CN107038310A - 一种用于卫星可视化观测的成像模块选型方法 - Google Patents

一种用于卫星可视化观测的成像模块选型方法 Download PDF

Info

Publication number
CN107038310A
CN107038310A CN201710262805.7A CN201710262805A CN107038310A CN 107038310 A CN107038310 A CN 107038310A CN 201710262805 A CN201710262805 A CN 201710262805A CN 107038310 A CN107038310 A CN 107038310A
Authority
CN
China
Prior art keywords
image
forming module
observed
satellite
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710262805.7A
Other languages
English (en)
Other versions
CN107038310B (zh
Inventor
武斌
白照广
王超
尹欢
朱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Dongfanghong Satellite Co Ltd
Original Assignee
Aerospace Dongfanghong Satellite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Dongfanghong Satellite Co Ltd filed Critical Aerospace Dongfanghong Satellite Co Ltd
Priority to CN201710262805.7A priority Critical patent/CN107038310B/zh
Publication of CN107038310A publication Critical patent/CN107038310A/zh
Application granted granted Critical
Publication of CN107038310B publication Critical patent/CN107038310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种用于卫星可视化观测的成像模块选型方法,包括如下步骤:计算太阳辐射出射度;计算观测当日太阳在地球大气边沿的辐照度;模拟飞行全程每个观测时刻光源与待观测目标面元法线的夹角和成像模块视轴与待观测目标面元法线的夹角;计算卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道,飞行全程每个观测时刻反射的太阳辐射在光轴方向入瞳辐照度Ee,并从中得到相应的取值范围并将其转换为勒克斯照度范围;根据辐照度动态范围或者勒克斯照度范围选择成像模块。本发明计算方法简单准确,结果可直接作为飞行器可视化遥测系统设计中商业成像模块选型的依据,在完成可视化遥测功能前提下,显著提高效率,降低成本。

Description

一种用于卫星可视化观测的成像模块选型方法
技术领域
本发明涉及一种成像模块的选型方法,特别是涉及一种商业成像模块作为监视成像系统对在轨卫星关重部位可视化遥测的选型方法,属于在卫星在轨处理技术领域。
背景技术
卫星系统通常由能源系统、通信系统、载荷系统、姿轨控系统等组成。在轨运行期间,所有单机设备正常工作运转保障了各系统功能实现。目前监测卫星设备健康状态均采用遥测数值量下传,地面接收站解码,通过判读当前时刻所有卫星设备的各项相关数据值,如电流值、电压值、热敏值、热偶值等,实现对卫星设备的实时监测,并且通过判断这些遥测数据值是否在正常范围内来判断卫星设备是否正常运行。针对卫星系统中影响整星能源及功能的关重部件(太阳翼帆板、天线、光学摆镜等),通过分析遥测数据来判断卫星的健康状态不仅效率低,而且在卫星故障时不能给出最直观的定性结论。
国外美国航空航天局(NASA)和萨里卫星公司开展的可视化遥测系统已完成星箭分离、星星分离等功能,并广泛推广互补金属氧化物半导体(CMOS)相机在轨应用。国内神舟七号伴星及“嫦娥二号”上均搭载有监视功能的相机,但从设计方案和质量成本方面,有较大的劣势,主要体现在现有可视化遥测系统指标参数、产品接口和环境适应条件复杂,不适用于短期工作的可视化遥测系统的广泛应用。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种用于卫星可视化观测中成像模块的选型方法。该方法根据卫星构型及关重部件几何特性、辐射特性的模型建立,分析计算成像模块选型所需的指标,利用商业货架(Commercial Off-The-Shelf)产品在结构、电子学、通信接口、成像质量和图像处理功能方面二次开发容易等优势,完成成像模块选型,应用于在轨可视化遥测系统的设计。
本发明的技术解决方案是:一种用于卫星可视化观测的成像模块选型方法,该方法包括如下步骤:
(1)、把太阳等效为黑体,由黑体辐射定律,计算太阳辐射出射度M
(2)、根据太阳辐射出射度M,计算观测当日太阳在地球大气边沿的辐照度Esun
(3)、模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行,飞行全程每个观测时刻光源与待观测目标面元法线的夹角Θ1′和成像模块视轴与待观测目标面元法线的夹角Θ′2
(4)、计算卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道,飞行全程每个观测时刻反射的太阳辐射在光轴方向入瞳辐照度Ee,并从中得到相应的取值范围[Eemin,Eemax]:
(5)、选择辐照度动态范围包含步骤(4)所得到的光源辐射在光轴方向入瞳辐照度Ee范围[Eemin,Eemax]的成像模块,用于卫星可视化观测。
所述步骤(1)太阳辐射出射度M为:
式中,Ts为太阳温度;[λ12]为待成像目标反射光所在的波段范围;
c1,c2为常数。
所述步骤(1)中选取的工作光谱范围为可见光波段。
所述光源与待观测目标面元法线的夹角Θ′1为待观测目标面元观测点至太阳的距离矢量与待观测目标面元的法线方向夹角,且Θ′1∈[0,π/2];所述成像模块视轴与待观测目标面元法线的夹角Θ′2为待观测目标面元观测点至成像模块的视轴矢量与待观测目标面元的法线方向夹角,且Θ′2∈[0,π/2]。
反射的太阳辐射在光轴方向入瞳辐照度Ee的计算公式为:
式中,ρ为待观测目标面元反射率;A为待观测目标面元的面积,R为成像模块入瞳与待观测目标面元的距离。
所述步骤(4)采用STK卫星仿真软件模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2,当Θ′1>90°、Θ′1<0°、Θ′2>90°或Θ′2<0°时,令步骤(5)相应的太阳辐射在光轴方向入瞳辐照度Ee为0。
步骤(5)还可以为:根据待成像目标反射光所在的波段范围[λ12]内光谱的最大光视效能K,将步骤(4)所得到的光源辐射在光轴方向入瞳辐照度范围[Eemin,Eemax]转换为勒克斯照度El范围[Elmin,Elmax],从而选择勒克斯照度动态范围包含所述勒克斯照度El范围的成像模块,具体转换公式为:
El=KEe
本发明与现有技术相比有益效果为:
(1)、本发明模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程反射的太阳辐射在光轴方向入瞳辐照度Ee,根据辐照度或者勒克斯照度El范围确定成像模块的选型,选型结果科学合理,降低卫星质量及其成本;
(2)、本发明根据卫星构型目标光学特性,提出太阳辐射在光轴方向入瞳辐照度Ee的计算模型,计算模型简单准确;
(3)、本发明将光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2简化为STK软件中矢量的夹角,目标法线方向矢量为面元至太阳的距离矢量为面元至测量传感器的距离矢量为直接利用现有的STK仿真软件计算,选型过程准确快速。
附图说明
图1为光源、目标与成像模块视轴之间空间位置关系示意图;
图2为本发明成像模块选型方法流程示意图;
图3(a)为STK仿真卫星正常姿态下俯仰角度随时间的变化图;
图3(b)为STK仿真卫星正常姿态下偏航角度随时间的变化图;
图3(c)为STK仿真卫星正常姿态下侧摆角度随时间的变化图;
图4(a)为STK仿真卫星在侧摆35度姿态机动下,俯仰角随时间变化图;
图4(b)为STK仿真卫星在侧摆35度姿态机动下,偏航角随时间变化图;
图4(c)为STK仿真卫星在侧摆35度姿态机动下,侧摆角随时间变化图;
图5(a)为以观测卫星太阳翼为例,卫星正常飞行姿态下,光源与太阳翼表面法线的夹角Θ′1和成像模块视轴与太阳翼表面法线的夹角Θ′2
图5(b)为以观测卫星太阳翼为例,卫星正常飞行姿态下最终计算得到成像模块入瞳辐照度随时间变化示意图;
图6(a)为以观测卫星太阳翼为例,卫星侧摆35度姿态下,光源与太阳翼表面法线的夹角Θ′1和成像模块视轴与太阳翼表面法线的夹角Θ′2
图6(b)为以观测卫星太阳翼为例,卫星侧摆35度姿态下最终计算得到成像模块入瞳辐照度随时间变化示意图。
具体实施方式:
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图1所示,本发明提供的一种用于卫星可视化观测的成像模块的选型方法包括如下步骤:
(1)、根据卫星构型目标光学特性,把太阳等效为黑体,由黑体辐射定律,计算得到太阳辐射出射度M
式中,Ts为太阳温度,Ts=5900K;
c1,c2为常数,c1=3.7418×10-16(W·m2),c2=1.4388×10-2(m·K);
12]为待成像目标反射光所在的波段范围,当待成像目标为自身的部件时,成像主要接收的目标能量来自于目标反射的光源能量,卫星表面主要是反射太阳光在可见光范围的能量,因此,成像模块所选取的工作光谱范围为可见光波段,如:0.38~0.8μm。这种太阳辐射在光轴方向入瞳辐照度Ee的计算模型简单准确;
(2)、根据太阳辐射出射度M,计算观测当日太阳在地球大气边沿的辐照度Esun
式中,rs为太阳半径,取值为6.95×105km,D为观测当日的日地距离;太阳是距离地球最近的恒星,半径为rs=6.95×105km。
一年之中,日地距离的变化主要由地球轨道偏心率引起,不同时期日地距离的修正系数K0可以由下式求出:
K0=(Dse/D)2
=1.00011+0.034221cosC+0.00128sinC+0.000719cos2C-0.000077sin2C
其中,Dse为日地年平均距离,取1.4968×108km;
C为系数,C=2π(dn-1)/365;dn为观测当年1月1日起至观测当日的天数。
因此,所述观测当日的日地距离D根据上述公式确定。
(3)、模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2
如图1所示,目标表面是由面积为dA(m2)的非透明朗伯辐射面元构成,面元的半球反射率为ρ(λ),上述步骤(3)可以在STK中输入飞行器的轨道六根数建立轨道模型,输入俯仰、侧摆、偏航角度建立飞行器的姿态机动模型,利用向量工具(Vector Tool)模拟模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2,输出报告内容主要包括仿真时刻、光源与目标法线的夹角Θ′1和成像模块视轴与目标法线的夹角Θ′2。当Θ′1>90°、Θ′1<0°、Θ′2>90°或Θ′2<0°时,令步骤(5)相应的太阳辐射在光轴方向入瞳辐照度Ee为0。
所述光源与待观测目标面元法线的夹角Θ′1为待观测目标面元观测点至太阳的距离矢量与待观测目标面元的法线方向夹角,且Θ′1∈[0,π/2];所述成像模块视轴与待观测目标面元法线的夹角Θ′2为待观测目标面元观测点至成像模块的视轴矢量与待观测目标面元的法线方向夹角,且Θ′2∈[0,π/2]。将光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2简化为STK软件中矢量的夹角,目标法线方向矢量为面元至太阳的距离矢量为面元至测量传感器的距离矢量为可以直接利用现有的STK仿真软件计算,选型过程准确快速。
(4)、计算卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程反射的太阳辐射在光轴方向入瞳辐照度Ee
式中,ρ为待观测目标面元反射率;A为待观测目标面元面积,单位m2,R为成像模块入瞳与待观测目标的距离;
(5)、选择辐照度Ee动态范围包含步骤(5)所得到的光源辐射在光轴方向入瞳辐照度Ee范围的成像模块,用于构建卫星可视化观测设备。
由于有的商业成像模块的动态范围是以勒克斯的方式给出的,本发明还可以根据待成像目标反射光所在的波段范围[λ12]内光谱的最大光视效能K,将步骤(5)所得到的光源辐射在光轴方向入瞳辐照度范围[Eemin,Eemax]转换为勒克斯照度El范围[Elmin,Elmax],从而选择勒克斯照度范围包含所述勒克斯照度El范围的成像模块,具体转换公式为:
El=KEe
本发明模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程反射的太阳辐射在光轴方向入瞳辐照度Ee,根据辐照度或者勒克斯照度El范围确定成像模块的选型,选型结果科学合理,降低卫星质量及其成本。
实施例:
实例以监测太阳翼为例,仿真输入参数如下:太阳翼的平均反射率ρ取0.2;单个太阳帆的面积A为2m2;探测系统入瞳与太阳帆板中心直线距离R设为1.5m;在波长范围0.32~0.8μm,求得观测当日的日地距离D=1.034Dse=1.5477×108km。观测当日太阳在地球大气边沿的辐照度Esun=781W/m2
利用STK仿真得到卫星在无姿态机动和侧摆角为35°的下(如图3和图4所示),太阳与太阳翼法线的夹角Θ′1和成像模块视轴与太阳翼法线的夹角Θ′2,然后计算相机入瞳处的辐照度,计算结果如下表所示,光源与太阳翼表面法线的夹角Θ′1和成像模块视轴与太阳翼表面法线的夹角Θ′2以及最终计算得到成像模块入瞳辐照度随时间变化示意图如图5和图6所示:
表1观测太阳翼时成像模块的入瞳辐照度(W/m2)
侧摆0度 侧摆35度
Θ′1min 19.026° 19.026°
Θ′1max 22.838° 56.159
Θ′2min 68.468° 68.468°
Θ′2max 90.000° 90.000°
Eemin 0 0
Eemax 15.335 9.033
需要说明的是:实例中监测目标为太阳帆板正面,即粘贴太阳能电池片表面;反射率ρ取0.2是针对整个太阳翼的一个平均反射率。
求得成像系统的入瞳辐照度后,在商业货架产品中,选择动态范围指标能够满足成像系统入瞳辐照度的商业相机,完成可视化遥测系统的设计。
本发明方法可在卫星遥感器中推广应用。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (7)

1.一种用于卫星可视化观测的成像模块选型方法,其特征在于包括如下步骤:
(1)、把太阳等效为黑体,由黑体辐射定律,计算太阳辐射出射度M
(2)、根据太阳辐射出射度M,计算观测当日太阳在地球大气边沿的辐照度Esun
(3)、模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行,飞行全程每个观测时刻光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2
(4)、计算卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道,飞行全程每个观测时刻反射的太阳辐射在光轴方向入瞳辐照度Ee,并从中得到相应的取值范围[Eemin,Eemax]:
(5)、选择辐照度动态范围包含步骤(4)所得到的光源辐射在光轴方向入瞳辐照度Ee范围[Eemin,Eemax]的成像模块,用于卫星可视化观测。
2.根据权利要求1所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于:所述步骤(1)太阳辐射出射度M为:
式中,Ts为太阳温度;[λ12]为待成像目标反射光所在的波段范围;
c1,c2为常数。
3.根据权利要求2所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于所述步骤(1)中选取的工作光谱范围为可见光波段。
4.根据权利要求1所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于所述光源与待观测目标面元法线的夹角Θ′1为待观测目标面元观测点至太阳的距离矢量与待观测目标面元的法线方向夹角,且Θ′1∈[0,π/2];所述成像模块视轴与待观测目标面元法线的夹角Θ′2为待观测目标面元观测点至成像模块的视轴矢量与待观测目标面元的法线方向夹角,且Θ′2∈[0,π/2]。
5.根据权利要求1所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于反射的太阳辐射在光轴方向入瞳辐照度Ee的计算公式为:
式中,ρ为待观测目标面元反射率;A为待观测目标面元的面积,R为成像模块入瞳与待观测目标面元的距离。
6.根据权利要求1所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于所述步骤(4)采用STK卫星仿真软件模拟卫星采用典型的俯仰、侧摆、偏航角度沿预设轨道飞行全程光源与待观测目标面元法线的夹角Θ′1和成像模块视轴与待观测目标面元法线的夹角Θ′2,当Θ′1>90°、Θ′1<0°、Θ′2>90°或Θ′2<0°时,令步骤(5)相应的太阳辐射在光轴方向入瞳辐照度Ee为0。
7.根据权利要求1所述的一种用于卫星可视化观测的成像模块选型方法,其特征在于:步骤(5)还可以为:根据待成像目标反射光所在的波段范围[λ12]内光谱的最大光视效能K,将步骤(4)所得到的光源辐射在光轴方向入瞳辐照度范围[Eemin,Eemax]转换为勒克斯照度El范围[Elmin,Elmax],从而选择勒克斯照度动态范围包含所述勒克斯照度El范围的成像模块,具体转换公式为:
El=KEe
CN201710262805.7A 2017-04-20 2017-04-20 一种用于卫星可视化观测的成像模块选型方法 Active CN107038310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710262805.7A CN107038310B (zh) 2017-04-20 2017-04-20 一种用于卫星可视化观测的成像模块选型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710262805.7A CN107038310B (zh) 2017-04-20 2017-04-20 一种用于卫星可视化观测的成像模块选型方法

Publications (2)

Publication Number Publication Date
CN107038310A true CN107038310A (zh) 2017-08-11
CN107038310B CN107038310B (zh) 2020-06-09

Family

ID=59534991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710262805.7A Active CN107038310B (zh) 2017-04-20 2017-04-20 一种用于卫星可视化观测的成像模块选型方法

Country Status (1)

Country Link
CN (1) CN107038310B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108833749A (zh) * 2018-06-15 2018-11-16 上海卫星工程研究所 安装于航天器太阳翼上的微型工程监测装置
CN109159925A (zh) * 2018-07-02 2019-01-08 上海卫星工程研究所 一种满足载荷对日观测需求的卫星太阳翼构型设计方法
CN113761652A (zh) * 2021-08-18 2021-12-07 上海卫星工程研究所 深空探测在轨工程可视化监视及展示任务设计方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864489A (en) * 1997-06-17 1999-01-26 Analytical Graphics, Inc. Method and apparatus for determining exposure of spacecraft-mounted solar panels to sun and determination of spacecraft drag
JP2011100426A (ja) * 2009-11-09 2011-05-19 Iwate Univ 画像処理装置及び方法
CN103322982A (zh) * 2013-06-24 2013-09-25 中国科学院长春光学精密机械与物理研究所 一种空间相机增益在轨调整方法
CN103983254A (zh) * 2014-04-22 2014-08-13 航天东方红卫星有限公司 一种新型敏捷卫星机动中成像方法
CN105095608A (zh) * 2015-09-21 2015-11-25 上海卫星工程研究所 一种卫星杂散光的测试方法
CN106469249A (zh) * 2015-08-24 2017-03-01 中国科学院遥感与数字地球研究所 一种卫星对地覆盖分析方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864489A (en) * 1997-06-17 1999-01-26 Analytical Graphics, Inc. Method and apparatus for determining exposure of spacecraft-mounted solar panels to sun and determination of spacecraft drag
JP2011100426A (ja) * 2009-11-09 2011-05-19 Iwate Univ 画像処理装置及び方法
CN103322982A (zh) * 2013-06-24 2013-09-25 中国科学院长春光学精密机械与物理研究所 一种空间相机增益在轨调整方法
CN103983254A (zh) * 2014-04-22 2014-08-13 航天东方红卫星有限公司 一种新型敏捷卫星机动中成像方法
CN106469249A (zh) * 2015-08-24 2017-03-01 中国科学院遥感与数字地球研究所 一种卫星对地覆盖分析方法及系统
CN105095608A (zh) * 2015-09-21 2015-11-25 上海卫星工程研究所 一种卫星杂散光的测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李军等: "《成像卫星任务规划可视化仿真系统实现技术》", 《计算机工程与科学》 *
郭崇滨等: "《遥感观测卫星多系统交互验证的可视化仿真》", 《计算机仿真》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108833749A (zh) * 2018-06-15 2018-11-16 上海卫星工程研究所 安装于航天器太阳翼上的微型工程监测装置
CN108833749B (zh) * 2018-06-15 2020-11-06 上海卫星工程研究所 安装于航天器太阳翼上的微型工程监测装置
CN109159925A (zh) * 2018-07-02 2019-01-08 上海卫星工程研究所 一种满足载荷对日观测需求的卫星太阳翼构型设计方法
CN113761652A (zh) * 2021-08-18 2021-12-07 上海卫星工程研究所 深空探测在轨工程可视化监视及展示任务设计方法及系统
CN113761652B (zh) * 2021-08-18 2023-09-15 上海卫星工程研究所 深空探测在轨工程可视化监视及展示任务设计方法及系统

Also Published As

Publication number Publication date
CN107038310B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
US11156573B2 (en) Solar panel inspection using unmanned aerial vehicles
CN103913148B (zh) 航天tdi ccd相机全链路数值仿真方法
CN104502918B (zh) 一种低轨卫星星载图谱关联探测方法与载荷
CN107219497B (zh) 用于大观测角传感器的交叉辐射定标方法及系统
Kimes et al. Interpreting vegetation reflectance measurements as a function of solar zenith angle
CN107038310A (zh) 一种用于卫星可视化观测的成像模块选型方法
CN105352609B (zh) 一种基于空间朗伯球体的光学遥感卫星绝对辐射定标方法
Sievers et al. Dust emission from star forming regions. I-The W49A and W51A complexes
Goodman et al. The GOES-R series: a new generation of geostationary environmental satellites
Elmegreen et al. Hubble space telescope observations of dust and star-forming regions in the ocular galaxy IC 2163 and its spiral companion NGC 2207
WO2023159739A1 (zh) 基于临近空间浮空器的光学卫星遥感传递定标方法
US20120211001A1 (en) System and method for automatic positioning of a solar array
CN104573251A (zh) 一种星载光学遥感器全视场表观光谱辐亮度确定方法
CN108061572B (zh) 一种海洋核动力平台综合态势显控系统及方法
Savanevych et al. Comparative analysis of the positional accuracy of CCD measurements of small bodies in the solar system software CoLiTec and Astrometrica
CN108955883A (zh) 基于高光谱数据的遥感器辐射定标方法及定标系统
CN103745055A (zh) 一种基于光谱brdf的空间目标可见光成像方法
CN108256186A (zh) 一种在线计算查找表的逐像元大气校正方法
Osorio et al. Near-infrared linear polarization of ultracool dwarfs
CN104880701A (zh) 一种星载传感器成像仿真方法及装置
CN114970214A (zh) 一种气溶胶光学厚度反演方法及装置
CN103177606A (zh) 基于日盲紫外光信号的引航靠泊系统
CN207352664U (zh) 一种较高空间分辨率区域地表温度无人机获取装置及系统
Kipping The “terrascope”: On the possibility of using the earth as an atmospheric lens
CN103268618A (zh) 一种多光谱遥感数据真彩色定标方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant