CN107037661B - 一种中红外光波导结构 - Google Patents
一种中红外光波导结构 Download PDFInfo
- Publication number
- CN107037661B CN107037661B CN201710276176.3A CN201710276176A CN107037661B CN 107037661 B CN107037661 B CN 107037661B CN 201710276176 A CN201710276176 A CN 201710276176A CN 107037661 B CN107037661 B CN 107037661B
- Authority
- CN
- China
- Prior art keywords
- covering layer
- slit
- mid
- waveguide structure
- infrared light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 239000004332 silver Substances 0.000 claims abstract description 7
- 239000002210 silicon-based material Substances 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 16
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 238000005086 pumping Methods 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000005253 cladding Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/365—Non-linear optics in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/354—Third or higher harmonic generation
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供本发明的实施例提供一种中红外光波导结构,所述中红外光波导结构包括上覆盖层、狭缝、下覆盖层和基座,所述下覆盖层位于基座之上,所述狭缝位于上覆盖层和下覆盖层之间,所述上覆盖层和下覆盖层采用材料金属银,狭缝采用采用材料是锗材料,所述基座是硅材质。本发明提供的一种中红外光波导结构,使用便捷,实现泵浦光和三次谐波之间基模与基模间的转换,有效的提高了非线线性系数,有利于高效的获得中红外光。
Description
技术领域
本发明涉及光学领域,尤其涉及一种中红外光波导结构。
背景技术
近年来,中红外波段的光学由于在医学、光通信、天文学、环境监测以及生物传感方面的广泛应用激发了越来越多的研究兴趣,然而制造集成且高效实用的中红外光源却较为困难。
非线性光波导中的三次谐波效应是实现中红外激光产生的一种潜在方法。要利用三次谐波效应高效产生中红外激光,其光波导结构需要同时满足高非线性系数、低传播损耗、相位匹配等条件,但目前的中红外光源结构复杂、成本高且产生的中红外光效果不理想。
发明内容
有鉴于此,本发明的实施例提供了一种结构简单、成本较低、效果理想的产生中红外光的中红外光波导结构。
本发明的实施例提供一种中红外光波导结构,所述中红外光波导结构包括上覆盖层、狭缝、下覆盖层和基座,所述下覆盖层位于基座之上,所述狭缝位于上覆盖层和下覆盖层之间,所述上覆盖层和下覆盖层采用材料金属银,狭缝采用采用材料是锗材料,所述基座是硅材质。
进一步地,所述上覆盖层和下覆盖层的高度hAg=1μm,所述狭缝的高度hGe的值在10-50nm之间,所述狭缝的宽度w的值在300-1000nm之间,所述基座的高度hSi的值是2μm,整体波导长度为1.6-4.8μm。
进一步地,所述狭缝的高度hGe的值在10nm,所述狭缝的宽度w的值在300nm。
进一步地,所述波导结构长度为1.6μm。
本发明的一种中红外光波导结构通过一种基于金属(Ag)-半导体(Ge)-金属(Ag)狭缝光波导结构来产生中红外光,在所述波导结构中,采用金属银作为覆盖层,其的作用类似于完全电导体,将光完美的限制在狭缝中间,但是欧姆损耗很大,因此在该波导结构中,完美的相位匹配条件的满足便不是必须的了。没有了相位匹配条件的限制,在结构中便可以实现泵浦光和三次谐波之间基模与基模间的转换,有效的提高了非线线性系数,有利于高效的获得中红外光。
附图说明
图1是本发明一种中红外光波导结构的一示意图。
图2是基波和三次谐波的功率随波导传播距离曲线图。
图3是三次谐波转换效率和传播长度随着泵浦光功率的变化曲线图。
图4是本发明一种中红外光波导结构的三次谐波效率实验示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1,本发明的实施例提供一种中红外光波导结构,所述中红外光波导结构包括上覆盖层10、狭缝20、下覆盖层30和基座40,所述下覆盖层30位于基座40之上,所述狭缝20位于上覆盖层10和下覆盖层30之间。
所述基座40是硅材质,上覆盖层10和下覆盖层30的材料采用金属银,金属银可良好地限制光场。
中红外到远红外波段硅材料和锗材料的非线性折射率计算公式如下:
其中,是三阶非线性极化率,ε0是真空中介电常数,c是光速,n2是非线性折射率,n是线性折射率。
锗材料和硅材料的非线性折射率对比相关参数如下:
经对比,发现锗材料的非线性折射率较佳,因此,狭缝20的材料采用锗材料。
在本实施例中,测试长红外光的三次谐波效率时,所述狭缝20的高度hGe的值在10-50nm之间,所述狭缝20的宽度w的值在300-1000nm之间,所述基座40的高度hSi的值是2μm。
长红外光源发射的泵浦光经过该波导结构的狭缝20后得到长红外光和中红外光。
请参考图2,是通过耦合模差分方程得到基波和三次谐波的功率随着波导传播距离的曲线图,该实施例中泵浦光波长为10.2μm,功率为1W,所述狭缝20的宽度w的值在300nm,所述狭缝20的高度hGe的值在10nm时,相应的非线性系数|γ6|的值为4.1954×104W-1·m-1。
中红外波段的三次谐波产生过程,用下列耦合模差分方程组来描述
其中,j=1对应基频,j=3对应三次谐频,Aj为模振幅,β代表传播常数,αj=2πIm[neff,j]/λ是线性损耗,非线性系数γn(n=1,2...,6)对应相应的非线性过程,z是光沿着波导的传播方向的长度。采用品质因素FOM(figure-of-merit)来衡量这个三次谐波过程,非线性系数|γ6|越大,线性损耗越小,可以得到更大的FOM。
三次谐波的转换效率受泵浦功率大小的影响,当改变输入的泵浦光功率,得到了同样结构下,三次谐波转换效率和三次谐波转换效率到达峰值所需的传播长度随着泵浦光功率的变化曲线。随着泵浦功率的增加,三次谐波转换效率明显上升,所需要的波导长度逐渐下降,因此,该结构波导所需长度在1.5-1.6μm左右。
请参考图3,在传播过程中,影响三次谐波功率的因素主要在于金属银产生的欧姆损耗和泵浦光所带来的非线性参量增益。在传播最初阶段,由于泵浦功率很大,泵浦功率转换为三次谐波功率的过程足够克服线性损耗,因此三次谐波的功率便不断累积增加。在传播了1.6μm时,三次谐波的功率到达了峰值0.91mW,在此之后,由于泵浦光功率降低,线性损耗影响变大,三次谐波的功率便逐渐降低,因此,在该结构下,波导长度约为1.6μm时最合适。
请参考图4,当狭缝20的材料是锗时,输入泵浦光功率为1W时,狭缝20的高度与三次谐波效率的关系的实验数据对比,仿真实验结果显示,所述狭缝20的宽度w的值在300nm,所述狭缝20的高度hGe的值在10nm时,波导长度为1.6μm时,三次谐波转换效率较佳。
当波长约为10.2μm的泵浦光进入该波导结构时,由于上覆盖层10和下覆盖层30对于光场有极强的限制能力,输入的泵浦光被限制在狭缝20中传播,由于锗材料在该波长区域三阶非线性光学极化率很高,在泵浦光光场作用下产生三阶非线性极化,3个频率为ω的光子作用于介质产生一个频率为3ω的光子,因此产生了为3.4μm波长的中红外波段的光波,同样由于上覆盖层10和下覆盖层30对光场的良好的限制作用,产生的中红外光同样也被限制在狭缝20中,因此通过该波导后可以得到波长约为3.4μm的中红外光。
红外光在上覆盖层10和下覆盖层30的传播损耗很大,上覆盖层10和下覆盖层30对光场的限制效果很强,光在狭缝20中相互作用很剧烈,因此在该波导结构中,不须满足相位匹配条件便可以实现泵浦光和三次谐波之间的转换,有效的提高了非线性系数,从而得到更好的转换效率。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种中红外光波导结构,其特征在于:所述中红外光波导结构由上覆盖层、狭缝、下覆盖层和基座组成,所述下覆盖层位于基座之上,所述狭缝位于上覆盖层和下覆盖层之间,所述上覆盖层和下覆盖层采用材料金属银,狭缝采用材料是锗材料,所述基座是硅材质,所述上覆盖层和下覆盖层的高度hAg=1μm,所述狭缝的高度hGe的值在10-50nm之间,所述狭缝的宽度w的值在200-1000nm之间,所述基座的高度hSi的值是2μm,整体波导长度为1.6-4.8μm。
2.如权利要求1所述的中红外光波导结构,其特征在于:所述狭缝的高度hGe的值在10nm,所述狭缝的宽度w的值在300nm。
3.如权利要求2所述的中红外光波导结构,其特征在于:所述波导结构长度为1.6μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710276176.3A CN107037661B (zh) | 2017-04-25 | 2017-04-25 | 一种中红外光波导结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710276176.3A CN107037661B (zh) | 2017-04-25 | 2017-04-25 | 一种中红外光波导结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107037661A CN107037661A (zh) | 2017-08-11 |
CN107037661B true CN107037661B (zh) | 2019-12-17 |
Family
ID=59536557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710276176.3A Expired - Fee Related CN107037661B (zh) | 2017-04-25 | 2017-04-25 | 一种中红外光波导结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107037661B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108563030B (zh) * | 2018-01-31 | 2023-05-26 | 中国地质大学(武汉) | 一种偏振分束器 |
CN108803193B (zh) * | 2018-04-18 | 2020-08-07 | 中国地质大学(武汉) | 基于基模间相位匹配转换中红外到近红外的装置和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590939A (zh) * | 2012-03-05 | 2012-07-18 | 北京航空航天大学 | 一种表面等离子激元狭缝光波导 |
CN102608700A (zh) * | 2012-02-22 | 2012-07-25 | 北京航空航天大学 | 一种混合狭缝光波导 |
CN104267463A (zh) * | 2014-10-23 | 2015-01-07 | 重庆大学 | 一种新型的正交狭缝光波导结构及制造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7200308B2 (en) * | 2005-06-28 | 2007-04-03 | California Institute Of Technology | Frequency conversion with nonlinear optical polymers and high index contrast waveguides |
-
2017
- 2017-04-25 CN CN201710276176.3A patent/CN107037661B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102608700A (zh) * | 2012-02-22 | 2012-07-25 | 北京航空航天大学 | 一种混合狭缝光波导 |
CN102590939A (zh) * | 2012-03-05 | 2012-07-18 | 北京航空航天大学 | 一种表面等离子激元狭缝光波导 |
CN104267463A (zh) * | 2014-10-23 | 2015-01-07 | 重庆大学 | 一种新型的正交狭缝光波导结构及制造方法 |
Non-Patent Citations (5)
Title |
---|
Flat and low dispersion in highly nonlinear slot waveguides;Lin Zhang等;《OPTICS EXPRESS》;20100607;第18卷(第12期);全文 * |
Highly Efficient Phase-Matched Third Harmonic Generation From Mid-IR to Near-IR Regions Using an Asymmetric Plasmonic Slot Waveguide;Tingting Wu等;《IEEE Photonics Journal》;20141031;第6卷(第5期);全文 * |
Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared;Lin Zhang等;《Nanophotonics》;20131127;第3卷(第4-5期);第247-268页 * |
Study on the crucial conditions for efficient third harmonic generation using a metal-hybrid-metal plasmonic slot waveguide;Tingting Wu等;《OPTICS EXPRESS》;20150112;第23卷(第1期);全文 * |
基于表面等离子体狭缝波导的三次谐波研究;吴亭亭;《中国优秀硕士学位论文全文数据库-信息科技辑》;20160331;参见第35-40页,附图4-1至4-4 * |
Also Published As
Publication number | Publication date |
---|---|
CN107037661A (zh) | 2017-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications | |
Jin et al. | Enhanced four-wave mixing with nonlinear plasmonic metasurfaces | |
He et al. | Numerical study of gain-assisted terahertz hybrid plasmonic waveguide | |
Liu et al. | Photon acceleration using a time-varying epsilon-near-zero metasurface | |
Wolff et al. | Germanium as a material for stimulated Brillouin scattering in the mid-infrared | |
Wang et al. | Loss and gain in a plasmonic nanolaser | |
Reiserer et al. | Subwavelength broadband splitters and switches for femtosecond plasmonic signals | |
Matzen et al. | Topology optimization for transient response of photonic crystal structures | |
Sallam et al. | Integral equations formulation of plasmonic transmission lines | |
Liu et al. | Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide | |
Luo et al. | Narrow-band plasmonic filter based on graphene waveguide with asymmetrical structure | |
CN107037661B (zh) | 一种中红外光波导结构 | |
Zare et al. | A strong controllable absorber using graphene-metal nanostructure | |
Nourmohammadi et al. | Ultra-wideband photonic hybrid plasmonic horn nanoantenna with SOI configuration | |
Afridi et al. | Beam steering and impedance matching of plasmonic horn nanoantennas | |
Zhu et al. | Free-electron-driven beam-scanning terahertz radiation | |
Paul et al. | Analysis of plasmonic subwavelength waveguide-coupled nanostub and its application in optical switching | |
Ghazialsharif et al. | Low power third harmonic generation and all-optical switching by graphene surface plasmons | |
Christopoulos et al. | Degenerate four-wave mixing in the THz regime with standing-wave graphene resonators | |
De Luca et al. | Free electron harmonic generation in heavily doped semiconductors: the role of the materials properties | |
Ji et al. | High-power two-color Kerr frequency comb generation on the gallium phosphide-on-insulator platform at SWIR and MIR spectra | |
CN108761958B (zh) | 一种可产生中红外纠缠态光子的光波导结构及其方法 | |
Liu et al. | Two-dimensional reversed Cherenkov radiation on plasmonic thin-film | |
Huang et al. | Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide | |
Zangeneh et al. | Low loss metallic suspended waveguide for terahertz generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191217 |