CN107008787A - 一种螺旋式三维复杂弯曲件的自由弯曲成形方法 - Google Patents

一种螺旋式三维复杂弯曲件的自由弯曲成形方法 Download PDF

Info

Publication number
CN107008787A
CN107008787A CN201710242562.0A CN201710242562A CN107008787A CN 107008787 A CN107008787 A CN 107008787A CN 201710242562 A CN201710242562 A CN 201710242562A CN 107008787 A CN107008787 A CN 107008787A
Authority
CN
China
Prior art keywords
spiral
bending
complex
radius
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710242562.0A
Other languages
English (en)
Other versions
CN107008787B (zh
Inventor
靳凯
郭训忠
徐勇
熊昊
马燕楠
陈文亮
陶杰
张士宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Nanjing University of Aeronautics and Astronautics
Original Assignee
Institute of Metal Research of CAS
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS, Nanjing University of Aeronautics and Astronautics filed Critical Institute of Metal Research of CAS
Priority to CN201710242562.0A priority Critical patent/CN107008787B/zh
Publication of CN107008787A publication Critical patent/CN107008787A/zh
Application granted granted Critical
Publication of CN107008787B publication Critical patent/CN107008787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/06Bending into helical or spiral form; Forming a succession of return bends, e.g. serpentine form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

本发明公开了一种螺旋式三维复杂弯曲件的自由弯曲成形方法,管材Z向匀速送进,弯曲模从初始位置O开始先在t1时间内运动到指定弯曲半径R的Y向偏心距Uy位置,在此位置停留t2时间成形半个圆弧长,随后以O为圆心、偏心距Uy为半径,在XY平面内从Uy位置出发以1/4圆弧轨迹,经若干次偏转和停留,最终运动至X向偏心距Ux位置后不作停留,并在t3时间内返回初始位置O。本发明为管材三维自由弯曲装置的配套弯曲工艺解析方案,充分地发挥了管材三维自由弯曲装置所具有的可以实现复杂造型金属构件弯曲和一次柔性成形的优点;本发明方法简单可行,生产效率高,在航空航天、核电、汽车等工程领域具有重要的工程应用价值和明显的经济效益。

Description

一种螺旋式三维复杂弯曲件的自由弯曲成形方法
技术领域
本发明属于金属复杂构件柔性制造技术领域,特别涉及一种螺旋式三维复杂弯曲件的自由弯曲成形方法。
背景技术
螺旋式三维复杂弯曲件是弯管中一类重要的零件,例如作为环形件的特殊产品的螺旋盘管具有换热面积大、换热效率高等优点,已广泛地应用于石油、化工、冶金、建筑、造船、城市集中供热、空调、热水供应系统、洗涤机械的蒸馏冷凝器和溶剂冷却器等领域。目前螺旋式三维复杂弯曲件的生产方法普遍采用绕弯、滚弯、中频感应加热弯曲和火焰加热弯曲等成形工艺加工制造。然而这些传统方法都有各自的缺点:管材绕弯后的截面畸变和壁厚变化很大,而且不同曲率半径和管径的螺旋式三维复杂弯曲件必须更换不同的模具,从而增加了制造成本;滚弯的弯曲半径有一定限制,仅适用于曲率半径要求很大的厚壁管,而且弯曲半径和螺距极不容易控制;中频弯管中的中频感应机组耗电量大,设备投资较大;火焰弯管机由于火焰加热效率较低,故仅适用于薄壁的螺旋式三维复杂弯曲件的弯制。
复杂构件的三维自由弯曲系统能实现管材、型材、线材在各种弯曲半径条件下的高精度无模成形。该技术完全通过控制工艺参数,无须改变模具或工装即可实现航空器所需的各种异形复杂弯曲件的精确成形。三维自由弯曲成形技术不需要更换模具即可一次快速成形中间无直段的螺旋式三维复杂弯曲件,弯管成形质量较好,椭圆度和壁厚减薄量都低于传统弯管方法,且设备制造成本较低,弯曲半径和螺距调整方便,适应性强,成形效率高。但是对于螺旋式三维复杂弯曲件,国内的三维自由弯曲系统尚没有一套完整的成形工艺解析方法。
发明内容
针对现有技术存在的问题,本发明提出了一种螺旋式三维复杂弯曲件的自由弯曲成形工艺解析方案。
一种螺旋式三维复杂弯曲件的自由弯曲成形方法,管材Z向匀速送进,弯曲模从初始位置O(初始位置偏心距为0)开始先在t1时间内运动到指定弯曲半径R的Y向偏心距Uy位置,在此位置停留t2时间成形半个圆弧长,随后以O为圆心、偏心距Uy为半径,在XY平面内从Uy位置出发以1/4圆弧轨迹,经若干次偏转和停留,最终运动至X向偏心距Ux位置后不作停留,并在t3时间内返回初始位置O。
所述的自由弯曲成形方法,具体过程为:首先根据圆柱型螺旋式三维复杂弯曲件的尺寸如圆柱直径D和螺距S确定其单圈螺线长度L、弯曲半径R及Y向偏心距Uy;其次对复杂构型的弯管三维几何模型进行分段,以螺线长为管材送进的长度从而确定每次停留的时间tss、tkk,并根据螺旋圈数n确定偏转的次数N和角度θn;然后在上述数量关系中引入修正系数k,启动有限元反复迭代计算,将计算结果导入几何软件进行处理,并对比计算结果与理论模型的尺寸差异;当误差小于给定值时,迭代结束并将最终的工艺参数制定成完整的工艺路线图,在三维自由弯曲设备上成形预定螺旋式三维复杂弯曲件。
所述的自由弯曲成形方法,圆柱直径为D、螺距为S、螺旋圈数为n的螺旋式三维复杂弯曲件的工艺解析步骤如下:
第一步,根据圆柱直径D确定弯曲半径R,R=D/2,根据弯曲半径R和弯曲模中心与导向机构前端的距离A确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二步,根据螺旋圈数n确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N,N=2n-1;及偏转角度θn,
第三步,根据直径D和螺距S计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω及管材匀速送进的速度v确定弯曲模每次的偏转时间ts、tk和停留时间tss、tkk;ts+tss=2(tk+tkk)=L/v;
第四步,弯曲模运动至X向偏心距Ux位置后不作停留立即返回初始位置O;Ux=Uy,
第五步,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k,A’=kA,取k初值为1,k0=1,启动弯管有限元反复迭代计算,将计算结果导入计算机,并对比计算结果与所建立三维弯曲模型的尺寸差异;
第六步,基于建立的尺寸误差判据,当修正系数k=k’时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七步,将k=k’时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
所述的自由弯曲成形方法,该方法成形一个螺旋圈数为n的螺旋式三维复杂弯曲件,弯曲模从Uy运动到Ux过程中需经过2n-1次偏转,每次偏转停留一段时间,第一次偏转和停留为成形单圈螺线长,以后每次偏转和停留为成形半圈螺线长,最后一次偏转不作停留,马上返回初始位置。
所述的自由弯曲成形方法,弯曲模偏转角速度ω根据设备技术参数而定,不小于0.26rad/s。
所述的自由弯曲成形方法,该方法成形的螺旋式三维复杂弯曲件的最大螺距S为其圆柱直径D的一半即弯曲半径R,且螺距与可成形的最大螺圈数n有一定的匹配关系即nmax=R/S。
所述的自由弯曲成形方法,该方法成形的螺旋式三维复杂弯曲件的最小弯曲半径R为其管材外径d的2.5倍即Rmin=2.5d,最大弯曲半径为无穷大。
所述的自由弯曲成形方法,该方法适用于成形各种铸钢管件、铸铁管件、不锈钢管件、锻钢管件、合金管件等螺旋式三维复杂弯曲件。
所述的自由弯曲成形方法,该方法适用于成形管材、型材及各种异型截面材料的快速螺旋式三维成形。
有益效果:
1、本发明为螺旋式三维复杂弯曲件的成形提供了一种自由弯曲成形工艺方案;
2、本发明为管材三维自由弯曲装置的配套弯曲工艺解析方案,充分地发挥了管材三维自由弯曲装置所具有的可以实现复杂造型金属构件弯曲和一次柔性成形的优点;
3、本发明方法简单可行,生产效率高,在航空航天、核电、汽车等工程领域具有重要的工程应用价值和明显的经济效益。
附图说明
图1、螺旋式三维复杂弯曲件的自由弯曲成形方法示意图(弯曲模的运动路线图);
图2、管材三维自由弯曲装置示意图;
图中,1-球面轴承,2-弯曲模,3-螺旋式三维复杂弯曲件,4-导向机构,5-压紧机构,6-顶推机构;
图3、管材三维自由弯曲原理示意图;
图中,1-球面轴承,2-弯曲模,3-螺旋式三维复杂弯曲件,4-导向机构;
图4、圆柱直径为120mm、螺距为30mm、螺旋圈数为2、管材外径为15mm的螺旋式三维复杂弯曲件;A正面视图,B顶视图;
图5、圆柱直径为150mm、螺距为15mm、螺旋圈数为5、管材外径为6mm的螺旋式三维复杂弯曲件;A正面视图,B顶视图;
图6、圆柱直径为200mm、螺距为10mm、螺旋圈数为10、管材外径为4mm的螺旋式三维复杂弯曲件;A正面视图,B顶视图;
具体实施方式
以下结合三个不同尺寸螺旋管的具体实施实例,对本发明进行详细说明。
如图1所示为螺旋式三维复杂弯曲件的自由弯曲成形方法示意图(弯曲模的运动路线图),管材Z向匀速送进,弯曲模在XY平面中从初始位置O(偏心距为0)开始先在t1时间内运动到指定弯曲半径R的Y向偏心距Uy位置,在此位置停留t2时间成形半个圆弧长,随后以O为圆心、偏心距Uy为半径,在XY平面内从Uy位置出发以1/4圆弧轨迹,经若干次偏转(各次偏转时间为ts、tk)和停留(各次停留时间为tss、tkk),最终运动至X向偏心距Ux位置后不作停留,并在t3时间内返回初始位置O。
具体地,圆柱直径为D、螺距为S、螺旋圈数为n的螺旋式三维复杂弯曲件的工艺解析步骤如下:
第一步,根据圆柱直径D确定弯曲半径R(R=D/2),根据弯曲半径R、管材Z向运动速度v及弯曲模中心与导向机构前端的距离A确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二步,根据螺旋圈数n确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N,N=2n-1,及偏转角度θn,
第三步,根据直径D和螺距S计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω及管材匀速送进的速度v确定弯曲模偏转时间ts、tk,和停留时间tss、tkk,ts+tss=2(tk+tkk)=L/v;
第四步,弯曲模运动至X向偏心距Ux位置后立即返回初始位置O;Ux=Uy,
第五步,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k,A’=kA,取k初值为k0=1,启动弯管有限元反复迭代计算,将计算结果导入计算机,对比计算结果与所建立三维弯曲模型的尺寸差异;
第六步,基于建立的尺寸误差判据,当修正系数k=k’时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七步,将k=k’时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
实施例1
图4为圆柱直径120mm、螺距30mm、螺旋圈数2、管材外径15mm的螺旋式三维复杂弯曲件,具体成形工艺方法步骤如下:
第一,根据圆柱直径D=120mm确定弯曲半径R=D/2=60mm,根据弯曲半径60mm、管材Z向运动速度v=20mm/s及弯曲模中心与导向机构前端的距离A=30mm,确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二,根据螺旋圈数n=2确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N及每次偏转的角度θn;
N=2n-1=2×2-1=3
第三,根据直径D=120mm和螺距S=30mm计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω=0.52rad/s及管材匀速送进的速度v=20mm/s确定弯曲模每次的偏转时间ts、tk和停留时间tss、tkk;
第四,弯曲模运动至X向偏心距Ux位置后立即返回初始位置O;
Ux=Uy=8.0384mm,
第五,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k(A’=kA),取k初值为1(k0=1),启动弯管有限元反复迭代计算,将计算结果导入计算机,并对比计算结果与所建立三维弯曲模型的尺寸差异;
第六,基于建立的尺寸误差判据,当修正系数k=1.43时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七,将k=1.43时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
实施例2
图5为圆柱直径150mm、螺距15mm、螺旋圈数5、管材外径6mm的螺旋式三维复杂弯曲件,具体成形工艺方法步骤如下:
第一,根据圆柱直径D=150mm确定弯曲半径R=D/2=75mm,根据弯曲半径75mm、管材Z向运动速度v=20mm/s及弯曲模中心与导向机构前端的距离A=30mm,确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二,根据螺旋圈数n=3确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N及每次偏转的角度θn;
N=2n-1=2×3-1=5
第三,根据直径D=150mm和螺距S=15mm计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω=0.52rad/s及管材匀速送进的速度v=20mm/s确定弯曲模每次的偏转时间ts、tk和停留时间tss、tkk;
第四,弯曲模运动至X向偏心距Ux位置后立即返回初始位置O;
Ux=Uy=8.8599mm,
第五,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k(A’=kA),取k初值为1(k0=1),启动弯管有限元反复迭代计算,将计算结果导入计算机,并对比计算结果与所建立三维弯曲模型的尺寸差异;
第六,基于建立的尺寸误差判据,当修正系数k=1.34时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七,将k=1.34时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
实施例3
图6为圆柱直径200mm、螺距10mm、螺旋圈数10、管材外径4mm的螺旋式三维复杂弯曲件,具体成形工艺方法步骤如下:
第一,根据圆柱直径D=200mm确定弯曲半径R=D/2=100mm,根据弯曲半径100mm、管材Z向运动速度v=20mm/s及弯曲模中心与导向机构前端的距离A=30mm,确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二,根据螺旋圈数n=10确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N及每次偏转的角度θn;
N=2n-1=2×10-1=19
第三,根据直径D=200mm和螺距S=10mm计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω=0.52rad/s及管材匀速送进的速度v=20mm/s确定弯曲模每次的偏转时间ts、tk和停留时间tss、tkk;
第四,弯曲模运动至X向偏心距Ux位置后立即返回初始位置O;
Ux=Uy=4.6061mm,
第五,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k(A’=kA),取k初值为1(k0=1),启动弯管有限元反复迭代计算,将计算结果导入计算机,并对比计算结果与所建立三维弯曲模型的尺寸差异;
第六,基于建立的尺寸误差判据,当修正系数k=1.27时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七,将k=1.27时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种螺旋式三维复杂弯曲件的自由弯曲成形方法,其特征在于:管材Z向匀速送进,弯曲模从初始位置O(初始位置偏心距为0)开始先在t1时间内运动到指定弯曲半径R的Y向偏心距Uy位置,在此位置停留t2时间成形半个圆弧长,随后以O为圆心、偏心距Uy为半径,在XY平面内从Uy位置出发以1/4圆弧轨迹,经若干次偏转和停留,最终运动至X向偏心距Ux位置后不作停留,并在t3时间内返回初始位置O。
2.根据权利要求1所述的自由弯曲成形方法,其特征在于:具体过程为:首先根据圆柱型螺旋式三维复杂弯曲件的尺寸如圆柱直径D和螺距S确定其单圈螺线长度L、弯曲半径R及Y向偏心距Uy;其次对复杂构型的弯管三维几何模型进行分段,以螺线长为管材送进的长度从而确定每次停留的时间tss、tkk,并根据螺旋圈数n确定偏转的次数N和角度θn;然后在上述数量关系中引入修正系数k,启动有限元反复迭代计算,将计算结果导入几何软件进行处理,并对比计算结果与理论模型的尺寸差异;当误差小于给定值时,迭代结束并将最终的工艺参数制定成完整的工艺路线图,在三维自由弯曲设备上成形预定螺旋式三维复杂弯曲件。
3.根据权利要求2所述的自由弯曲成形方法,其特征在于:圆柱直径为D、螺距为S、螺旋圈数为n的螺旋式三维复杂弯曲件的工艺解析步骤如下:
第一步,根据圆柱直径D确定弯曲半径R,R=D/2,根据弯曲半径R和弯曲模中心与导向机构前端的距离A确定Y向偏心距Uy、运动时间t1及停留时间t2;
第二步,根据螺旋圈数n确定弯曲模从Uy位置运动至Ux位置过程中弯曲模偏转次数N,N=2n-1;及偏转角度θn,
第三步,根据直径D和螺距S计算单圈螺线长L和半圈螺线长L/2,根据螺线长、弯曲模偏转角速度ω及管材匀速送进的速度v确定弯曲模每次的偏转时间ts、tk和停留时间tss、tkk;ts+tss=2(tk+tkk)=L/v;
第四步,弯曲模运动至X向偏心距Ux位置后不作停留立即返回初始位置O;Ux=Uy,
第五步,采用有限元方法建立三维弯曲模型,并在第一步和第四步所述数量关系中A值引入修正系数k,A’=kA,取k初值为1,k0=1,启动弯管有限元反复迭代计算,将计算结果导入计算机,并对比计算结果与所建立三维弯曲模型的尺寸差异;
第六步,基于建立的尺寸误差判据,当修正系数k=k’时,有限元迭代计算出的弯曲结果中圆柱直径D、螺距S与所建立的三维弯曲模型差距小于1%,迭代结束;
第七步,将k=k’时第一到四步所列公式计算所得工艺参数输入三维自由弯曲设备中,执行实际螺旋式三维弯曲。
4.根据权利要求3所述的自由弯曲成形方法,其特征在于:该方法成形一个螺旋圈数为n的螺旋式三维复杂弯曲件,弯曲模从Uy运动到Ux过程中需经过2n-1次偏转,每次偏转停留一段时间,第一次偏转和停留为成形单圈螺线长,以后每次偏转和停留为成形半圈螺线长,最后一次偏转不作停留,马上返回初始位置。
5.根据权利要求3所述的自由弯曲成形方法,其特征在于:弯曲模偏转角速度ω根据设备技术参数而定,不小于0.26rad/s。
6.根据权利要求3所述的自由弯曲成形方法,其特征在于:该方法成形的螺旋式三维复杂弯曲件的最大螺距S为其圆柱直径D的一半即弯曲半径R,且螺距与可成形的最大螺圈数n有一定的匹配关系即nmax=R/S。
7.根据权利要求3所述的自由弯曲成形方法,其特征在于:该方法成形的螺旋式三维复杂弯曲件的最小弯曲半径R为其管材外径d的2.5倍即Rmin=2.5d,最大弯曲半径为无穷大。
8.根据权利要求3所述的自由弯曲成形方法,其特征在于:该方法适用于成形各种铸钢管件、铸铁管件、不锈钢管件、锻钢管件、合金管件等螺旋式三维复杂弯曲件。
9.根据权利要求3所述的自由弯曲成形方法,其特征在于:该方法适用于成形管材、型材及各种异型截面材料的快速螺旋式三维成形。
CN201710242562.0A 2017-04-14 2017-04-14 一种螺旋式三维复杂弯曲件的自由弯曲成形方法 Active CN107008787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710242562.0A CN107008787B (zh) 2017-04-14 2017-04-14 一种螺旋式三维复杂弯曲件的自由弯曲成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710242562.0A CN107008787B (zh) 2017-04-14 2017-04-14 一种螺旋式三维复杂弯曲件的自由弯曲成形方法

Publications (2)

Publication Number Publication Date
CN107008787A true CN107008787A (zh) 2017-08-04
CN107008787B CN107008787B (zh) 2018-10-30

Family

ID=59445715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710242562.0A Active CN107008787B (zh) 2017-04-14 2017-04-14 一种螺旋式三维复杂弯曲件的自由弯曲成形方法

Country Status (1)

Country Link
CN (1) CN107008787B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080458A (zh) * 2017-12-13 2018-05-29 南京航空航天大学 一种三轴自由弯曲局部渐进成形装置及方法
CN108746283A (zh) * 2018-05-21 2018-11-06 南京航威智造科技有限公司 一种提高三维空心构件成形精度的工艺优化方法
CN111085580A (zh) * 2019-11-28 2020-05-01 南京航空航天大学 一种连续自由弯曲精确成形方法
CN111790790A (zh) * 2019-06-11 2020-10-20 南京航空航天大学 采用五轴自由弯曲设备的矩形管自由弯曲成形方法
CN112007980A (zh) * 2020-07-06 2020-12-01 大连双木机械有限公司 一种直接生产旋转弯曲曲面沿伸工业型材加工方法
CN112347582A (zh) * 2020-11-07 2021-02-09 保定新胜冷却设备有限公司 变压器风冷却器用弹簧式扰流丝初始尺寸计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055998A1 (de) * 2004-11-24 2006-06-01 Universität für Angewandte Kunst Wien Verfahren zur ansteuerung von biegermaschinen
KR101283016B1 (ko) * 2013-05-16 2013-07-05 홍정일 거치대의 제조방법
CN103272901A (zh) * 2013-06-17 2013-09-04 沈阳飞机工业(集团)有限公司 一种导管实样取制方法
CN104525659A (zh) * 2014-11-05 2015-04-22 烟台顿汉布什工业有限公司 一种薄壁铜管弯管下料的计算方法
CN204770056U (zh) * 2015-06-26 2015-11-18 江苏新恒基特种装备股份有限公司 带有直段的空间螺旋盘管的推弯成形机构
CN106270059A (zh) * 2016-11-08 2017-01-04 南京航空航天大学 一种金属复杂构件3d自由弯曲成形工艺优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055998A1 (de) * 2004-11-24 2006-06-01 Universität für Angewandte Kunst Wien Verfahren zur ansteuerung von biegermaschinen
KR101283016B1 (ko) * 2013-05-16 2013-07-05 홍정일 거치대의 제조방법
CN103272901A (zh) * 2013-06-17 2013-09-04 沈阳飞机工业(集团)有限公司 一种导管实样取制方法
CN104525659A (zh) * 2014-11-05 2015-04-22 烟台顿汉布什工业有限公司 一种薄壁铜管弯管下料的计算方法
CN204770056U (zh) * 2015-06-26 2015-11-18 江苏新恒基特种装备股份有限公司 带有直段的空间螺旋盘管的推弯成形机构
CN106270059A (zh) * 2016-11-08 2017-01-04 南京航空航天大学 一种金属复杂构件3d自由弯曲成形工艺优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭训忠等: "三维自由弯曲成形技术及在航空制造业中的潜在应用", 《航空制造技术》 *
马燕楠等: "复杂空间弯管三维自由弯曲成形有限元模拟及试验", 《精密成形工程》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080458A (zh) * 2017-12-13 2018-05-29 南京航空航天大学 一种三轴自由弯曲局部渐进成形装置及方法
CN108080458B (zh) * 2017-12-13 2019-11-29 南京航空航天大学 一种三轴自由弯曲局部渐进成形装置及方法
CN108746283A (zh) * 2018-05-21 2018-11-06 南京航威智造科技有限公司 一种提高三维空心构件成形精度的工艺优化方法
CN111790790A (zh) * 2019-06-11 2020-10-20 南京航空航天大学 采用五轴自由弯曲设备的矩形管自由弯曲成形方法
CN111790790B (zh) * 2019-06-11 2021-09-03 南京航空航天大学 采用五轴自由弯曲设备的矩形管自由弯曲成形方法
CN111085580A (zh) * 2019-11-28 2020-05-01 南京航空航天大学 一种连续自由弯曲精确成形方法
CN112007980A (zh) * 2020-07-06 2020-12-01 大连双木机械有限公司 一种直接生产旋转弯曲曲面沿伸工业型材加工方法
CN112347582A (zh) * 2020-11-07 2021-02-09 保定新胜冷却设备有限公司 变压器风冷却器用弹簧式扰流丝初始尺寸计算方法
CN112347582B (zh) * 2020-11-07 2022-11-29 保定新胜冷却设备有限公司 变压器风冷却器用弹簧式扰流丝初始尺寸计算方法

Also Published As

Publication number Publication date
CN107008787B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN107008787B (zh) 一种螺旋式三维复杂弯曲件的自由弯曲成形方法
CN106270059B (zh) 一种金属复杂构件3d自由弯曲成形工艺优化方法
CN106734429B (zh) 一种航空钛合金3d自由弯曲温热成形装置及成形方法
He et al. Advances and trends on tube bending forming technologies
CN106270052B (zh) 大弯曲半径薄壁导管推弯成形方法及装置
CN102792771B (zh) 感应加热线圈、加工构件的制造装置及制造方法
CN107052110B (zh) 变截面三维复杂构件局部旋压及三维自由辊弯综合成形装置和方法
CN107755490B (zh) 一种马氏体钢3d自由弯曲成形方法
JP7285320B2 (ja) 角部を増肉した、熱冷複合成形された正方形/長方形鋼管及びその製造方法
CN104349853B (zh) 金属管的扩管制造方法
CN107570552B (zh) 一种钛合金tc4铸坯热轧无缝管的生产方法
CN110369548A (zh) 一种钛合金无缝方矩形管及其制造方法和应用
CN104708269B (zh) 一种难变形材料大直径超薄壁管材的加工方法
WO2021103290A1 (zh) 一种连续自由弯曲精确成形方法
CN104874663A (zh) 一种金属管材的增量式温差胀形装置及胀形方法
CN109794506A (zh) 一种热成形钢板辊压成形装置及方法
CN108723142B (zh) 一种空间无直段复杂弯曲空心构件的柔性成形方法
CN106914554A (zh) 大口径无缝钢管二步推进式热扩机及其热扩工艺
CN103752707A (zh) 一种成形直筒-扩张段复合的钛合金等壁厚曲母线薄壁回转体构件的模具和方法
CN105945086A (zh) 一种大口径异形管件的制造方法
CN103100619B (zh) 双相不锈钢复杂异形截面环形件的辗轧成形方法
CN105689407A (zh) 一种提高厚规格带钢超快冷后温度控制精度的方法
CN109328120A (zh) 用于将铁素体FeCrAl合金的中空体成型为管的方法
CN110378053B (zh) 管材二斜辊矫直工艺圆弧辊型最优矫直曲率的确定方法
CN104607560B (zh) 大口径双金属复合管材制造工艺及扩径成形装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant