CN107004935A - 双频带天线配置 - Google Patents

双频带天线配置 Download PDF

Info

Publication number
CN107004935A
CN107004935A CN201580067983.3A CN201580067983A CN107004935A CN 107004935 A CN107004935 A CN 107004935A CN 201580067983 A CN201580067983 A CN 201580067983A CN 107004935 A CN107004935 A CN 107004935A
Authority
CN
China
Prior art keywords
port
band
waveguide
low
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580067983.3A
Other languages
English (en)
Other versions
CN107004935B (zh
Inventor
奥瓦迪亚·哈鲁巴
亚伯拉罕·巴尔达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aike Card Communication Systems Inc
Original Assignee
Aike Card Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aike Card Communication Systems Inc filed Critical Aike Card Communication Systems Inc
Publication of CN107004935A publication Critical patent/CN107004935A/zh
Application granted granted Critical
Publication of CN107004935B publication Critical patent/CN107004935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

双频带天线配置包括:波导,该波导从近端部分延伸至高频带部分;第一高频带端口,该第一高频带端口从波导的高频带部分延伸;第一低频带端口,该第一低频带端口从波导的低频带部分的外表面沿着第一径向路径延伸;第二低频带端口,该第二低频带端口从波导的低频带部分的外表面沿着第二径向路径延伸,第二径向路径与第一径向路径正交;以及180度混合耦合器,其中,该180度混合耦合器的第一端口与第一低频带端口电连通,并且180度混合耦合器的第二端口与第二低频带端口电连通,180度混合耦合器的第二端口与180度混合耦合器的第一端口不同。

Description

双频带天线配置
技术领域
本发明总体上涉及卫星通信和天线系统领域,并且特别地涉及一种用于双频带传输的双频带天线配置。
背景技术
卫星通信广泛应用于诸如电视和无线广播以及互联网数据传输之类的多种应用。通常,卫星与家庭卫星碟形天线之间的通信采用Ku频带,即,12GHz至18GHz。为了允许用户与卫星之间进行双向通信,则利用Ku频带的较低部分来从卫星接收数据并且利用Ku频带的较高部分来向卫星发送数据。遗憾的是,Ku频带的较高部分和较低部分彼此接近,因此可用频率的数量对于必要的数据传输而言并不充足。
此外,通常期望向单个天线配置同时提供一对信号,这对信号呈现出相同的频率和正交的极性,或者方向相反的圆形极性,因此在相同的频率数量下提供增大一倍的信号的量。为了将不同的信号彼此隔离,必须提供适当的结构。在2004年4月20日授予Holden等人的美国专利S/N 6,724,277描述了一种设置有隔膜板以将信号彼此隔离的这样的结构,该美国专利的全部内容通过引用并入本文。遗憾的是,这样的隔膜板会干扰各个频带,从而妨碍天线配置的多频率使用。作为一种解决方案,Holden提出针对每个频率提供沿着波导的长度延伸的单独的导体。然而,这样的结构增加了天线配置的成本和复杂度。
对于UHER在2013年12月26日公开的美国专利申请US 2013/0342282描述了使用四个端口来接收单独的信号,每个信号采用两个相对的端口,每对端口与另一对端口正交。这样的结构同样增加了天线配置的成本和复杂度。
所期望的并且现有技术无法提供的是一种简化的多频带天线配置,该简化的多频带天线配置允许同时接收/发送两个独立的信号,这两个独立的信号呈现出相同的频率和彼此正交的极性,或者圆形极性相对的两端。
发明内容
因此,本发明的主要目的在于克服现有技术中的至少一些缺点。在特定实施例中,上述主要目的由双频带天线配置来提供,该双频带天线配置包括:波导,该波导从近端部分延伸至高频带部分;第一高频带端口,该第一高频带端口从波导的高频带部分延伸;第一低频带端口,该第一低频带端口从波导的低频带部分的外表面沿着第一径向路径延伸;第二低频带端口,该第二低频带端口从波导的低频带部分的外表面沿着第二径向路径延伸,所述第二径向路径与所述第一径向路径正交;以及180度混合耦合器,其中,该180度混合耦合器的第一端口与第一低频带端口电连通,并且该180度混合耦合器的第二端口与所述第二低频带端口电连通,180度混合耦合器的第二端口与180度混合耦合器的第一端口不同。
在一个实施例中,所述天线配置还包括:第一短截线,该第一短截线从波导的所述外表面延伸并且与第一低频带端口相对;以及第二短截线,该第二短截线从波导的所述外表面延伸并且与第二低频带端口相对。在另一实施例中,180度混合耦合器是T形波导管(magic tee),180度混合耦合器的第一端口为T形波导管的第一共线端口,以及180度混合耦合器的第二端口为T形波导管的第二共线端口。
在一个实施例中,波导的近端部分和低频带部分中的每一个没有任何屏障。在另一实施例中,波导从低频带部分到高频带部分呈锥形。在又一实施例中,天线配置还包括第二高频带端口,该第二高频带端口从波导在高频带部分处的外表面沿着第三径向路径延伸,第一高频带端口沿着波导的纵向轴线延伸,使得第一高频带端口的极性与第二高频带端口的极性正交,其中,第一高频带端口和第二高频带端口被设置成向波导发送其频率在高频带中的信号或者从波导接收其频率在高频带中的信号,其中,第一低频带端口和第二低频带端口被设置成向波导发送其频率在低频带中的信号或者从波导接收其频率在低频带中的信号,以及其中,所述锥形的尺寸被设置成使得:低频带信号不能从低频带部分进入高频带部分;以及所述高频带信号被多模匹配。
在一个实施例中,所述天线配置还包括一对高频带滤波器,其中,第一高频带端口被设置成向波导发送其频率在高频带中的信号或者从波导接收其频率在高频带中的信号,以及其中,这对高频带滤波器中的每个高频带滤波器被设置成使所述高频带内的信号频率衰减,这对高频带滤波器中的每个高频带滤波器的输入端被耦接至180度混合耦合器的和端口和差端口中的一个相应端口。在另一实施例中,所述天线配置还包括第二高频带端口和位于所述波导内的极化器,所述第二高频带端口从波导在高频带部分处的外表面沿着第三径向路径延伸,第一高频带端口沿着波导的纵向轴线延伸,使得第一高频带端口的极性与第二高频带端口的极性正交。
在一个实施例中,所述天线配置还包括90度混合耦合器,所述90度混合耦合器的一对端子中的每个端子与所述180度混合耦合器的和端口和差端口中的一个相应端口电连通。在另一实施例中,第一高频带端口被设置成向波导发送其频率在高频带中的信号或者从波导接收其频率在高频带中的信号,其中,第一低频带端口和第二低频带端口被设置成向所述波导发送其频率在低频带中的信号或者从波导接收其频率在低频带中的信号,以及其中,高频带是Ka频带的预定部分,并且低频带是Ku频带的预定部分。
在一个独立的实施例中,提供了一种双频带天线传输方法,该方法包括:在波导的近端部分与从波导的外表面沿着第一径向路径延伸的第一低频带端口之间传输第一低频带信号;在波导的近端部分与从波导的外表面沿着第二径向路径延伸的第二低频带端口之间传输第二低频带信号,第二径向路径与第一径向路径正交;在波导的近端部分与从波导的高频带部分延伸的第一高频带端口之间传输第一高频带信号;以及在第一低频带端口和所述第二低频带端口与180度混合耦合器相应的第一端口之间分别传输第一低频带信号和第二低频带信号。
在一个实施例中,在波导的近端部分与第一低频带端口和第二低频带端口之间传输第一低频带信号和第二低频带信号响应于:第一短截线,其从所述波导的所述外表面延伸并且与所述第一低频带端口相对;以及第二短截线,其从所述波导的所述外表面延伸并且与所述第二低频带端口相对。在另一实施例中,180度混合耦合器为T形波导管,并且180度混合耦合器的所述相应第一端口为T形波导管的共线端口。
在一个实施例中,在波导的近端部分与第一低频带端口之间的第一低频带信号传输以及在波导的近端部分与第二低频带端口之间的第二低频带信号传输仅通过所述波导的没有任何屏障的部分。在另一实施例中,在波导的近端部分与第一高频带端口之间的第一高频带信号传输通过所述波导的锥形部分。
在又一实施例中,所述方法还包括:在所述波导的所述近端部分与从波导的外表面沿着第三径向路径延伸的第二高频带端口之间传输第二高频带信号,第一高频带端口沿着波导的纵向轴线延伸,使得第一高频带端口的极性与第二高频带端口的极性正交;以及响应于所述波导的锥形部分的尺寸:防止第一低频带信号和第二低频带信号穿过波导的锥形部分;以及使第一高频带信号和第二高频带信号进行多模匹配。
在一个实施例中,所述方法还包括:使离开第一低频带端口朝向180度混合耦合器的信号衰减,该信号的频率在高频带内;以及使离开第二低频带端口朝向180度混合耦合器的信号衰减,该信号的频率在高频带内。在另一实施例中,所述方法还包括:在波导的近端部分与从波导的外表面沿着第三径向路径延伸的第二高频带端口之间传输第二高频带信号;使所传输的第一高频带信号和第二高频带信号极化,其中,第一高频带端口沿着波导的纵向轴线延伸,使得第一高频带端口的极性与第二高频带端口的极性正交。
在一个实施例中,所述方法还包括:在180度混合耦合器的和端口与90度混合耦合器的相应端口之间传输第一低频带信号和第二低频带信号;以及在180度混合耦合器的差端口与90度混合耦合器的相应端口之间传输第一低频带信号和第二低频带信号。在另一实施例中,高频带是Ka频带的预定部分,并且低频带是Ku频带的预定部分。
根据下面的附图和描述本发明的其他特征和优点将变得明显。
附图说明
为了更好地理解本发明的各个实施例并且示出如何将各个实施例付诸实践,现在将纯粹以示例的方式参考附图,在附图中,相似的附图标记表示全文中相应的元件或部分。
现在具体参考详细的附图,应当强调的是,所示的细节仅作为示例且仅出于本发明的优选实施例的说明性讨论的目的,并且为了提供被认为是关于本发明的原理和概念方面的最有用且容易理解的描述而被呈现。就这一点而言,并未试图示出本发明的比基本理解本发明所需的结构细节更为详细的结构细节,结合附图所作的描述能够使本领域技术人员明白如何在实践中实施本发明的几种形式。在附图中:
图1A至图1D示出了根据一些实施例的第一双频带天线配置的各个部件的各种高级视图;
图2示出了根据一些实施例的第二双频带天线配置的低频带部分的高级剖视图;以及
图3示出了根据一些实施例的双频带天线传输方法的高级流程图。
具体实施方式
在详细解释至少一个实施例之前,应当理解的是,本发明在其应用中并不限于以下描述中所阐述的或附图中所示出的部件的构造和布置的细节。本发明可应用于以各种方式实践或执行的其它实施例。此外,应当理解的是,本文所采用的措辞和术语是为了描述的目的而不应该被认为是限制性的。
图1A至图1D示出了根据一些实施例的天线配置10的各种部件的各种高级视图。天线配置10包括:喇叭20;波导30,该波导呈现出纵向轴线35;基座40;第一低频带端口50;第二低频带端口60;一对短截线70,其优选地为闭合短截线;极化器80;第一高频带端口90;第二高频带端口95;180度混合耦合器100;以及一对高频抑制滤波器105。在一个实施例中,喇叭20包括波纹喇叭。在另一实施例中,喇叭20包括平滑的圆锥形喇叭。在一个实施例中,极化器80包括90度移相器。在又一实施例中,该90度移相器包括介电材料。优选地,如图1D所示,180度混合耦合器100为T形波导管(magic tee)并且在本文中将被描述成这样。
波导30经由以下部分从近端部115延伸至远端部120:近端部分125、低频带正交模式部分130、高频带匹配部分135以及高频端正交模式部分140。特别地,波导30的近端部115由近端部分125的近端部126(即,近端部分125的与远端部120相距最远的端部)限定。低频带正交模式部分130的近端部132与近端部分125的远端部127相接,并且低频带正交模式部分130的远端部134与高频带匹配部分135的近端部136相接。高频带匹配部分135的远端部137与高频带正交模式部分140的近端部142相接,并且高频带正交模式部分140的远端部144限定波导30的远端部120。尽管波导30被描述为包括多个部分,然而,这并不意味着将波导30限定为具有彼此附接的多个部分。在一个实施例中,如下面将描述的那样,波导30被制成一体成型,即,由单片材料制成,而不是由彼此附接的数片材料制成。低频带正交模式部分130从其近端部132到其远端部134呈锥形,并且高频带匹配部分135从其近端部136到其远端部137呈锥形。在一个实施例中,如下面将描述的那样,低频带正交模式部分130以与高频带匹配部分135的锥形不同的角度而呈锥形。尽管波导30被示为圆形波导,然而,这并不意味着以任何方式进行限制,并且波导30可以在不超范围的情况下以诸如矩形之类的任意适当的几何形状成形。
喇叭20被耦接至波导30的近端部115。第一低频带端口50沿着径向路径160从波导30的低频带正交模式部分130的外表面150中的相应开口延伸,使得第一低频带端口50的极性与径向路径160正交。特别地,在一个实施例中,第一低频带端口50包括细长矩形波导,该矩形波导的长度62与纵向轴线35平行,以及该矩形波导的宽度64与纵向轴线35正交。第二低频带端口60沿着径向路径170从波导30的低频带正交模式部分130的外表面150中的相应开口延伸,使得第二低频带端口60的极性与径向路径170正交。特别地,在一个实施例中,第二低频带端口60包括矩形波导,该矩形波导的长度62与纵向轴线35平行,以及该矩形波导的宽度64与纵向轴线35正交。径向路径160和径向路径170中的每一个与纵向轴线35正交并且彼此正交,使得第一低频带端口50与第二低频带端口60正交。本文所使用的术语“径向路径”是指从任意几何结构延伸出去的路径,而并不意味着被限定为从圆形结构延伸的路径。在第一低频带端口50和第二低频带端口60中的每一个包括细长矩形波导的实施例中,第二低频带端口60的矩形波导的宽度64与径向路径160平行,并且第一低频带端口50的矩形波导的宽度64与径向路径170平行。因此,低频带端口50的极性与径向路径170平行,并且低频带端口60的极性与径向路径160平行。尽管上述内容已经在下述实施例中进行了描述,其中,低频带端口50的极性与径向路径170平行,并且低频带端口60的极性与径向路径160平行,然而,这并不意味着以任何方式进行限定。特别地,第一低频带端口50和第二低频带端口60可以具有使得它们的极性彼此正交的任意适当的几何形状。
每个短截线70沿着各自与纵向轴线35正交的径向路径165从波导30的低频带正交模式部分130的外表面150中的相应开口延伸。每个短截线70与第一低频带端口50和第二低频带端口60中相应的一个端口相对,即,每个短截线70与第一低频带端口50和第二低频带端口60中相应的一个端口限定了公共平面。因此,短截线70彼此正交。如下文将要描述的那样,在一个实施例中,每个短截线70从外表面150到该短截线的端部75所测量的延伸长度是预定的低频带的中心频率的波长的1/4。可选地,在第一低频带端口50和第二低频带端口60中的每一个包括细长矩形波导的实施例中,每个短截线70是细长矩形,该短截线的长度与第一低频带端口50和第二低频带端口60中相应的一个端口的长度62平行,并且该短截线的宽度与第一低频带端口50和第二低频带端口60中相应的一个端口的宽度64平行。
极化器80位于波导30内,极化器80的近端部分82位于高频带匹配部分135内,极化器80的远端部分84位于高频带正交模式部分140内。第一高频带端口90沿着径向路径180从波导30的高频带正交模式部分140的外表面150中的相应开口延伸,径向路径180与纵向轴线35正交,使得第一高频带端口90的极性与径向路径180和纵向轴线35正交。特别地,在一个实施例中,第一高频带端口90包括细长矩形波导,该矩形波导的长度92与纵向轴线35平行,以及该矩形波导的宽度94与纵向轴线35正交。第二高频带端口95沿着纵向轴线35从波导30的远端部120延伸,使得第一高频带端口90与第二高频带端口95正交。特别地,第一高频带端口90的极性与径向路径180和纵向轴线135正交,并且第二高频带端口95的极性与径向路径180平行。在一个实施例中,第二高频带端口95包括细长矩形波导,该矩形波导的长度92与纵向轴线35和径向路径180正交,以及该矩形波导的宽度94与径向路径180平行。在另一实施例中,第一高频带端口90和第二高频带端口95可以具有使得其极性彼此正交的任意适当的几何状态。在一个实施例中,第一高频带端口90和第二高频带端口95中的每一个被耦接至极化器80的远端部分84。
上述内容已经在下述实施例中进行了描述,在该实施例中,提供了极化器80,因而两个线性极化的高频带信号通过该极化器80被极化成右旋(right hand)圆形极化信号和左旋(left hand)圆形极化信号,这将在下文中进行描述。在另一实施例(未示出)中,没有提供极化器80,第一高频带端口90和第二高频带端口95提供双线性极化。在这样的实施例中,第一高频带端口和第二高频带端口被设置为使得:第一高频带端口90的极性与第一低频带端口50的极性和第二低频带端口60的极性中的每一个呈45度角,同时保持与第二高频带端口95的极性正交。特别地,第一高频带端口90的宽度94与径向路径160和径向路径170中的每一个呈45度角。
如图1C所示,第一低频带端口50和第二低频带端口60中的每一个与T形波导管100的相应端口电连通,如图1D所示。特别地,第一低频带端口50和第二低频带端口60中的每一个与T形波导管100相应的共线端口190电连通,共线端口190呈现共同的纵向轴线并且与和端口210和差端口220正交。在一个实施例中,第一低频带端口50和第二低频带端口60中的每一个与T形波导管100相应的共线端口190邻接且并置。T形波导管100的和端口210和差端口220中的每一个与相应高频抑制滤波器105的输入端电连通。在一个实施例中,T形波导管100的和端口210和差端口220中的每一个与相应高频抑制滤波器105的输入端邻接且并置。在另一实施例(未示出)中,高频抑制滤波器105被耦接在第一低频带端口60与T形波导管100的共线端口190之间以及被耦接在第二低频带端口70与T形波导管100的共线端口190之间。第一低频带端口60与T形波导管100的共线端口190之间的连接225以及第二低频带端口70与T形波导管100的共线端口190之间的连接225被显示为比第一低频带端口60和第二低频带端口70要窄,然而,这并不意味着以任意方式进行限制。优选地,连接225具有与第一低频带端口60和第二低频带端口70以及共线端口190相同的横截面尺寸。
波导30被耦接至基座40。优选地,近端部分125和低频带正交模式部分130没有任何屏障,诸如在1972年6月6日授予Rosen的美国专利S/N 3,668,567(其全部内容通过引用并入本文),以及在2004年4月20日授予Holden等人的美国专利S/N 6,724,277中所描述的那样。此外,近端部分125和低频带正交模式部分130不包含任何附加的内部导体,诸如在2004年4月20日授予Holden等人的美国专利S/N 6,724,277中所描述的那样。在一个实施例中,波导30的近端部分125和低频带正交模式部分130是中空的。在另一实施例中,波导30、第一低频带端口50和第二低频带端口60、极化器80、第一高频带端口90和第二高频带端口95、T形波导管100以及高频抑制滤波器105被制成一体成型,即,由单片材料制成。
在操作时,在喇叭20与第一低频带端口50之间传输线性极化的第一低频带信号230,并且在喇叭20与第二低频带端口60之间传输线性极化的第二低频带信号240。第二低频带信号240的极化(polarization)与第一低频带信号230的极化正交。在一个实施例中,在喇叭20处通过外部天线(可选地,卫星天线)接收第一低频带信号230和第二低频带信号240,进一步可选地,经由与喇叭20并置的反射器来接收第一低频带信号230和第二低频带信号240。在另一实施例中,外部天线是基于地面的天线。第一低频带信号230和第二低频带信号240通过波导30传播至第一低频带端口50和第二低频带端口60,即,天线配置10处于低频带接收模式。在另一实施例中,第一低频带信号230和第二低频带信号240通过第一低频带端口50和第二低频带端口60输出至波导30,即,天线配置10处于低频带发送模式。第一低频带信号200和第二低频带信号210通过波导30传播至喇叭20,然后它们被发送至外部天线,如上所述该外部天线可选地是卫星天线,进一步可选地经由与喇叭20并置的反射器发送上述第一低频带信号和第二低频带信号。下面将描述天线配置10处于低频带接收模式的实施例。天线配置10在低频带发送模式下的操作与天线配置10在低频带接收模式下的操作相反,然而在其他方面是相同的,因此为了简洁起见将不对此进行描述。
如图1C所示,第一低频带信号230的极性与第二低频带信号240的极性正交。第一低频带信号230的极性与径向路径160和径向路径170中的每一个呈45度角,第二低频带信号240的极性与径向路径170呈45度角且与径向路径160呈135度角。因此,第一低频带信号230的半部232和第二低频带信号240的半部242进入第一低频带端口50。第一低频带信号230的半部232的极性与第二低频带信号240的半部242的极性相同。此外,第一低频带信号230的半部234和第二低频带信号240的半部244进入第二低频带端口60。第一低频带信号230的半部234的极性与第二低频带信号240的半部244的极性相反。半部232是第一低频带信号230沿着坐标系的第一轴线的分量,以及半部234是第一低频带信号230沿着坐标系的第二轴线的分量。半部242是第二低频带信号240沿着坐标系的第一轴线的分量,以及半部244是第二低频带信号240沿着坐标系的第二轴线的分量。
第一低频带信号230的半部232和第二低频带信号240的半部242进入T形波导管100的与第一低频带端口50耦接的相应共线端口190。此外,第一低频带信号230的半部234和第二低频带信号240的半部244进入T形波导管100的与第二低频带端口60耦接的相应共线端口190。第一低频带信号230和第二低频带信号240在T形波导管100的和端口210和差端口220处被输出。本领域技术人员在进行本发明时已知的是,T形波导管100被设置成在和端口210处输出进入共线端口190的信号的和,并且进一步被设置成在差端口220处输出进入共线端口190的信号的差。特别地,第一低频带信号230从和端口210输出,以及第二低频带信号240从差端口220输出。T形波导管100的结构使得共线端口190彼此隔离,从而使得第一低频带信号230和第二低频带信号240不能返回至波导30。
波导30的壁显示出第一低频带端口50和第二低频带端口60之间的电连接,因此第一低频带信号230的部分和第二低频带信号240的部分会进入第一低频带端口50和第二低频带端口60中错误的一个端口。短截线70被设置用于改善第一低频带端口50和第二低频带端口60之间的隔离。特别地,每个短截线70被设置成对其波长等于该短截线的延伸长度的1/4的信号显示开路。因此,每个短截线70的从外表面150到该短截线的端部75所测量的延伸长度被设置成低频带的中间频率的波长的1/4。例如,如果低频带为12GHz至13GHz,则每个短截线70的延伸长度被设置成频率为12.5GHz的波长的1/4,即,约为6mm。
波导30的锥形结构防止第一低频带信号230和第二低频带信号240向高频带正交模式部分140前进并防止第一低频带信号230和第二低频带信号240扰乱从第一高频带端口90和第二高频带端口95发送/接收信号。特别地,低频带正交模式部分130在远端134处的横截面的尺寸被设置成使得第一低频带信号230和第二低频带信号240不能进入高频带匹配部分135,如进行本发明时为本领域技术人员所知的。如上面关于第一低频带端口50和第二低频带端口60所描述的那样,第一高频带端口90和第二高频带端口95能够操作为发送端口或操作为接收端口。作为接收端口的操作与作为发送端口的操作尽管是彼此相反的,但是却是等同的,因此为了简洁起见,将仅对将第一高频带端口90和第二高频带端口95作为发送端口的操作进行描述。第一高频带端口90和第二高频带端口95被设置成向波导30输出高频带信号,该高频带信号呈现彼此正交的极性。极化器80被设置成对第一高频带端口90和第二高频带端口95所输出的信号的相位进行极化,使得该信号变为圆形极化。圆形极化的信号通过波导30传播至喇叭20。高频带匹配部分135的锥形的尺寸,即,该锥形的角度和长度被设置成改善高频带信号的多模式匹配,并且将所述高频带信号保持在所期望的模式下,如在进行本发明时为本领域技术人员所知的。如上所述,高频带匹配部分135的锥形的角度和长度被设置成减小低频带正交模式部分130的远端部134的横截面,使得第一低频带信号230和第二低频带信号240不能进入高频带匹配部分135。
如上所述,近端部分125和低频带正交模式部分130没有任何屏障。有利地,没有任何屏障使得高频带信号能够在不失真的情况下传输。
高频带信号的部分会进入低频带端口50和低频带端口60并且扰乱所接收的低频带信号230和低频带信号240。因此,高频抑制滤波器105被设置成使高频带信号在离开天线配置10之前被衰减。在一个实施例中,低频带是Ku频带的预定部分,并且高频带是Ka频带的预定部分。如上所述,Ku频带定义为12GHz至18GHz的频带。如上所述,Ka频带定义为26.5GHz至40GHz的频带。
图2示出了根据一些实施例的天线配置300的一部分的高级剖视图。天线配置300在所有方面类似于图1A至图1D中的天线配置10,添加了90度混合耦合器310。90度混合耦合器310的第一输入端和第二输入端中的每一个与一对高频抑制滤波器105中相应的一个高频抑制滤波器的输出端电连通。在一个实施例中,90度混合耦合器310的第一输入端和第二输入端中的每一个与各自的高频抑制滤波器105并置并且邻接。在另一实施例中,90度混合耦合器310被印刷到与天线配置300通信的系统的电路板(未示出)上。在另一可替代实施例中,90度混合耦合器310包括90度波导混合耦合器。在天线配置300的实施例中,从喇叭20的孔径到90度混合耦合器310的每个输入端的连接的电长度应当相等,术语“电长度”表示通过特定路径传播的信号波长的数量。特别地,延伸穿过第一低频带端口50、T形波导管100、相应的高频抑制滤波器105以及上述项之间的任何连接路径320的路径的电长度应该等于延伸穿过第二低频带端口60、T形波导管100、相应的高频抑制滤波器105以及上述项之间的任何连接路径330的路径的电长度。因此,通过从喇叭20的孔径到90度混合耦合器310的第一输入端的路径进行传播的信号的相移等于通过从喇叭20的孔径到90度混合耦合器310的第二输入端的路径进行传播的信号的相移。
天线配置300的操作在所有方面类似于图1A至图1D中的天线配置10的操作,不同之处在于:天线配置300还可以接收和发送圆形极化的低频带信号340和圆形极化的低频带信号350,低频带信号340的极性与低频带信号350的极性相反。如上文关于天线配置10所描述的那样,所述操作是针对低频带接收模式进行描述的,然而这并不意味着以任何方式进行限制。如上所述,低频带发送模式与低频带接收模式相反,然而在其他方面是相同的,因此为了简洁起见将不对低频带发送模式进行描述。低频带信号340的半部342和低频带信号350的半部352进入第一低频带端口50。低频带信号340的半部342的极性与低频带信号350的半部352的极性相同。此外,低频带信号340的半部344和低频带信号350的半部354进入第二低频带端口60。低频带信号340的半部344的极性与低频带信号350的半部354的极性相反。低频带信号340和低频带信号350作为线性极化信号从T形波导管100输出,并且90度混合耦合器310被设置成将线性极化的低频带信号340和线性极化的低频带信号350转换成圆形极化信号,使得所接收的左旋信号340由90度混合耦合器310输出为左旋信号,并且所接收的右旋信号340被输出为右旋信号。
图3示出了根据一些实施例的双频带天线传输方法的高级流程图。在步骤1000中,在喇叭与第一低频带端口之间传输第一低频带信号。喇叭被耦接至波导的近端部分。第一低频带端口沿着第一径向路径从波导的外表面延伸。如上所述,在低频带接收模式下,第一低频带信号从喇叭发送至第一低频带端口。在低频带发送模式下,第一低频带信号从第一低频带端口发送至喇叭。可选地,第一低频带信号的传输仅通过波导的没有任何屏障的部分。如上所述,波导的被第一低频带信号传输穿过的部分(例如,波导30的近端部分125和低频带正交模式部分130)没有任何隔离屏障。有利地,没有隔离屏障意味着高频带信号可以在不失真的情况下被发送至喇叭。
在步骤1010中,在喇叭与第二低频带端口之间传输第二低频带信号。第二低频带端口沿着第二径向路径从波导的外表面延伸,第二径向路径与第一径向路径正交。如上所述,在低频带接收模式下,第二低频带信号从喇叭发送至第二低频带端口。在低频带发送模式下,第二低频带信号从第二低频带端口发送至喇叭。可选地,第二低频带信号的传输仅通过波导的没有任何屏障的部分。第二低频带端口的极性与步骤1000中的第一低频带端口的极性正交。
在步骤1020中,在喇叭与第一高频带端口之间传输第一高频带信号,该第一高频带端口从步骤1000中的波导的高频带部分延伸。如上所述,第一高频带端口可以是接收端口或发送端口,这类似于步骤1000中的第一低频带端口和步骤1010中的第二低频带端口。可选地,第一高频带端口沿着波导的纵向轴线延伸。可选地,第一高频信号通过波导的锥形部分传输。如上所述,波导的锥形的尺寸被设置成防止第一低频带信号和第二低频带信号干扰第一高频带端口,并且改善第一高频带信号的多模式匹配。可选地,高频带是Ka频带的预定部分,并且步骤1000至步骤1010中的低频带是Ku频带的预定部分。
在步骤1030中,步骤1010中的第二低频带信号被传输在第一低频带端口和第二低频带端口与180度混合耦合器相应的第一端口之间。优选地,180度混合耦合器为T形波导管,并且180度混合耦合器的第一端口为T形波导管的共线端口。
在可选的步骤1040中,步骤1000至步骤1010中传输第一低频带信号和第二低频带信号响应于:第一短截线从波导的外表面延伸并且与步骤1000中的第一低频带端口相对;以及第二短截线从波导的外表面延伸并且与步骤1010的第二低频带端口相对。优选地,第一短截线和第二短截线中的每一个是闭合短截线。如上所述,第一短截线和第二短截线在第一低频带端口和第二低频带端口之间提供了改善的隔离。
在可选的步骤1050中,使离开第一低频带端口朝向180度混合耦合器的信号衰减,该信号的频率在高频带内。此外,使离开第二低频带端口朝向180度混合耦合器的信号衰减,该信号的频率在高频带内。如上所述,所述衰减防止高频带信号使低频带信号失真。
在可选的步骤1060中,在喇叭与第二高频带端口之间传输第二高频带信号,该第二高频带端口沿着第三径向路径从波导的外表面延伸。第二高频带端口与沿着波导的纵向轴线延伸的第一高频带端口正交。此外,第二高频带端口的极性与第一高频带端口的极性正交。
在可选的步骤1070中,使步骤1020中的第一高频带信号和可选的步骤1060中的第二高频带信号极化。可选地,所述极化通过包括介电材料的90度移相器来实现。
在可选的步骤1080中,第一低频带信号和第二低频带信号在180度混合耦合器的和端口与90度混合耦合器的相应端口之间、以及在180度混合耦合器的差端口与90度混合耦合器的相应端口之间传输。
应当理解的是,为了清楚起见在各个实施例的上下文中所描述的本发明的一些特征也可以以组合的方式在单个实施例中被提供。相反地,为了简洁起见在单个实施例的上下文中描述的本发明的各种特征也可以单独地提供或以任何合适的子组合被提供。
除非另有定义,本文使用的所有技术术语和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。尽管在本发明的实践或测试中可以使用与本文所描述的方法类似或等同的方法,然而本文描述了适当的方法。
本文提及的所有出版物、专利申请、专利以及其它参考文献通过整体引用并入本文。在发生冲突的情况下,将以专利说明书(包括定义)为准。此外,材料、方法以及示例仅是说明性的而不是限制性的。
本领域技术人员应当理解的是,本发明并不限于上文具体示出和描述的内容。更确切地说,本发明的范围由所附的权利要求限定,并且包括上文描述的各种特征的组合和子组合二者以及所述各种特征的变化和修改,这是本领域技术人员在阅读前面的描述之后可以想到的。

Claims (22)

1.一种双频带天线配置,包括:
波导,所述波导从近端部分延伸至高频带部分;
第一高频带端口,所述第一高频带端口从所述波导的所述高频带部分延伸;
第一低频带端口,所述第一低频带端口从所述波导的低频带部分的外表面沿着第一径向路径延伸;
第二低频带端口,所述第二低频带端口从所述波导的所述低频带部分的所述外表面沿着第二径向路径延伸,所述第二径向路径与所述第一径向路径正交;以及
180度混合耦合器,
其中,所述180度混合耦合器的第一端口与所述第一低频带端口电连通,并且所述180度混合耦合器的第二端口与所述第二低频带端口电连通,所述180度混合耦合器的第二端口与所述180度混合耦合器的第一端口不同。
2.根据权利要求1所述的天线配置,还包括:
第一短截线,所述第一短截线从所述波导的所述外表面延伸并且与所述第一低频带端口相对;以及
第二短截线,所述第二短截线从所述波导的所述外表面延伸并且与所述第二低频带端口相对。
3.根据权利要求1所述的天线配置,其中,所述180度混合耦合器为T形波导管,所述180度混合耦合器的第一端口为所述T形波导管的第一共线端口,以及所述180度混合耦合器的第二端口为所述T形波导管的第二共线端口。
4.根据权利要求1所述的天线配置,其中,所述波导的所述近端部分和所述低频带部分各自没有任何屏障。
5.根据权利要求1所述的天线配置,其中,所述波导从所述低频带部分到所述高频带部分呈锥形。
6.根据权利要求5所述的天线配置,还包括第二高频带端口,所述第二高频带端口从所述波导在所述高频带部分处的外表面沿着第三径向路径延伸,所述第一高频带端口沿着所述波导的纵向轴线延伸,使得所述第一高频带端口的极性与所述第二高频带端口的极性正交,
其中,所述第一高频带端口和所述第二高频带端口被设置成向所述波导发送其频率在高频带中的信号或者从所述波导接收其频率在高频带中的信号,
其中,所述第一低频带端口和所述第二低频带端口被设置成向所述波导发送其频率在低频带中的信号或者从所述波导接收其频率在低频带中的信号,以及
其中,所述锥形的尺寸被设置成使得:
低频带信号不能从所述低频带部分进入所述高频带部分;以及
高频带信号被多模匹配。
7.根据权利要求1所述的天线配置,还包括一对高频带滤波器,
其中,所述第一高频带端口被设置成向所述波导发送其频率在高频带中的信号或者从所述波导接收其频率在高频带中的信号,以及
其中,该对高频带滤波器中的每个高频带滤波器被设置成使所述高频带内的信号频率衰减,该对高频带滤波器中的每个高频带滤波器的输入端被耦接至所述180度混合耦合器的和端口和差端口中相应的一个端口。
8.根据权利要求1所述的天线配置,还包括:
第二高频带端口,所述第二高频带端口从所述波导在所述高频带部分处的外表面沿着第三径向路径延伸,所述第一高频带端口沿着所述波导的纵向轴线延伸,使得所述第一高频带端口的极性与所述第二高频带端口的极性正交。
9.根据权利要求8所述的天线配置,还包括位于所述波导内的极化器。
10.根据权利要求1所述的天线配置,还包括90度混合耦合器,所述90度混合耦合器的一对端子中的每个端子与所述180度混合耦合器的和端口和差端口中相应的一个端口电连通。
11.根据权利要求1至10中任一项所述的天线配置,其中,所述第一高频带端口被设置成向所述波导发送其频率在高频带中的信号或者从所述波导接收其频率在高频带中的信号,
其中,所述第一低频带端口和所述第二低频带端口被设置成向所述波导发送其频率在低频带中的信号或者从所述波导接收其频率在低频带中的信号,以及
其中,所述高频带是Ka频带的预定部分,并且所述低频带是Ku频带的预定部分。
12.一种双频带天线传输方法,包括:
在波导的近端部分与第一低频带端口之间传输第一低频带信号,所述第一低频带端口从所述波导的外表面沿着第一径向路径延伸;
在所述波导的近端部分与第二低频带端口之间传输第二低频带信号,所述第二低频带端口从所述波导的外表面沿着第二径向路径延伸,所述第二径向路径与所述第一径向路径正交;
在所述波导的近端部分与第一高频带端口之间传输第一高频带信号,所述第一高频带端口从所述波导的高频带部分延伸;以及
在所述第一低频带端口和所述第二低频带端口与180度混合耦合器相应的第一端口之间分别传输所述第一低频带信号和所述第二低频带信号。
13.根据权利要求12所述的方法,其中,在所述波导的近端部分与所述第一低频带端口和所述第二低频带端口之间传输所述第一低频带信号和所述第二低频带信号响应于:
第一短截线,其从所述波导的所述外表面延伸并且与所述第一低频带端口相对;以及
第二短截线,其从所述波导的所述外表面延伸并且与所述第二低频带端口相对。
14.根据权利要求12所述的方法,其中,所述180度混合耦合器为T形波导管,并且所述180度混合耦合器相应的第一端口为所述T形波导管的共线端口。
15.根据权利要求12所述的方法,其中,所述在所述波导的近端部分与所述第一低频带端口之间的第一低频带信号传输以及在所述波导的近端部分与所述第二低频带端口之间的第二低频带信号传输仅通过所述波导的没有任何屏障的部分。
16.根据权利要求12所述的方法,其中,在所述波导的近端部分与所述第一高频带端口之间的第一高频带信号传输通过所述波导的锥形部分。
17.根据权利要求16所述的方法,还包括:
在所述波导的所述近端部分与第二高频带端口之间传输第二高频带信号,所述第二高频带端口从所述波导的所述外表面沿着第三径向路径延伸,所述第一高频带端口沿着所述波导的纵向轴线延伸,使得所述第一高频带端口的极性与所述第二高频带端口的极性正交;以及
响应于所述波导的锥形部分的尺寸:
防止所述第一低频带信号和所述第二低频带信号穿过所述波导的锥形部分;以及
使所述第一高频带信号和所述第二高频带信号进行多模匹配。
18.根据权利要求12所述的方法,还包括:
使离开所述第一低频带端口朝向所述180度混合耦合器的信号衰减,该信号的频率在高频带内;以及
使离开所述第二低频带端口朝向所述180度混合耦合器的信号衰减,该信号的频率在高频带内。
19.根据权利要求12所述的方法,还包括:在所述波导的近端部分与第二高频带端口之间传输第二高频带信号,所述第二高频带端口从所述波导的所述外表面沿着第三径向路径延伸,
其中,所述第一高频带端口沿着所述波导的纵向轴线延伸,使得所述第一高频带端口的极性与所述第二高频带端口的极性正交。
20.根据权利要求19所述的方法,还包括使所传输的第一高频带信号和第二高频带信号极化。
21.根据权利要求12所述的方法,还包括:
在所述180度混合耦合器的和端口与90度混合耦合器的相应端口之间传输所述第一低频带信号和所述第二低频带信号;以及
在所述180度混合耦合器的差端口与所述90度混合耦合器的相应端口之间传输所述第一低频带信号和所述第二低频带信号。
22.根据权利要求12至21中任一项所述的方法,其中,所述高频带是Ka频带的预定部分,并且所述低频带是Ku频带的预定部分。
CN201580067983.3A 2014-11-12 2015-11-11 双频带天线配置 Active CN107004935B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/539,532 US9401536B2 (en) 2014-11-12 2014-11-12 Dual band antenna configuration
US14/539,532 2014-11-12
PCT/IL2015/051094 WO2016075695A1 (en) 2014-11-12 2015-11-11 Dual band antenna configuration

Publications (2)

Publication Number Publication Date
CN107004935A true CN107004935A (zh) 2017-08-01
CN107004935B CN107004935B (zh) 2020-01-14

Family

ID=54851372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580067983.3A Active CN107004935B (zh) 2014-11-12 2015-11-11 双频带天线配置

Country Status (9)

Country Link
US (1) US9401536B2 (zh)
EP (1) EP3218963B1 (zh)
KR (1) KR102434547B1 (zh)
CN (1) CN107004935B (zh)
ES (1) ES2909770T3 (zh)
PL (1) PL3218963T3 (zh)
PT (1) PT3218963T (zh)
TW (1) TWI699928B (zh)
WO (1) WO2016075695A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553271A (zh) * 2020-11-25 2022-05-27 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381725B2 (en) * 2015-07-20 2019-08-13 Optimum Semiconductor Technologies Inc. Monolithic dual band antenna
EP3516737B1 (en) * 2016-09-23 2024-05-22 CommScope Technologies LLC Dual-band parabolic reflector microwave antenna systems
US10778333B2 (en) 2017-05-17 2020-09-15 RF elements s.r.o. Modular electromagnetic antenna assemblies and methods of assembling and/or disassembling
CN107248619B (zh) * 2017-06-01 2019-04-12 中国电子科技集团公司第五十四研究所 一种单槽深C/Ku双频段差模跟踪馈源及其设计方法
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10381726B1 (en) * 2018-03-01 2019-08-13 Shenzhen South Silicon Valley Microelectronics Co., Limited Dual-band antenna
US11228116B1 (en) * 2018-11-06 2022-01-18 Lockhead Martin Corporation Multi-band circularly polarized waveguide feed network
WO2020100189A1 (ja) * 2018-11-12 2020-05-22 三菱電機株式会社 給電回路
US11101880B1 (en) * 2020-03-16 2021-08-24 Amazon Technologies, Inc. Wide/multiband waveguide adapter for communications systems
CN112993544B (zh) * 2021-02-04 2022-02-18 上海航天测控通信研究所 一种x频段多极化多通道微波组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617108A (en) * 1994-03-21 1997-04-01 Hughes Electronics Simplified tracking antenna
US7408427B1 (en) * 2004-11-12 2008-08-05 Custom Microwave, Inc. Compact multi-frequency feed with/without tracking
CN101689691A (zh) * 2007-09-07 2010-03-31 泰勒斯公司 用于rf频率无线通信天线的omt类型宽带多频带收发耦合器-分离器
CN102136631A (zh) * 2010-11-01 2011-07-27 西安空间无线电技术研究所 一种s/x双频段圆极化馈源
CN102136634A (zh) * 2011-01-12 2011-07-27 电子科技大学 一种Ku/Ka频段线圆极化一体化收发馈源天线
CN102610901A (zh) * 2012-03-23 2012-07-25 彭文峰 一种嵌套式双频段双圆极化馈源

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668567A (en) 1970-07-02 1972-06-06 Hughes Aircraft Co Dual mode rotary microwave coupler
US4504805A (en) * 1982-06-04 1985-03-12 Andrew Corporation Multi-port combiner for multi-frequency microwave signals
US5003321A (en) * 1985-09-09 1991-03-26 Sts Enterprises, Inc. Dual frequency feed
US5784033A (en) * 1996-06-07 1998-07-21 Hughes Electronics Corporation Plural frequency antenna feed
US6816026B2 (en) * 1998-12-22 2004-11-09 The Aerospace Corporation Orthogonal polarization and frequency selectable waveguide using rotatable waveguide sections
US6724277B2 (en) 2001-01-24 2004-04-20 Raytheon Company Radio frequency antenna feed structures having a coaxial waveguide and asymmetric septum
US6720933B2 (en) 2002-08-22 2004-04-13 Raytheon Company Dual band satellite communications antenna feed
US6937203B2 (en) * 2003-11-14 2005-08-30 The Boeing Company Multi-band antenna system supporting multiple communication services
US20060189273A1 (en) 2005-02-18 2006-08-24 U.S. Monolithics, L.L.C. Systems, methods and devices for a ku/ka band transmitter-receiver
US9059682B2 (en) 2008-07-14 2015-06-16 Macdonald, Dettwilwe And Associates Corporation Orthomode junction assembly with associated filters for use in an antenna feed system
US8334815B2 (en) 2009-07-20 2012-12-18 Kvh Industries, Inc. Multi-feed antenna system for satellite communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617108A (en) * 1994-03-21 1997-04-01 Hughes Electronics Simplified tracking antenna
US7408427B1 (en) * 2004-11-12 2008-08-05 Custom Microwave, Inc. Compact multi-frequency feed with/without tracking
CN101689691A (zh) * 2007-09-07 2010-03-31 泰勒斯公司 用于rf频率无线通信天线的omt类型宽带多频带收发耦合器-分离器
CN102136631A (zh) * 2010-11-01 2011-07-27 西安空间无线电技术研究所 一种s/x双频段圆极化馈源
CN102136634A (zh) * 2011-01-12 2011-07-27 电子科技大学 一种Ku/Ka频段线圆极化一体化收发馈源天线
CN102610901A (zh) * 2012-03-23 2012-07-25 彭文峰 一种嵌套式双频段双圆极化馈源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553271A (zh) * 2020-11-25 2022-05-27 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法
CN114553271B (zh) * 2020-11-25 2023-07-28 中国电信股份有限公司 单缆mimo分布系统和单缆mimo信号处理方法

Also Published As

Publication number Publication date
US9401536B2 (en) 2016-07-26
TW201633601A (zh) 2016-09-16
ES2909770T3 (es) 2022-05-10
PT3218963T (pt) 2022-03-30
EP3218963B1 (en) 2022-01-05
KR20170081260A (ko) 2017-07-11
WO2016075695A1 (en) 2016-05-19
TWI699928B (zh) 2020-07-21
CN107004935B (zh) 2020-01-14
PL3218963T3 (pl) 2022-05-02
KR102434547B1 (ko) 2022-08-19
EP3218963A1 (en) 2017-09-20
US20160134004A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
CN107004935A (zh) 双频带天线配置
US7948441B2 (en) Low profile antenna
CN101399391A (zh) 高频信号的宽带无损耗混合方法
CN207320331U (zh) 双频双极化共口径波导喇叭平面阵列天线
US6577207B2 (en) Dual-band electromagnetic coupler
US20180233829A1 (en) Compact dual circular polarization multi-band waveguide feed network
US4162463A (en) Diplexer apparatus
CN106229635A (zh) 一种同侧馈电的全向双圆极化天线
CN105720345B (zh) 高选择性的宽带十字型耦合器
JPS6013562B2 (ja) 広帯域偏分波器
CN210866445U (zh) 一种双频双极化分路器
Mandal et al. A compact planar orthomode transducer
JPH0441521B2 (zh)
CN110088975A (zh) 毫米波天线和连接装置
CN113097678A (zh) 一种双频双极化分路器
CN109378592A (zh) 一种具有稳定波束宽度和低副瓣的宽带天线阵列馈电网络
US7403081B2 (en) Broadband hybrid junction and associated methods
US20180248240A1 (en) Compact antenna feeder with dual polarization
US8929699B2 (en) Symmetrical branching ortho mode transducer (OMT) with enhanced bandwidth
GB1605120A (en) Electrical networks for use at high frequencies
CN209282412U (zh) 一种具有稳定波束宽度和低副瓣的宽带天线阵列馈电网络
CN105789808A (zh) 双频微带十字型分支线耦合器
EP4007062A1 (en) Dual-frequency dual-polarization splitter
US20030045262A1 (en) Waveguide mixer/coupler
CN108183300A (zh) 一种双频段双极化的正交模耦合器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant