CN107017953A - 一种fsk信号产生装置、方法及其应用 - Google Patents

一种fsk信号产生装置、方法及其应用 Download PDF

Info

Publication number
CN107017953A
CN107017953A CN201710155790.4A CN201710155790A CN107017953A CN 107017953 A CN107017953 A CN 107017953A CN 201710155790 A CN201710155790 A CN 201710155790A CN 107017953 A CN107017953 A CN 107017953A
Authority
CN
China
Prior art keywords
signal
fsk
modulators
fsk signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710155790.4A
Other languages
English (en)
Other versions
CN107017953B (zh
Inventor
罗风光
王梓骁
杨柳
丁博迪
胡航听
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710155790.4A priority Critical patent/CN107017953B/zh
Publication of CN107017953A publication Critical patent/CN107017953A/zh
Application granted granted Critical
Publication of CN107017953B publication Critical patent/CN107017953B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种FSK信号产生装置、方法及其应用,包括第一MZ调制器、第二MZ调制器以及合束单元,通过向第一MZ调制器的控制电极输入第一控制电压,使其输出端输出反相调制光信号,向第二MZ调制器的控制电极输入第二控制电压,使其输出端输出正相调制光信号,由合束单元实现对正相调制光信号与反相调制光信号的合束,实现输出FSK信号。本发明所用光学器件较少,结构紧凑,大大简化了FSK调制器的构成;且此FSK信号产生装置由不含正弦信号的数据信号直接驱动,能避免正弦信号的频率对FSK信号传输性能及速度的限制;所产生的FSK信号,在高速光传输系统中眼图形状良好,理论上可实现无错传输,损耗低,表现出了优异的性能。

Description

一种FSK信号产生装置、方法及其应用
技术领域
本发明属于光通信领域,更具体地,涉及一种频移键控(Frequency-shiftkeying,FSK)信号产生装置、方法及其应用。
背景技术
在过去的几年之中,为了提升高速率光传输系统的性能,许多高级调制格式被提出并加以研究。在不同的调制格式中,频移键控(FSK)调制格式使得差分检测方案成为可能,并且仿真结果显示,在10-Gb/s传输系统中,频移键控相对于差分相移键控(DPSK)的光性噪比性能有明显提升。此外,正交调制、幅移键控(ASK)和FSK的组合方案由于其在高速传输系统中的高频谱、易检测以及良好性能的优势,获得了广泛的关注。因此,FSK是未来光传输系统和光分组交换网络的潜在解决方案之一。在已有的方案中,FSK信号是通过调制激光器的电流直接产生的。然而,由于电流的抖动,附加的强度调制应该由外部强度调制器进行补偿。FSK信号可以由一个马赫曾德(Mach-Zehnder,MZ)调制器、两个激光器和马赫曾德延迟干涉仪(MZDI)使用差分相移键控(DPSK)的解调技术产生,这种结构复杂的方法深受激光频率抖动的影响,性能不够稳定。且已有的FSK外部调制器普遍由六个相位调制器组成的,是通过两个正弦信号和数据信号的驱动来生成FSK信号的。在这种方法下,正弦信号的频率会较大地限制FSK信号的传输性能及速度。
发明内容
针对现有技术中上述缺陷,本发明提出了一种FSK信号产生装置,旨在解决现有FSK信号产生装置产生的FSK信号传输性能差的技术问题。
为实现上述目的,作为本发明的一方面,本发明提供一种FSK信号产生装置,包括:
第一MZ调制器,其输入端用于接收第一激光信号,其控制端用于接收第一控制电压,用于根据第一激光信号和第一控制电压输出反相调制光信号;
第二MZ调制器,其输入端用于接收第二激光信号,其控制端用于接收第二控制电压,用于根据第二激光信号和第二控制电压输出同相调制光信号;同相调制光信号为与反相调制光信号逻辑反相的光信号;
合束单元,其第一输入端与第一MZ调制器的输出端连接,其第二输入端与第二MZ调制器的输出端连接,用于将反相调制光信号与同相调制光信号进行叠加处理后输出FSK信号;
第一控制电压为由第一射频驱动电压和幅值为0的第一直流驱动电压叠加的电压信号,第二控制电压为由第二射频驱动电压和幅值为Vπ的第二直流驱动电压叠加的电压信号,其中,Vπ为MZ调制器的开关电压,第一射频驱动电压与第二射频驱动电压相位相同。
上述技术方案中,通过让第一MZ调制器的控制电极输入由幅值为0的直流驱动电压和第一射频驱动电压叠加的第一控制电压,实现第一MZ调制器将电信号转化为光信号,由其输出端输出反相调制光信号,让第二MZ调制器的控制电极输入由幅值为Vπ的直流驱动电压和第二射频驱动电压叠加的第二控制电压,实现第二MZ调制器将电信号转化为光信号,由其输出端输出同相调制光信号,通过将反相调制光信号与同相调制光信号合束实现FSK信号形成。
进一步地,FSK信号产生装置中,第一MZ调制器与第二MZ调制器均为电极材料为铌酸锂的MZ调制器。
进一步地,FSK信号产生装置中,当第一直流驱动电压为0时,反相调制光信号与第一射频驱动电压逻辑反相;当直流驱动电压值为Vπ时,同相调制光信号与第二射频驱动电压逻辑同相。
进一步地,FSK信号产生装置中,第一射频驱动电压和第二射频驱动电压均为不归零调制信号,不归零调制信号的幅值根据MZ调制器的开关电压确定。
进一步地,FSK信号产生装置中,合束单元为Y型波导。
作为本发明的另一方面,本发明提供了一种FSK信号产生装置的控制方法,包括如下步骤:
S1当第一MZ调制器的控制电极输入第一控制电压时,由第一MZ调制器将第一激光信号转化为反相调制光信号;当第二MZ调制器的控制电极输入第二控制电压时,由第二MZ调制器将第二激光信号转化为同相调制光信号;
S2将反相调制光信号与同相调制光信号进行叠加处理后输出FSK信号;
第一控制电压为由第一射频驱动电压和幅值为0的第一直流驱动电压叠加的电压信号,第二控制电压为由第二射频驱动电压和幅值为Vπ的第二直流驱动电压叠加的电压信号,其中,Vπ为MZ调制器的开关电压,第一射频驱动电压与第二射频驱动电压相位相同。
进一步地,FSK信号产生方法中,第一射频驱动电压和第二射频驱动电压均为不归零调制信号,不归零调制信号的幅值根据MZ调制器的开关电压确定。
作为本发明的另一方面,本发明提供了一种FSK信号传输系统,包括:
FSK信号产生装置,用于根据第一控制电压、第二控制电压、第一激光信号以及第二激光信号产生FSK信号;
光功率控制模块,其输入端与FSK信号产生装置的输出端连接,用于控制FSK信号的功率并输出第一FSK信号;
光传输模块,其输入端与光功率控制模块的输出端连接,用于实现第一FSK信号的传输,输出第二FSK信号;
光电转化模块,其输入端与光传输模块的输出端连接,用于将第二FSK信号转化为电信号;
解调模块,其输入端与光电转化模块的输出端连接,用于将电信号解码为数据信号。
上述FSK信号传输系统,通过向FSK信号产生装置的输入端通入第一激光信号以及第二激光信号,向FSK信号产生装置的控制电极通入第一控制电压以及第二控制电压,将控制电压转化FSK信号,FSK信号经过光功率控制模块对光功率进行调整后输出第一FSK信号,第一FSK信号能够适合远距离的传输,经由光传输模块进行远距离的传输后,由光电转化模块将光信号转化为电信号,并由解调模块将电信号转化为数据信号,实现数据信号的传输。
进一步地,FSK信号传输系统还包括色散补偿模块,其输入端与光传输模块的输出端连接,其输出端与光电转化模块的输入端连接,用于对第二FSK信号进行色散补偿。
进一步地,FSK信号传输系统中光功率控制模块包括:
掺铒光纤放大器,其输入端与FSK信号产生装置的输出端连接,用于对FSK信号进行放大处理输出放大后FSK信号;
以及衰减器,其输入端与掺铒光纤放大器的输出端连接,其输出端与光传输模块的输入端连接,用于对放大后FSK信号进行光功率衰减处理,输出第一FSK信号。
通过上述技术方案,本发明相对于现有技术的有益效果为:
1、通过在MZ调制器的控制电极输入不同的控制电压,MZ调制器输出正相调制光信号和反相调制光信号,通过Y分支器实现正相调制光信号与反相调制光信号合束,输出FSK信号,使得该FSK信号产生装置结构紧凑,使用光学元件少。
2、本发明提供的FSK信号产生装置,MZ调制器的控制电极输入的控制电压为直流驱动电压与射频驱动电压,未采用交流驱动电压,故所产生的FSK信号误码率低,损耗少,性能优异,且理论上可实现无错传输。
3、由于第一MZ调制器的控制电极端输入的第一控制电压和第二MZ调制器的控制电极端输入的第二控制电压并未引入正弦信号,避免由于正弦信号的引入而导致所产生的FSK信号误码率高的问题,实现上述FSK信号产生方法所产生的FSK信号误码率低;另外,通过由第一MZ调制器产生反相调制光信号,由第二MZ调制器产生同相调制光信号,由反相调制光信号与同相调制光信号进行叠加处理获得FSK信号,该方案简单,易于实现,有利于大规模的应用。
4、由于FSK信号产生装置产生的FSK信号误码率低,且损耗小,使得上述FSK信号传输系统能够实现精确传递数据信号,且接收到的数据信号强度损耗小。通过对光传输模块输出的第二FSK信号进行色散补偿,能够提升传输模块的传输容量。由掺铒光纤放大器对FSK信号进行放大处理,有利于FSK信号进行远距离的传输,由衰减器对放大后的信号进行光功率衰减处理,避免功率过大导致器件受损。
附图说明
图1为本发明提供的FSK信号产生装置的结构示意图;
图2为本发明提供的LiNbO3MZ调制器的结构示意图;
图3为本发明提供的LiNbO3MZ调制器功率传输曲线;
图4为本发明提供的FSK信号产生的原理图;
图5为本发明提供的FSK信号传输系统的原理框图;
图6为本发明提供的FSK信号传输系统实施例的结构示意图;其中,Laser为激光器,DC为直流,NRZ为不归零,EDFA为掺铒光纤放大器,ATT为衰减器,DCF为色散补偿光纤,SSMF为普通单模光纤,OBPF为光带通滤波器,PD为光电二极管,LPF为低通滤波器,BERT为误码率测试仪;
图7为本发明提供的FSK信号分别在50km SSMF中传输后与背靠背传输后的误码率曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为本发明提供的FSK信号产生装置实施例的结构示意图。该FSK信号产生装置由第一LiNbO3MZ调制器、第二LiNbO3MZ调制器和Y型波导组成。第一LiNbO3MZ调制器的输出端与Y型波导的第一输入端连接,第二LiNbO3MZ调制器的输出端与Y型波导的第二输入端连接,当第一LiNbO3MZ调制器输入端通入第一激光信号时,向第一LiNbO3MZ调制器的控制电极输入第一控制电压,第一LiNbO3MZ调制器的输出端根据第一控制电压以及第一激光信号输出反相调制光信号,实现将电信号转化为光信号;当第二LiNbO3MZ调制器通入第二激光信号时,向第二LiNbO3MZ调制器的控制电极输入第二调制电压,第二LiNbO3MZ调制器的输出端根据第二调制电压以及第二激光信号输出同相调制光信号,实现将光信号转化为电信号;且同相调制光信号为与反相调制光信号逻辑反相的光信号。由Y型波导将同相调制光信号与反相调制光信号进行叠加处理后输出FSK信号。
图2为本发明提供的LiNbO3MZ调制器的结构示意图,LiNbO3MZ调制器由输入Y型波导、输出Y型波导、上光波导、下光波导以及第一LiNbO3电极至第三LiNbO3电极组成,其中,位于上光波导和下光波导之间的第二LiNbO3电极接地。在LiNbO3MZ调制器中,入射光信号在输入Y型波导上被分成振幅和相位完全相同的两路光束,一路光束在上光波导中传输,另一路光束在下光波导中传输。如果上波导与下波导完全对称,在不加调制电压时,两路光束在输出Y型波导内重新合并成与入射光信号相同的出射光输出。
如果让第三LiNbO3电极接地,即LiNbO3MZ调制器的负电极接地,在第一LiNbO3电极加控制电压,即LiNbO3MZ调制器的正电极作为控制电极,则由于等离子体色散效应,上光波导折射率发生改变,从而使得上下光波导中两路光束的相位发生改变。设上下光波导的相位差为为0°(相移为0)时,则光束在输出Y型波导内发生相长干涉,此时得到代表逻辑‘1’的“开状态”信号;当为180°(相移为π)时,光束在输出Y型波导内发生相消干涉,此时得到代表逻辑‘0’的“关状态”信号。这样,通过对调制电压进行调节可以产生不同的调制光信号,从而实现电信号转化为光信号。LiNbO3MZ调制器的输出可以表示为:
其中,Eo是输出光的电场,Ein是输入光的电场,V(t)=VRF(t)+VB(t),V(t)是控制电压,VRF(t)为射频驱动电压,VB(t)为直流驱动电压,Vπ为开关电压,直流驱动电压VB(t)和射频驱动电压VRF(t)可以通过第一LiNbO3电极接入,即由射频(RF)电极输入。
图3为本发明提供的LiNbO3MZ调制器的功率传输曲线,第一直流驱动电压VB(t)为0时,可使反相调制光信号与第一射频(RF)驱动电压逻辑反相;第二直流驱动电压VB(t)值为Vπ时,可使同相调制光信号与第二射频(RF)驱动电压逻辑同相。
图4为本发明提供FSK信号产生的原理图,让第一LiNbO3MZ调制器的第一LiNbO3电极的第一调制电压为由第一射频驱动电压和幅值为0的直流驱动电压叠加后的电压信号,则第一LiNbO3MZ调制器输出反相调制光信号与第一射频驱动电压逻辑反相;让第二LiNbO3MZ调制器的第一LiNbO3电极的第二调制电压为第二射频驱动电压和幅值为Vπ的直流驱动电压叠加后的电压信号,则第二LiNbO3MZ调制器输出同相调制光信号与第二射频驱动电压逻辑同相;上述第一射频驱动电压与上述第二射频驱动电压为相位相同的不归零调制信号,不归零调制信号的幅值根据MZ调制器的开关电压确定。则反相调制光信号与同相调制光信号在相同振幅下逻辑反相。当反相调制光信号与同相调制光信号进入Y型波导后,Y型波导的上波导臂与下波导臂对称,即反相调制光信号与同相调制光信号经过相同的光程后,经过Y型波导的输出端进行叠加处理,即产生FSK信号。
本发明中提供的FSK信号产生装置,该调制器由两个LiNbO3MZ调制器以及Y型波导组成,结构简单,有利于大规模应用。此外,MZ调制器由不含正弦信号的控制电压直接驱动,降低FSK信号的误码率以及损耗,能够提高产生FSK信号的性能,同时也降低了FSK调制器对电极灵敏度的要求。
本发明提供的FSK信号产生装置的控制方法,具体实现步骤为:
S1当第一MZ调制器的控制电极输入第一控制电压时,由第一MZ调制器将第一激光信号转化为反相调制光信号;第一控制电压为由第一射频驱动电压和幅值为0的第一直流驱动电压叠加的电压信号,第一射频驱动电压信号为不归零调制信号,不归零调制信号的幅值根据MZ调制器的开关电压确定。根据MZ调制器的传输功率曲线,反相调制光信号为与第一射频驱动电压逻辑反相的电压信号。
当第二MZ调制器的控制电极输入第二控制电压时,由第二MZ调制器将第二激光信号转化为同相调制光信号;第二控制电压为由第二射频驱动电压和幅值为Vπ的第二直流驱动电压叠加的电压信号,其中,Vπ为MZ调制器的开关电压,第二射频驱动电压信号为不归零调制信号,不归零调制信号的幅值根据MZ调制器的开关电压确定。根据MZ调制器的传输功率曲线,同相调制光信号为与第二射频驱动电压逻辑同相的电压信号。
S2将反相调制光信号与同相调制光信号进行叠加处理后输出FSK信号。
步骤S1中通过向第一MZ调制器的控制电极通入第一控制电压,由第一MZ调制器将激光信号调制为反相调制光信号输出,且第一控制电压未引入正弦电压;同理,第二MZ调制器输出同相调制光信号,步骤S2通过对反相调制光信号与同相调制光信号进行叠加处理,输出FSK信号。所提供的FSK信号生成方法简单,易于大规模应用,且未引入正弦电压信号,能够降FSK信号的误码率。
图5为本发明提供的FSK信号传输系统的结构示意图,通过向FSK信号产生装置的输入端通入第一激光信号以及第二激光信号,向FSK信号产生装置的控制电极通入第一控制电压以及第二控制电压,产生FSK信号。FSK信号产生装置的输出端与光功率控制模块的输入端连接,用于控制FSK信号的功率并输出第一FSK信号。光功率控制模块包括掺铒光纤放大器和衰减器,掺铒光纤放大器的输入端与FSK信号产生装置的输出端连接,用于对FSK信号进行放大处理输出放大后FSK信号,有利于FSK信号进行远距离的传输;衰减器的输入端与掺铒光纤放大器的输出端连接,其输出端与光传输模块的输入端连接,用于对放大后FSK信号进行光功率衰减处理,输出第一FSK信号,避免放大后的FSK信号功率过大导致器件受损。
光传输模块用于实现第一FSK信号的传输并输出第二FSK信号;光传输模块的输出端与色散补偿模块的输入端连接,用于对第二FSK信号进行色散补偿,能够提升传输模块的传输容量。色散补偿模块的输出端与光电转化模块的输入端连接,用于将进行色散补偿后的FSK信号转化为电信号;光电转化模块的输出端与解调模块的输入端连接,用于将电信号解码为数据信号。
由于FSK信号产生装置产生的FSK信号误码率低,且损耗小,使得上述FSK信号传输系统能够实现精确传递数据信号,且接收到的数据信号强度损耗小。
图6为本发明提供的FSK信号传输系统实施例的结构示意图,两个激光器分别连接FSK信号产生装置的两个输入端,同时给FSK信号产生装置的两个控制电极分别加载对应的直流驱动电压以及射频驱动电压,FSK信号产生装置的输出端连接第一掺铒光纤放大器(EDFA)输入端,第一掺铒光纤放大器(EDFA)的输出端连接第一衰减器(ATT)的输入端,然后第一衰减器(ATT)的输出端连接50km普通单模光纤(SSMF)的输入端,色散补偿光纤(DCF)的输入端与50km普通单模光纤(SSMF)的输出端连接,色散补偿光纤(DCF)的输出端连接第二掺铒光纤放大器(EDFA)的输入端,该第二掺铒光纤放大器(EDFA)的输出端连接第二衰减器(ATT)的输入端,该第二衰减器(ATT)的输出端连接光带通滤波器(OBPF)的输入端,该光带通滤波器(OBPF)的输出端连接光电二极管(PD)的输入端,该光电二极管(PD)的输出端连接低通滤波器(LPF)的输入端,该低通滤波器(LPF)的输出端连接误码率测试仪(BERT)。
选择频率为193.1THz的连续光激光器作为第一激光信号的发射光源,频率为193.2THz的连续光激光器作为第二激光信号的发射光源,将第一激光信号作为FSK信号产生装置的第一输入端输入信号,将第二激光信号作为FSK信号产生装置的第二输入端输入信号。FSK信号产生装置中LiNbO3MZ调制器的开关电压Vπ为4V。因此第一LiNbO3MZ调制器的控制电极RFA的第一直流驱动电压为0V,第二LiNbO3MZ调制器的控制电极RFB的第二直流驱动电压为4V。40-Gb/s信号发生器中产生了电压为4V的不归零调制信号,将电压为4V的不归零调制信号作为第一射频驱动电压信号和第二射频驱动电压信号。由FSK信号产生装置产生FSK信号,通过第一掺铒光纤放大器(EDFA)对FSK信号进行放大处理,便于FSK信号传输,由第一衰减器(ATT)对放大后的FSK信号进行衰减处理,输出第一FSK信号,避免放大后的FSK信号功率过大损害器件。第一FSK信号在50km普通单模光纤(SSMF)进行传输,输出第二FSK信号,第二FSK信号由色散补偿光纤(DCF)进行色散补偿。进行色散补偿后的FSK信号经过第二掺铒光纤放大器(EDFA)和第二衰减器(ATT)进行光功率控制后,通过光带通滤波器(OBPF)对进行光功率控制后的FSK信号进行去噪声处理,再由光电二极管(PD)将去噪后FSK信号转化为电信号,电信号经过低通滤波器(LPF)滤波后,由误码率测试仪(BERT)将电信号转化为数据信号并测试数字信号的误码率。
图7为本发明提供的FSK信号分别在50km SSMF中传输后与背靠背传输后的误码率曲线图。图7显示,当误码率为10-9时,眼图的“眼”明显开启,且可实现无错传输。相比于背靠背传输后的对比信号在Log(BER)=-9时的功率,FSK信号通过50km普通单模光纤传输后的功率衰减约为0.2dB,损耗较低,表现出了良好的性能。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种FSK信号产生装置,其特征在于,包括:
第一MZ调制器,其输入端用于接收第一激光信号,其控制端用于接收第一控制电压,用于根据所述第一激光信号和所述第一控制电压输出反相调制光信号;
第二MZ调制器,其输入端用于接收第二激光信号,其控制端用于接收第二控制电压,用于根据所述第二激光信号和所述第二控制电压输出同相调制光信号;所述同相调制光信号为与所述反相调制光信号逻辑反相的光信号;
合束单元,其第一输入端与所述第一MZ调制器的输出端连接,其第二输入端与所述第二MZ调制器的输出端连接,用于将所述反相调制光信号与所述同相调制光信号进行叠加处理后输出FSK信号;
所述第一控制电压为由第一射频驱动电压和幅值为0的第一直流驱动电压叠加的电压信号,所述第二控制电压为由第二射频驱动电压和幅值为Vπ的第二直流驱动电压叠加的电压信号,其中,Vπ为MZ调制器的开关电压,所述第一射频驱动电压与所述第二射频驱动电压相位相同。
2.如权利要求1所述的FSK信号产生装置,其特征在于,所述第一MZ调制器与所述第二MZ调制器均为电极材料为铌酸锂的MZ调制器。
3.如权利要求2所述的FSK信号产生装置,其特征在于,当第一直流驱动电压为0时,反相调制光信号与第一射频驱动电压逻辑反相;当第二直流驱动电压值为Vπ时,同相调制光信号与第二射频驱动电压逻辑同相。
4.如权利要求1-3任一项所述的FSK信号产生装置,其特征在于,第一射频驱动电压和第二射频驱动电压均为不归零调制信号,所述不归零调制信号的幅值根据MZ调制器的开关电压确定。
5.如权利要求1-4任一项所述的FSK信号产生装置,其特征在于,所述合束单元为Y型波导。
6.一种如权利要求1所述的FSK信号产生装置的控制方法,其特征在于,包括如下步骤:
S1当第一MZ调制器的控制电极输入第一控制电压时,由第一MZ调制器将第一激光信号转化为反相调制光信号;当第二MZ调制器的控制电极输入第二控制电压时,由第二MZ调制器将第二激光信号转化为同相调制光信号;
S2将所述反相调制光信号与所述同相调制光信号进行叠加处理后输出FSK信号;
所述第一控制电压为由第一射频驱动电压和幅值为0的第一直流驱动电压叠加的电压信号,所述第二控制电压为由第二射频驱动电压和幅值为Vπ的第二直流驱动电压叠加的电压信号,其中,Vπ为MZ调制器的开关电压,所述第一射频驱动电压与所述第二射频驱动电压相位相同。
7.如权利要求6所述的FSK信号产生方法,其特征在于,所述第一射频驱动电压和第二射频驱动电压均为不归零调制信号,所述不归零调制信号的幅值根据MZ调制器的开关电压确定。
8.一种FSK信号传输系统,其特征在于,包括:
如权利要求1所述的FSK信号产生装置,用于根据第一控制电压、第二控制电压、第一激光信号以及第二激光信号产生FSK信号;
光功率控制模块,其输入端与所述FSK信号产生装置的输出端连接,用于控制FSK信号的功率并输出第一FSK信号;
光传输模块,其输入端与所述光功率控制模块的输出端连接,用于实现第一FSK信号的传输,输出第二FSK信号;
光电转化模块,其输入端与所述光传输模块的输出端连接,用于将第二FSK信号转化为电信号;
解调模块,其输入端与所述光电转化模块的输出端连接,用于将电信号解码为数据信号。
9.如权利要求8所述的FSK信号传输系统,其特征在于,所述FSK信号传输系统还包括色散补偿模块,其输入端与所述光传输模块的输出端连接,其输出端与所述光电转化模块的输入端连接,用于对第二FSK信号进行色散补偿。
10.如权利要求8所述的FSK信号传输系统,其特征在于,所述光功率控制模块包括:
掺铒光纤放大器,其输入端与所述FSK信号产生装置的输出端连接,用于对FSK信号进行放大处理,输出放大后FSK信号;
以及衰减器,其输入端与所述掺铒光纤放大器的输出端连接,其输出端所述与光传输模块的输入端连接,用于对放大后FSK信号进行光功率衰减处理,输出第一FSK信号。
CN201710155790.4A 2017-03-16 2017-03-16 一种fsk信号产生装置、方法及其应用 Expired - Fee Related CN107017953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710155790.4A CN107017953B (zh) 2017-03-16 2017-03-16 一种fsk信号产生装置、方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710155790.4A CN107017953B (zh) 2017-03-16 2017-03-16 一种fsk信号产生装置、方法及其应用

Publications (2)

Publication Number Publication Date
CN107017953A true CN107017953A (zh) 2017-08-04
CN107017953B CN107017953B (zh) 2019-10-25

Family

ID=59440426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710155790.4A Expired - Fee Related CN107017953B (zh) 2017-03-16 2017-03-16 一种fsk信号产生装置、方法及其应用

Country Status (1)

Country Link
CN (1) CN107017953B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581094A (zh) * 2017-09-29 2019-04-05 富士通株式会社 相移器的相移特性的估计装置、方法及系统
CN113383524A (zh) * 2019-01-25 2021-09-10 瑞典爱立信有限公司 无线通信系统中的双调制传输

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674147A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 Ask-fsk转换器及转换方法
CN101834671A (zh) * 2010-04-29 2010-09-15 上海交通大学 频移键控光调制信号的单驱动调制实现装置
CN104717166A (zh) * 2015-03-12 2015-06-17 华中科技大学 一种基于滤波调制器的fsk调制系统
CN106100752A (zh) * 2016-05-23 2016-11-09 华中科技大学 一种光学调制模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674147A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 Ask-fsk转换器及转换方法
CN101834671A (zh) * 2010-04-29 2010-09-15 上海交通大学 频移键控光调制信号的单驱动调制实现装置
CN104717166A (zh) * 2015-03-12 2015-06-17 华中科技大学 一种基于滤波调制器的fsk调制系统
CN106100752A (zh) * 2016-05-23 2016-11-09 华中科技大学 一种光学调制模块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581094A (zh) * 2017-09-29 2019-04-05 富士通株式会社 相移器的相移特性的估计装置、方法及系统
CN109581094B (zh) * 2017-09-29 2021-02-19 富士通株式会社 相移器的相移特性的估计装置、方法及系统
CN113383524A (zh) * 2019-01-25 2021-09-10 瑞典爱立信有限公司 无线通信系统中的双调制传输
US11936509B2 (en) 2019-01-25 2024-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Dual-modulation transmission in a wireless communication system
CN113383524B (zh) * 2019-01-25 2024-05-17 瑞典爱立信有限公司 无线通信系统中的用于双调制传输的发射机及其方法

Also Published As

Publication number Publication date
CN107017953B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
US7398022B2 (en) Optical return-to-zero phase-shift keying with improved transmitters
EP1612972B1 (en) Method and apparatus for generating CRZ-DPSK optical signals
EP2154796B1 (en) Device and method for receiving a dopsk signal and method for obtaining a dopsk signal
JPH09236781A (ja) 光送信装置およびそれを用いた光伝送システム
Mohammadi et al. Segmented silicon modulator with a bandwidth beyond 67 GHz for high-speed signaling
CN104717166B (zh) 一种基于滤波调制器的fsk调制系统
CN1815928B (zh) 用于调制光信号的方法和光发射机
CN107017953B (zh) 一种fsk信号产生装置、方法及其应用
US11128382B2 (en) Multi-modulation-format compatible high-speed laser signal generation system and method
CN202334530U (zh) 集成双二进制调制格式的铌酸锂光调制器
Elsherif et al. Performance enhancement of mapping multiplexing technique utilising dual‐drive Mach–Zehnder modulator for metropolitan area networks
CN101321021B (zh) 直接调制的光差分相移键控调制器
Bae et al. Generation of high-speed PAM4 signal by overdriving two Mach-Zehnder modulators
Jain et al. Demonstration of RZ-OOK modulation scheme for high speed optical data transmission
KR20030031523A (ko) 씨에스-알젯 광신호 발생장치
Shi et al. Silicon photonic modulators for high-capacity coherent transmissions
CN101494502B (zh) 一种归零交替传号反转光调制信号的产生方法和装置
Tokle et al. Wavelength conversion of 80 Gbit/s optical DQPSK using FWM in a highly non-linear fibre
Adalid Modulation format conversion in future optical networks
Zhang et al. Method for high-speed Manchester encoded optical signal generation
Khulbe et al. Photonic circuits for different coding schemes used in high speed Terabit communication
Kim et al. Evaluation of transmission performance in cost-effective optical duobinary transmission utilizing modulator's bandwidth or low-pass filter implemented by a single capacitor
Li et al. Analysis Modulation Formats in DWDM Transmission System
Gené et al. Modified duobinary polarization-shift keying transmission scheme
Kawanishi et al. Duobinary signal generation using high-extinction ratio modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191025

Termination date: 20200316