CN107045285A - A kind of servo system self-adaptive parameter identification and control method with input saturation - Google Patents

A kind of servo system self-adaptive parameter identification and control method with input saturation Download PDF

Info

Publication number
CN107045285A
CN107045285A CN201710279942.1A CN201710279942A CN107045285A CN 107045285 A CN107045285 A CN 107045285A CN 201710279942 A CN201710279942 A CN 201710279942A CN 107045285 A CN107045285 A CN 107045285A
Authority
CN
China
Prior art keywords
mrow
mover
msub
centerdot
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710279942.1A
Other languages
Chinese (zh)
Other versions
CN107045285B (en
Inventor
陈强
陶亮
施卉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aidisheng Jiangsu Energy Saving Technology Co ltd
Hefei Wisdom Dragon Machinery Design Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710279942.1A priority Critical patent/CN107045285B/en
Publication of CN107045285A publication Critical patent/CN107045285A/en
Application granted granted Critical
Publication of CN107045285B publication Critical patent/CN107045285B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

A kind of servo system self-adaptive parameter identification and control method with input saturation, including:Set up the servo system models with input saturation, initialization system mode and control parameter;Extracting parameter control information, and online design auto-adaptive parameter identifier, on-line identification system unknown parameter;Modified exponentially approaching rule is designed, saturation is converted into input correlation function, and combines identified parameters and designs Reaching Law sliding mode controller.On-line parameter identification and control algolithm designed by the present invention have good identification and tracing control effect to positional servosystem, can high-precision on-line identification systematic parameter, and improve the control performance of servo-drive system, weaken the buffeting of input controller.

Description

A kind of servo system self-adaptive parameter identification and control method with input saturation
Technical field
The invention belongs to servo system control technical field, it is related to a kind of online adaptive parameter identification and modified index Reaching Law sliding-mode control, especially for servo system self-adaptive parameter identification and control method containing input saturation.
Background technology
With the development of industrial automation, servo-drive system is more and more extensive in industrial control field application.It is high-precision for having For the positional servosystem that degree control is required, because system is easily by nonlinear characteristics such as external disturbance, saturation, frictions Influence, high performance control relative difficulty.Therefore, for how to improve the parameter identification precision of system, and system is improved with this Tracing control performance is one of current study hotspot.
At present, offline identification method, but off-line identification are belonged to for completing the algorithm majority of servo parameter identification Method can not reaction system parameter in time change, and can further influence the control performance of system.Therefore, for proposing one Kind can online adaptive identification system parameter, and follow exterior nonlinear characteristic and the timely reaction system parameter of mechanical property to become The method of change is necessary.
It is the inevitable nonlinear characteristic of each servo-drive system to input saturation, can reduce the control performance of system. In order to improve the tracking accuracy and response speed of servo-drive system, many control methods are all suggested.It is sliding in numerous control methods Mould control is widely studied due to its good robustness and performance of noiseproof.But the buffeting problem of sliding formwork control is limited Its application in practice.Reaching Law sliding-mode control is to reduce one of scheme that sliding mode controller is buffeted, and how to improve Nearly rule so that sliding formwork is buffeted problem and further weakened, and gets a good eye meaning.
The content of the invention
In order to solve the positional servosystem parameter identification and control problem with input saturation, system is set to complete high accuracy Parameter identification and tracing control, the invention provides a kind of online adaptive Identification of parameter and modified exponentially approaching rule control Method processed, this method can design Adaptive Identification rule, by subtracting with the control information and tracking error of extracting parameter itself with this Small parameter error causes the parameter to converge to itself virtual value, simultaneously, it is considered to which system inputs saturation, designs exponentially approaching rule, cuts Weak sliding formwork buffets problem, ensures the high precision tracking control of system in the case of containing input saturation.
In order to solve the above-mentioned technical problem the technical scheme proposed is as follows:
A kind of servo system self-adaptive parameter identification and control method with input saturation, comprise the following steps:
Step 1, the positional servosystem model of the saturation containing input, initialization system mode and control parameter, process are set up It is as follows:
1.1, positional servosystem model is expressed as follows:
Wherein, ktIt is the moment coefficient of system;J is rotary inertia;B is viscous friction coefficient;θ represents motor Angle Position, It is system output;ω is motor speed;I represents torque current, is system input;
1.2, it is considered to system saturation, the input of motor saturation is rewritten into i=sat (u), and u is actually entering for system, sat (u) Form write as:
Wherein, umaxIt is the maximum input of system;
1.3, define x1=θ,Formula (2) is rewritten into:
Wherein,
Step 2, the extraction of parameter error information, process is as follows:
2.1, formula (3) is written as form:
Wherein,
2.2, definitionBy Φ andIt is filtered following operation:
Wherein, ΦfBe respectively Φ andFiltered value;Φf(0)、It is Φ respectivelyfInitial value;R is to adjust Save parameter;
Obtained by formula (4) and formula (5):
2.3, define two dynamical equations P and Q as follows:
Wherein, l is regulation parameter;P (0), Q (0) are P and Q initial value respectively;
Obtained by formula (7):
2.4, obtain as follows on the information of parameter error by (6) and (8):
Q=P Θ (9)
Step 3, the design of control law based on modified exponentially approaching rule, process is as follows:
3.1, defining sliding formwork Reaching Law is:
Wherein, s is sliding variable;D (s)=δ0+(1-δ0)e-β|s|, δ0It is positive regulator parameter with β, and δ0≤1;K is gain Parameter;
3.2, definition tracking error is e=x1-xd, thenWherein xdIt is the reference position signal of system, design Sliding variable is:
Then s derivations are obtained:
3.3, definition input correlation function φ (u)=sat (u)-u, then φ (u) is bounded, and meets following condition:
|φ(u)|≤c1+c2|e|+c3e2 (14)
Wherein, c1、c2、c3It is the variable on unknown border;
3.4, the control law of design system is:
Wherein,It is c respectively1、c2、c3Estimate;
3.5,Estimation rule design it is as follows:
Wherein, p1、p2、p3It is regulation parameter;
3.6, definitionWherein γ1、γ2It is normal number, then hasThe identification rule of system unknown parameter is designed as:
3.7, define liapunov function as follows:
Wherein, A is represented respectively1、b1、c1、c2、c3The evaluated error of each variable,A is represented respectively1、b1、c1、c2、c3Respectively The estimate of variable;
Formula (20) derivation is obtained:
3.5, formula (13)-(20) are substituted into formula (21) and known,System Asymptotic Stability.
The present invention is devised a kind of with input saturation based on parameter identification theory and Reaching Law sliding formwork sliding formwork control technology Servo-drive system on-line parameter identification and modified exponentially approaching rule control algolithm, realize the on-line identification of system unknown parameter With the high-precision control of servo-drive system, problem is buffeted in the input for weakening sliding formwork control.
The present invention technical concept be:For the positional servosystem with input saturation, the present invention passes through extraction system Parameter error information and tracking error, online design identification rule carrys out the unknown parameter of identification system, meanwhile, system is inputted full An input correlation function is converted into problem, its border coefficient adaptive law is designed, and combine follow-on exponentially approaching rule Carry out design system control law, complete the high precision tracking control and accurate parameters on-line identification of system.The invention provides one kind It is capable of the method for online adaptive identification system unknown parameter so that systematic parameter can effectively converge to true value, and devise Suppress the Reaching Law sliding mode control algorithm of saturation, it is ensured that servo-drive system can reach preferable control effect, meanwhile, reduction tradition The buffeting problem of sliding formwork control.
Beneficial effects of the present invention are:Realize that parameter is effectively recognized online, reduction sliding formwork input is buffeted, and realizes servo-drive system High-performance tracing control.
Brief description of the drawings
Fig. 1 is control flow chart of the invention;
Fig. 2 is that reference signal is xd1When pursuit path design sketch;
Fig. 3 is that reference signal is xd1When tracking error design sketch;
Fig. 4 is that reference signal is xd1When control input u design sketch;
Fig. 5 is that reference signal is xd1When systematic parameter a1Identification effect figure;
Fig. 6 is that reference signal is xd1When systematic parameter b1Identification effect figure;
Fig. 7 is that reference signal is xd1When Boundary Variables c1、c2、c3Estimation effect figure;
Fig. 8 is that reference signal is xd2When pursuit path design sketch;
Fig. 9 is that reference signal is xd2When tracking error design sketch;
Figure 10 is that reference signal is xd2When control input u design sketch;
Figure 11 is that reference signal is xd2When systematic parameter a1Identification effect figure;
Figure 12 is that reference signal is xd2When systematic parameter b1Identification effect figure;
Figure 13 is that reference signal is xd2When Boundary Variables c1、c2、c3Estimation effect figure.
Embodiment
The present invention will be further described below in conjunction with the accompanying drawings.
Reference picture 1- Figure 13, a kind of electromechanical servo system friciton compensation calmed based on error with finite time parameter identification Control method, comprises the following steps:
Step 1, the positional servosystem model of the saturation containing input, initialization system mode and control parameter, process are set up It is as follows:
1.1, positional servosystem model is expressed as follows:
Wherein, ktIt is the moment coefficient of system;J is rotary inertia;B is viscous friction coefficient;θ represents motor Angle Position, It is system output;ω is motor speed;I represents torque current, is system input;
1.2, it is considered to system saturation, the input of motor saturation is rewritten into i=sat (u), and u is actually entering for system, sat (u) Form write as:
Wherein, umaxIt is the maximum input of system;
1.3, define x1=θ,Formula (2) is rewritten into:
Wherein,
Step 2, the extraction of parameter error information, process is as follows:
2.1, formula (3) is written as form:
Wherein,
2.2, definitionBy Φ andIt is filtered following operation:
Wherein, ΦfBe respectively Φ andFiltered value;Φf(0)、It is Φ respectivelyfInitial value;R is to adjust Save parameter;
Obtained by formula (4) and formula (5):
2.3, define two dynamical equations P and Q as follows:
Wherein, l is regulation parameter;P (0), Q (0) are P and Q initial value respectively;
Obtained by formula (7):
2.4, obtain as follows on the information of parameter error by (6) and (8):
Q=P Θ (9)
Step 3, the design of control law based on modified exponentially approaching rule, process is as follows:
3.1, defining sliding formwork Reaching Law is:
Wherein, s is sliding variable;D (s)=δ0+(1-δ0)e-β|s|, δ0It is positive regulator parameter with β, and δ0≤1;K is gain Parameter;
3.2, definition tracking error is e=x1-xd, thenWherein xdIt is the reference position signal of system, design Sliding variable is:
Then s derivations are obtained:
3.3, definition input correlation function φ (u)=sat (u)-u, then φ (u) is bounded, and meets following condition:
|φ(u)|≤c1+c2|e|+c3e2 (14)
Wherein, c1、c2、c3It is the variable on unknown border;
3.4, the control law of design system is:
Wherein,It is c respectively1、c2、c3Estimate;
3.5,Estimation rule design it is as follows:
Wherein, p1、p2、p3It is regulation parameter;
3.6, definitionWherein γ1、γ2It is normal number, then hasThe identification rule of system unknown parameter is designed as:
3.7, define liapunov function as follows:
Wherein, A is represented respectively1、b1、c1、c2、c3The evaluated error of each variable,A is represented respectively1、b1、c1、c2、c3Respectively The estimate of variable;
Formula (20) derivation is obtained:
3.5, formula (13)-(20) are substituted into formula (21) and known,System Asymptotic Stability.
The on-line identification performance and control effect of extracting method in order to verify, the present invention have carried out emulation experiment to it.If Put experiment in various parameters primary condition be:Systematic parameter J=0.8, B=0.5, kt=2, then a1=0.25, b1=0.4;Distinguish Know and control parameter k=10, δ0=0.6, β=2, γ1=0.02, γ2=0.004, r=0.01, l=[0.001 0;0 0.001], λ=5, p1=0.001, p2=0.2, p3=0.2;Primary conditionΦf(0)=0, P (0)=0, Q (0) =0, a1(0)=b0(0)=0, c1(0)=c2(0)=c3(0)=0;The input saturation limiting of system is set to umax=100.It is real Test middle reference signal xdX is taken respectivelyd1=10sin (2t) and xd2=5sin (0.1 π t)+4sin (0.5 π t)+5sin (π t).
Fig. 2-Figure 13 is positional servosystem online adaptive parameter identification and control emulation experiment with input saturation Design sketch.Fig. 2 and Fig. 3 represent that reference signal is x respectivelyd1When pursuit path and tracking error, bright the carried side of this two width chart Method can realize preferable tracking performance, and tracking error e can reach a very small scope [- 4 × 10-3,4×10-3]。 Fig. 4 is that reference signal is xd1When system input, it can be seen that system only when first 0.075 second by saturation Influence, afterwards, input correlation function φ (u)=0, even and if when influenceed by saturation, the tracking performance of system still compared with It is good.Meanwhile, by improved exponentially approaching rule, the buffeting of system input is relatively small.Fig. 5 and Fig. 6 are that reference signal is xd1When Systematic parameter on-line identification result figure, it can be seen that a1True value can be effectively converged to, and it is final above and below true value Slight jitter, and Identification Errors are further reducing, b1True value can also be converged in very short time, finally there is one minimum Identification static difference 0.00025.Fig. 7 represents that reference signal is xd1When input correlation function φ (u) Boundary Variables c1、c2、c3Estimate Result is counted, the influence the figure shows input saturation to system, and parameter quickly tends towards stability after saturation influences to disappear.Fig. 8 and Fig. 9 is that reference signal is xd2When pursuit path and tracking error design sketch, the bright system when reference signal changes of the chart is still There is preferable tracking effect, and maximum tracking error amplitude is 5 × 10-3.Figure 10 is that reference signal is xd2When system it is defeated Enter, the bright saturation influence of the chart only only has first 0.1 second, and input is buffeted and also reduced within the acceptable range.Figure 11 and figure 12 be that reference signal is xd2When parameter identification result, as a result show systematic parameter can to converge to true value in the extremely short time, And identification precision is higher.Figure 13 is that reference signal is xd2When Boundary Variables c1、c2、c3Estimated result design sketch, the chart is bright Parameter will be restrained in 0.5 second, and the input saturation of system will not be influenced too much under the influence of institute's extracting method to system. From the point of view of the result of emulation experiment, online adaptive Identification of parameter proposed by the invention and modified exponentially approaching rule control Method processed, can high-precision on-line identification system unknown parameter, and realize system high-performance tracing control.
Described above is validity of the emulation experiment of the invention provided to show method designed by the present invention, but is shown The right present invention is not limited only to examples detailed above, without departing from essence spirit of the present invention and without departing from involved by substantive content of the present invention And it can be made on the premise of scope it is a variety of deformation be carried out.On-line parameter identification and control method pair designed by the present invention Positional servosystem with input saturation has preferably identification and tracing control effect, can realize servo-drive system high accuracy Parameter identification and tracing control.

Claims (1)

1. a kind of servo system self-adaptive parameter identification and control method with input saturation, it is characterised in that:Including following Step:
Step 1, the positional servosystem model of the saturation containing input, initialization system mode and control parameter are set up, process is as follows:
1.1, positional servosystem model is expressed as follows:
<mrow> <mi>J</mi> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>&amp;omega;</mi> <mo>=</mo> <msub> <mi>k</mi> <mi>t</mi> </msub> <mi>i</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ktIt is the moment coefficient of system;J is rotary inertia;B is viscous friction coefficient;θ represents motor Angle Position, is system Output;ω is motor speed;I represents torque current, is system input;
1.2, it is considered to system saturation, the input of motor saturation is rewritten into i=sat (u), and u is actually entering for system, sat (u) shape Formula is write as:
<mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mi>u</mi> <mo>&gt;</mo> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mo>,</mo> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>u</mi> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mi>u</mi> <mo>&lt;</mo> <mo>-</mo> <msub> <mi>u</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, umaxIt is the maximum input of system;
1.3, define x1=θ,Formula (2) is rewritten into:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>ax</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
Step 2, the extraction of parameter error information, process is as follows:
2.1, formula (3) is written as form:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
2.2, definitionBy Φ andIt is filtered following operation:
Wherein, ΦfBe respectively Φ andFiltered value;Φf(0)、It is Φ respectivelyfInitial value;R is regulation ginseng Number;
Obtained by formula (4) and formula (5):
2.3, define two dynamical equations P and Q as follows:
Wherein, l is regulation parameter;P (0), Q (0) are P and Q initial value respectively;
Obtained by formula (7):
2.4, obtain as follows on the information of parameter error by (6) and (8):
Q=P Θ (9)
<mrow> <mi>P</mi> <mover> <mi>&amp;Theta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>Q</mi> <mo>=</mo> <mi>P</mi> <mover> <mi>&amp;Theta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>P</mi> <mi>&amp;Theta;</mi> <mo>=</mo> <mi>P</mi> <mover> <mi>&amp;Theta;</mi> <mo>~</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Step 3, the design of control law based on modified exponentially approaching rule, process is as follows:
3.1, defining sliding formwork Reaching Law is:
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>s</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein, s is sliding variable;D (s)=δ0+(1-δ0)e-βs, δ0It is positive regulator parameter with β, and δ0≤1;K is gain parameter;
3.2, definition tracking error is e=x1-xd, thenWherein xdIt is the reference position signal of system, designs sliding formwork Variable is:
<mrow> <mi>s</mi> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>e</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Then s derivations are obtained:
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>&amp;lambda;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>ax</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;lambda;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
3.3, definition input correlation function φ (u)=sat (u)-u, then φ (u) is bounded, and meets following condition:
|φ(u)|≤c1+c2|e|+c3e2 (14)
Wherein, c1、c2、c3It is the variable on unknown border;
3.4, the control law of design system is:
<mrow> <mi>u</mi> <mo>=</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>s</mi> <mo>+</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mi>&amp;lambda;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&amp;epsiv;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein, It is c respectively1、c2、c3Estimate;
3.5,Estimation rule design it is as follows:
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>|</mo> <mi>s</mi> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>|</mo> <mi>s</mi> <mo>|</mo> <mo>|</mo> <mi>e</mi> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>|</mo> <mi>s</mi> <mo>|</mo> <msup> <mi>e</mi> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, p1、p2、p3It is regulation parameter;
3.6, definitionWherein γ1、γ2It is normal number, then has The identification rule of system unknown parameter is designed as:
<mrow> <mover> <mover> <mi>&amp;Theta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>H</mi> <mo>+</mo> <mi>P</mi> <mover> <mi>&amp;Theta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>H</mi> <mo>+</mo> <mi>P</mi> <mover> <mi>&amp;Theta;</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
3.7, define liapunov function as follows:
<mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>b</mi> </mrow> </mfrac> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;gamma;</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msubsup> <mover> <mi>a</mi> <mo>~</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;gamma;</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msubsup> <mover> <mi>b</mi> <mo>~</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mi>j</mi> </msub> </mfrac> <msubsup> <mover> <mi>c</mi> <mo>~</mo> </mover> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Wherein, A is represented respectively1、b1、c1、c2、c3The evaluated error of each variable,A is represented respectively1、b1、c1、c2、c3Respectively The estimate of variable;
Formula (20) derivation is obtained:
<mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> <mi>s</mi> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;gamma;</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;gamma;</mi> <mn>2</mn> </msub> </mfrac> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>b</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mi>j</mi> </msub> </mfrac> <msub> <mover> <mi>c</mi> <mo>~</mo> </mover> <mi>j</mi> </msub> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
3.5, formula (13)-(20) are substituted into formula (21) and known,System Asymptotic Stability.
CN201710279942.1A 2017-04-26 2017-04-26 A kind of servo system self-adaptive parameter identification and control method with input saturation Active CN107045285B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710279942.1A CN107045285B (en) 2017-04-26 2017-04-26 A kind of servo system self-adaptive parameter identification and control method with input saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710279942.1A CN107045285B (en) 2017-04-26 2017-04-26 A kind of servo system self-adaptive parameter identification and control method with input saturation

Publications (2)

Publication Number Publication Date
CN107045285A true CN107045285A (en) 2017-08-15
CN107045285B CN107045285B (en) 2019-11-08

Family

ID=59546007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710279942.1A Active CN107045285B (en) 2017-04-26 2017-04-26 A kind of servo system self-adaptive parameter identification and control method with input saturation

Country Status (1)

Country Link
CN (1) CN107045285B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469730A (en) * 2018-01-29 2018-08-31 浙江工业大学 A kind of more motor set time adaptive sliding-mode observer methods based on mean value coupling
CN108536018A (en) * 2018-05-28 2018-09-14 浙江工业大学 Quadrotor self-adaptation control method based on inverse proportion function enhanced double power Reaching Laws and fast terminal sliding-mode surface
CN108803325A (en) * 2018-06-06 2018-11-13 黄山学院 PMSM Servo System robust finite-time control method
CN111506996A (en) * 2020-04-15 2020-08-07 郑州轻工业大学 Self-adaptive identification method of turntable servo system based on identification error limitation
CN112180721A (en) * 2020-09-11 2021-01-05 浙江工业大学 Electromechanical servo system self-adaptive sliding mode control method based on variable speed approach law

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838257B1 (en) * 2007-10-04 2014-09-16 Marvell International Ltd. Controller and design support apparatus
CN104570740A (en) * 2015-01-21 2015-04-29 江南大学 Periodic adaptive learning control method of input saturation mechanical arm system
CN106054594A (en) * 2016-06-12 2016-10-26 金陵科技学院 Model-free adaptive control method based on control input saturation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838257B1 (en) * 2007-10-04 2014-09-16 Marvell International Ltd. Controller and design support apparatus
CN104570740A (en) * 2015-01-21 2015-04-29 江南大学 Periodic adaptive learning control method of input saturation mechanical arm system
CN106054594A (en) * 2016-06-12 2016-10-26 金陵科技学院 Model-free adaptive control method based on control input saturation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIANG TAO等: "Adaptive Parameter Identification and Control for Servo System with Input Saturation", 《THE 9TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL》 *
李永刚等: "受饱和输入约束的非线性系统滑模自适应控制", 《计算机工程与应用》 *
陈强等: "基于扩张状态观测器的机电伺服系统饱和补偿与自适应滑模控制", 《系统科学与数学》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469730A (en) * 2018-01-29 2018-08-31 浙江工业大学 A kind of more motor set time adaptive sliding-mode observer methods based on mean value coupling
CN108469730B (en) * 2018-01-29 2020-02-21 浙江工业大学 Multi-motor fixed time self-adaptive sliding mode control method based on mean value coupling
CN108536018A (en) * 2018-05-28 2018-09-14 浙江工业大学 Quadrotor self-adaptation control method based on inverse proportion function enhanced double power Reaching Laws and fast terminal sliding-mode surface
CN108536018B (en) * 2018-05-28 2021-10-29 浙江工业大学 Four-rotor aircraft self-adaptive control method based on inverse proportion function enhanced double-power approach law and fast terminal sliding mode surface
CN108803325A (en) * 2018-06-06 2018-11-13 黄山学院 PMSM Servo System robust finite-time control method
CN111506996A (en) * 2020-04-15 2020-08-07 郑州轻工业大学 Self-adaptive identification method of turntable servo system based on identification error limitation
CN111506996B (en) * 2020-04-15 2024-05-03 郑州轻工业大学 Identification error limitation-based turntable servo system self-adaptive identification method
CN112180721A (en) * 2020-09-11 2021-01-05 浙江工业大学 Electromechanical servo system self-adaptive sliding mode control method based on variable speed approach law
CN112180721B (en) * 2020-09-11 2022-04-05 浙江工业大学 Electromechanical servo system self-adaptive sliding mode control method based on variable speed approach law

Also Published As

Publication number Publication date
CN107045285B (en) 2019-11-08

Similar Documents

Publication Publication Date Title
CN107045285A (en) A kind of servo system self-adaptive parameter identification and control method with input saturation
CN104238572B (en) Motor servo system non-jitter sliding mode positioning control method based on disturbance compensation
CN104932271B (en) A kind of neutral net full-order sliding mode control method of mechanical arm servo-drive system
CN104950677B (en) Mechanical arm system saturation compensation control method based on back-stepping sliding mode control
CN105223808B (en) Mechanical arm system saturation compensation control method based on neural network dynamic face sliding formwork control
CN106788044A (en) A kind of permagnetic synchronous motor self adaptation non-singular terminal sliding-mode control based on interference observer
CN104698846B (en) A kind of specified performance back stepping control method of mechanical arm servo-drive system
CN105045101B (en) A kind of mechanical arm servo-drive system full-order sliding mode control method based on extended state observer
CN102385342B (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN103728882B (en) The self-adaptation inverting non-singular terminal sliding-mode control of gyroscope
CN106774273A (en) For the algorithm based on sliding mode prediction fault tolerant control method of time_varying delay control system actuator failures
CN104950678A (en) Neural network inversion control method for flexible manipulator system
CN103538068A (en) Fuzzy sliding mode trajectory tracking control method for SCARA robot
CN104950898A (en) Reentry vehicle full-order non-singular terminal sliding mode posture control method
CN104360596B (en) Limited time friction parameter identification and adaptive sliding mode control method for electromechanical servo system
CN106452242B (en) Permanent magnet synchronous motor Chaos and Fuzzy control method based on series-parallel estimation model
CN103616818A (en) Self-adaptive fuzzy neural global rapid terminal sliding-mode control method for micro gyroscope
CN104950671A (en) Reentry vehicle PID (proportion, integration and differentiation) type sliding mode posture control method based on self-adaptive fuzziness
CN105182741A (en) Non-overshot fractional order time-varying sliding mode control method
CN104122794A (en) Self-adaption fuzzy neural compensating nonsingular terminal sliding mode control method of micro gyroscope
CN105182745A (en) Mechanical-arm servo-system neural-network full-order sliding mode control method with dead-zone compensation
CN103994698A (en) Guided missile pitching channel simple sliding-mode control method based on overload and angular velocity measurement
CN113110048B (en) Nonlinear system output feedback adaptive control system and method adopting HOSM observer
Gujjula et al. Adaptive and neural control of a wing section using leading-and trailing-edge surfaces
CN109298636A (en) A kind of improved integral sliding mode control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd.

Address before: 310014 Zhejiang University of Technology, 18, Chao Wang Road, Xiacheng District, Hangzhou, Zhejiang

Patentee before: JIANG University OF TECHNOLOGY

Effective date of registration: 20230619

Address after: 213000 No. 9, Huashan Middle Road, Xinbei District, Changzhou City, Jiangsu Province

Patentee after: Aidisheng (Jiangsu) energy saving Technology Co.,Ltd.

Address before: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee before: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd.