国农业大学 一种四支链并联机构颈部康复训练机器人及其力控制方法
CN116869490A (zh) * 2023-09-08 2023-10-13 广州舒瑞医疗科技有限公司 基于人工智能的前庭康复训练动态评估系统
CN116869490B (zh) * 2023-09-08 2024-01-09 广州舒瑞医疗科技有限公司 基于人工智能的前庭康复训练动态评估系统

Also Published As

Publication number Publication date
CN107050763B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN107050763A (zh) 一种新型踝关节康复机器人其控制方法
CN103735389B (zh) 一种手指间协调性训练康复装置
CN207071200U (zh) 一种新型踝关节康复机器人
US20070016116A1 (en) Design of robotic gait rehabilitation by optimal motion of the hip
CN103440037B (zh) 一种基于有限输入信息的虚拟人体运动实时交互控制方法
CN105919774A (zh) 一种并联柔索驱动上肢康复机器人及其实施方法
Liu et al. Development of a new robotic ankle rehabilitation platform for hemiplegic patients after stroke
Carignan et al. A configuration-space approach to controlling a rehabilitation arm exoskeleton
Boian et al. Dual Stewart platform mobility simulator
Wang et al. Design and experimental verification of a hip exoskeleton based on human–machine dynamics for walking assistance
Li et al. Kinematic analysis and dynamic control of a 3-PUU parallel manipulator for cardiopulmonary resuscitation
Masengo et al. A design of lower limb rehabilitation robot and its control for passive training
Meng et al. Upper-limb rehabilitation robot: State of the art and existing problems
Pang et al. Design and analysis of shoulder joint exoskeleton rehabilitation mechanism based on gear and rack transmission
Gan et al. Development of a exoskeleton robot for lower limb rehabilitation
Aloulou et al. Control of a step walking combined to arms swinging for a three dimensional humanoid prototype
Zou et al. Design and optimization of movable cable-driven lower-limb rehabilitation robot
CN113608451A (zh) 基于ros的仿真控制平台及外骨骼机器人仿真控制系统
Guo et al. A VR-based Upper Limb Rehabilitation Hand Robotic Training System
Li et al. Motion Planning for a Cable-Driven Lower Limb Rehabilitation Robot with Movable Distal Anchor Points
CN105438305A (zh) 一种六肢昆虫运动方式确定方法、仿生六肢昆虫机器人及其使用方法
TWI821135B (zh) 上肢復健機
Sun et al. Development of dual-arm lower limb rehabilitation robot for hemiplegic patients
Li et al. Design and Analysis of a Hemispherical Parallel Mechanism for Forearm–Wrist Rehabilitation
Jamwal et al. Multi-criteria optimal design of cable driven ankle rehabilitation robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant