CN107000835B - “机轮”旋翼 - Google Patents

“机轮”旋翼 Download PDF

Info

Publication number
CN107000835B
CN107000835B CN201480081576.3A CN201480081576A CN107000835B CN 107000835 B CN107000835 B CN 107000835B CN 201480081576 A CN201480081576 A CN 201480081576A CN 107000835 B CN107000835 B CN 107000835B
Authority
CN
China
Prior art keywords
rotor
blade
wheel
wing
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480081576.3A
Other languages
English (en)
Other versions
CN107000835A (zh
Inventor
谢尔盖·约尔维奇·库兹科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xie ErgaiYueerweiqiKuzikefu
Original Assignee
Xie ErgaiYueerweiqiKuzikefu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xie ErgaiYueerweiqiKuzikefu filed Critical Xie ErgaiYueerweiqiKuzikefu
Publication of CN107000835A publication Critical patent/CN107000835A/zh
Application granted granted Critical
Publication of CN107000835B publication Critical patent/CN107000835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/33Rotors having flexing arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/28Collapsible or foldable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/311Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Wind Motors (AREA)
  • Toys (AREA)

Abstract

“机轮”旋翼是具有可变桨距和可变扭转的桨叶的旋翼。“机轮”旋翼包括通过柔性桨叶连接到闭合轴对称翼的一个或多个桨毂。由于在宽环形翼中提供了罩式风扇或在旋转圆柱形翼中提供了叶轮,因此典型的为具有薄平面翼的起升旋翼,提供了翼相对宽度和锥形角组合的广泛范围,该薄平面翼附接到长桨叶的尖端。“机轮”旋翼组合并增强了旋翼和机翼的优点。“机轮”旋翼具有高空气动力学性能,并消除了对旋翼尺寸和飞行速度的限制。“机轮”旋翼可用于设计垂直起飞和着陆航空器。

Description

“机轮”旋翼
技术领域
本发明涉及航空,尤其涉及旋翼航空器。旋翼也可用于风力发电。
背景技术
比空气重的航空器通常使用机翼或旋翼提供升力。旋翼对于低速飞行有效,而固定翼对于高速飞行有效。仅使用用于产生升力的这些选择之一导致了飞机的有限速度范围。另一方面,这两个选择的不当使用可能会使它们的缺点组合。
具有平面环形翼的旋翼旨在用于高速垂直起飞和着陆(VTOL)旋翼航空器,但是这里的旋翼仅用于产生升力。在水平飞行或平飞期间,旋翼以自转模式操作,且外翼以正迎角移动穿过空气,从而产生主升力。通过巡航螺旋桨或喷射驱动器提供航向保持。
2000年7月11日的名称为“陀螺稳定三模式航空器”的US 6,086,016公开了一种陀螺稳定三模式航空器,其包括通过增加平面环形翼(圆形轮廓)而改变的旋翼。此外,US 6,086,016公开了一种包括两个这种同轴旋翼的航空器。
US 6,086,016的附图和说明书示出了用于将刚性的直升机桨叶附接到桨毂和环形翼的旋转件。该航空器通过固定翼控制和尾部控制而转向。
US 6,086,016的缺点如下:
1、US 6,086,016的航空器声称是陀螺稳定航空器,但其实际上并不是陀螺稳定的。环形翼的旋转平面和航空器机身的位置不是刚性相关的。具有两个非平行翼的双翼飞机不能飞行。
2、在不控制旋翼桨叶总距(collective pitch)和周期变距的情况下,旋翼航空器的控制是不可能的。倾斜盘的使用在说明书和附图中均未提及。
3、通过转环将桨叶附接到外部环形翼导致旋翼强度降低、设计更复杂,并且不能防止桨叶尖端的不利的扭转振动。
4、旋翼作为螺旋桨的效率低。旋翼以直升机、飞机和旋翼机模式操作。由于刚性机翼在起飞和自转期间仅具有一个几何扭转角,所以桨叶尖端承受过载。
2005年1月25日的名称为“旋翼/固定翼航空器”的US 6,845,941 B2公开了一种旋翼/固定翼航空器。在US 6,845,941中,旋翼系统包含环形平面翼中的一个桨毂和径向桨叶,其中每个桨叶配备有顺桨铰链或可倾斜对称缝翼和襟翼。航空器配备有上述旋翼和用于在水平飞行的情况下停止和锁定旋翼的装置。航空器具有两个不同的桨叶控制系统:当作为直升机操作时旋翼旋转,当作为飞机操作时旋翼锁定。
US 6,845,941的主要缺点如下:
1、在作为飞机操作的情况下,固定旋翼的空气动力学柔度和刚度低。机身经受振动和发散不稳定性。环形翼通过长桨叶连接到桨毂。固定旋翼未被离心力拉紧而失去其刚性,因此通过桨毂的固定来实现机翼的刚性固定是不可能的。
2、旋翼作为螺旋桨的效率低,而其作为固定翼也具有不太高的机翼效率。刚性桨叶具有显著的厚度和低效的对称翼型截面。
3、具有可倾斜对称缝翼/襟翼的桨叶,以及双模式旋翼控制系统太复杂且不可靠。
因此,已知的解决方案采用包括平面环形翼和桨毂的旋翼,该平面环形翼和桨毂通过具有可变桨距的径向布置刚性桨叶、经由顺桨铰链而彼此连接。
闭合旋翼可不同于环形翼。1985年12月24日的名称为“滑动环”的US 4,560,358描述了该滑动环的平面形状和截面轮廓的各种设计。
发明内容
本发明的目的是提供一种具有高空气动力和操作特性的最理想的旋翼,并提供一种有效的陀螺稳定航空器。
该目的通过提供一种具有可变桨距和可变扭转的桨叶的旋翼来实现,其中,所述旋翼包括闭合翼,所述闭合翼通过扭转柔性桨叶连接到一个桨毂或多个同轴桨毂,所述桨叶以刚性、弹性和粘弹性方式中的一种耦合到所述闭合翼。
在一个实施例中,所述旋翼包括控制装置,所述控制装置用于控制桨叶总距和周期变距中的至少一个。
在另一个实施例中,通过设定桨毂相对位置,诸如旋转、倾斜、偏移,来部分地或全部地控制所述桨叶的桨距。
在一个实施例中,所述扭转柔性桨叶具有可变翼型曲面。
在再一个实施例中,任何桨叶的扭转刚度和/或弯曲刚度中的至少一个沿所述桨叶变化。
在再一个实施例中,所述桨叶具有复杂的三维形状,该三维形状包括弯曲、张开、Y形接头、锥形、接合、支撑柱以及可倾斜缝翼和可倾斜襟翼中的至少一个。
在再一个实施例中,所述桨叶通过扭杆、顺桨铰链或偏置铰链可移动地耦合到所述一个或多个桨毂。
在再一个实施例中,所述桨叶刚性地耦合到所述一个或多个桨毂,所述桨叶配备有可倾斜的襟翼。
在再一个实施例中,所述桨叶或所述可倾斜的襟翼以粘弹性方式或通过集成减振器可移动地耦合。
在再一个实施例中,所述桨叶和所述机翼是柔性的,且所述桨叶和所述机翼具有内部体积,所述内部体积可以在正压力下填充气体或液体以增加柔性旋翼的刚度。
在再一个实施例中,所述旋翼是可折叠或可拆卸的,且所述旋翼包括多个可拆卸元件或通过可枢转接头彼此连接的多个元件。
在再一个实施例中,所述闭合翼能够用作电机的转子,所述电机例如为电动发电机、电动机、磁断开系统。
此外,本发明提供了一种陀螺稳定航空器,所述陀螺稳定航空器包括一个或多个所公开的旋翼。
此外,本发明提供了一种风力发电机,所述发电机包括一个或多个所公开的旋翼。
此外,本发明提供了一种固定发动装置,所述固定发动装置用于初始加速公开的旋翼。
所请求的方案提供了一种具有多个新的结构部件和结合部件的旋翼来实现:
1、一个外部闭合翼、和任何数量的桨叶和桨毂。
2、任何三维形状(通常轴对称)和任何锥角(即,形状可从平面变化到圆柱体)的外部闭合翼。机翼的相对宽度可从附接到长桨叶尖端的薄边缘变化至具有小的内部叶轮的宽翼。
3、旋翼可配备有一个、两个或更多用于桨叶附接的桨毂。
4、桨毂可以是任何形状和尺寸。可存在多个桨叶附接平面,其可以不与机翼平面重合。
5、旋翼配备有用于控制桨叶总距和周期变距的控制装置。联合的旋翼控制系统针对所有飞行模式均统一。
6、提供有桨叶桨距控制、可选的桨毂对机翼的相对定位控制。
7、不完全径向的桨叶可具有各种扫掠、复杂的三维形状、弯曲、呈喇叭形展开、Y形接头、锥形、接合部、支撑柱以及可倾斜的缝翼和襟翼。
8、桨叶翼型截面可在相对宽的厚度范围内变化:从宽到极薄。
9、有效旋翼设置有可变桨距,其中高扭转柔性的扭转桨叶具有可变的扭转。
10、每个桨叶的扭转刚度可以变化,例如,刚性可从桨叶柄部到尖端平滑地增加,并在机翼-桨叶接合区域处减小。
11、薄的柔性桨叶可改变其翼型曲面;提供有具有刚性固定前缘和可倾斜襟翼的桨叶。
12、仅刚性和弹性或粘弹性的桨叶对机翼紧固(无铰链)是最佳的。机翼-桨叶接合处未使用顺桨铰链。
13、相同的桨叶可附接到不同的桨毂。桨叶可通过刚性紧固、弹性紧固、粘弹性紧固或以铰链的方式连接到桨毂。这些紧固方式可通过直接紧固、或经由扭杆的紧固、或顺桨铰链来实现。
14、对于旋翼的折叠和柔性改变,可提供部件的可移动滑动接合部、以及使用接头。
15、闭合翼可作为电驱动电动机的转子、电动发电机的转子或磁制动系统的转子操作。
16、可使旋转旋翼适合燃料、蓄电池、燃料电池、发动机、推进喷嘴、太阳能电池板、传感器、天线、平衡器、指示灯、防冻系统、信号电缆、电力线以及其他设备和主体部件。
上述特征提供以下:
·降低了旋翼产生的噪声。
·旋翼的刚度随着不平衡和振动的消除而增加。
·消除了地面共振和通常发生在飞行期间的危险事件导致的风险。
·消除了对旋翼尺寸的限制。可延展性更高。
·消除了对最大速度值的设计限制;安全飞行速度值的范围变得更宽。
·对于自转模式和直升机模式这两者,有可变扭转的桨叶具有最高可能效率。
·扭转等于零的薄桨叶在高速水平飞行的情况下具有最小的旋翼翼型阻力。
·提高了升阻比、最大速度、飞行距离和可用时间。降低了每小时飞行的燃料消耗和成本。
·将平衡旋翼用作飞轮(高性能和高容量的动能存储系统)。
·提高了航空器起升能力、重量和能量的品质因数、或能量完善度。
·具有两个桨毂的刚性旋翼可为航空器提供飞轮控制。降低了与纵向微调和横向微调相关的升阻比损失。
·减小了飞行期间产生的大气湍流效应。
·提供了全天候能力。在不利条件下提供可靠的垂直起飞和垂直着陆。
·动力单元性能和可靠性要求较低。
·航空器的操作更容易。控制和稳定系统更简单。具有全自动飞行的选择。
·轻质且柔性的桨叶减少了顺桨铰链和控制系统中的载荷。旋翼的运行时间和控制系统的可靠性较高。
·用于桨距控制/倾斜盘的新的自动化系统使对所有飞行模式统一的联合控制系统更简单。
·旋翼和整个航空器的设计更简单。技术效率更高。生产成本更低。
基本上,具有两个桨毂的旋翼可提供闭合翼旋转平面的刚性固定,从而确保航空器的陀螺稳定性。旋翼设计与自行车车轮的设计相同,其中类似辐条的桨叶提供了轮缘(机翼)平面的固定。考虑到相似的外观,所公开的旋翼称为“机轮”旋翼。
通常,旋翼航空器的振动引起许多问题。乘客和乘务员因振动而感到不舒服。振动还导致航空器机身和变速器的设计具有增加的重量,同时减少了旋翼和控制系统的操作时间。振动的主要原因是常规旋翼的不平衡不能被消除。唯一可稳定的旋翼具有刚性平面形状。外部平面翼型包括提供“机轮”旋翼的刚性平面形状的载荷。消除了振动。在旋翼航空器受旋翼强度和控制系统限制的情况下,旋翼的操作时间及其设计最大速度显著提高。
VTOL型航空器不受机场禁锢;然而,VTOL型航空器因其产生高水平的噪声而不能自由使用。在离轴流的情况下,任何旋转螺旋桨均经受交变载荷。在飞行期间,半开式旋翼的厚且直的径向布置的桨叶在桨叶尖端处产生涡流形成的标准振动。布置在具有各种扫掠和角度偏差的封闭翼型内的大量薄月牙形桨叶显著地减小了这种振动的振幅。仅仅使用轮缘不能完全消除这些振动。“机轮”旋翼在飞行期间的静音操作由一系列措施提供,该措施包括使用具有复杂的轴对称形状的闭合轮。
高速大体积飞轮可积聚大量能量并可将大量能量直接快速地传送到桨叶,而不需要电动机、复杂的传动、抗扭矩和过多的噪声。在电动机、变速箱和其他航空器系统故障的情况下,飞轮的使用确保了高的推力/重量比和飞行器的鲁棒性。
旋翼尺寸减小且有效载荷重量增加。直升机旋翼的直径由动力单元性能和起飞重量限定。飞轮的使用消除了这种依赖性。可靠的高速垂直起飞可由具有较小直径的旋翼提供,甚至可由通过罩式风扇提供,而不管动力单元的性能和起飞重量。
作为动力陀螺仪的“机轮”旋翼提供了纵向和横向飞轮控制。航空器是陀螺稳定的且稳固的,而不会遭受大气湍流。可通过具有高飞轮动能的受控旋翼桨叶来提供活动程度稳定。因此,可以设计全天候航空器。
附图说明
参照以下示意性和非限制性的附图,本发明将被更好地理解:
图1、四桨叶“机轮”旋翼的透视图。
图2、“机轮”旋翼起升风扇的透视图。
图3、具有一个桨毂的“机轮”旋翼的示例。
a)具有环形翼的三桨叶“机轮”旋翼。
b)具有多段线闭合翼剖面轮廓的四桨叶“机轮”旋翼。
c)具有圆柱形翼的“机轮”旋翼-叶轮。
d)具有平面闭合翼的六桨叶“机轮”旋翼。
e)具有轴对称翼的三桨叶“机轮”旋翼。
图4、具有两个桨毂的“机轮”旋翼的实施例的示例(透视图)。
a)具有两个桨毂的刚性六桨叶“机轮”旋翼。
b)具有两个桨毂的刚性八桨叶“机轮”旋翼。
c)具有两个桨毂的非刚性三桨叶“机轮”旋翼,两个间隔开的桨毂的桨叶滑动纵向接合。
d)具有两个桨毂的非刚性六桨叶“机轮”旋翼,桨叶尖端被可移动地弹性紧固到外翼。
e)在圆柱形外翼中具有两个桨毂的“机轮”旋翼。
图5、具有可变扭转的“机轮”旋翼的柔性扭转桨叶。
a)俯视图。
b)侧视图。
c)柔性桨叶截面设定角度对桨叶截面半径的依赖性。
图6、根据相对截面半径,理想、柔性和刚性桨叶的设定角度变化的比较图表。
图7、“机轮”旋翼的柔性桨叶的操作模式与可变桨距旋翼(VPR)的刚性桨叶的操作模式的比较图表。
索引0对应于桨叶柄部分,1对应于桨叶尖端部分。
图8、“机轮”旋翼和普通旋翼的品质因数的比较图表,根据旋翼桨距的相对效率的变化。
图9、具有四个桨毂的折叠“机轮”旋翼。
折叠和展开位置的顶视图。
图10、具有一个桨毂的柔性中空机轮。
a)一般透视图。
b)展开的柔性“机轮”旋翼的截面。
c)折叠的柔性“机轮”旋翼的截面。
图11、具有两个桨毂的刚性“机轮”旋翼的倾斜盘#1:
a)一般透视图。
b)初始位置-桨距等于零。
c)总距控制。
d)周期变距控制。
具有两个桨毂的非刚性“机轮”旋翼的实施例(俯视图)。
图12、具有两个桨毂的非刚性“机轮”旋翼,桨叶相对桨毂可移动纵向偏移。
图13、具有两个桨毂的非刚性“机轮”旋翼,桨叶尖端滑动地纵向紧固到外翼。
图14、具有两个桨毂的非刚性“机轮”旋翼,桨叶尖端可移动地弹性紧固到外翼。
图15、具有两个桨毂的非刚性“机轮”旋翼的倾斜盘#2:
a)一般透视图。b)初始位置-桨距等于零。
c)总距控制。d)周期变距控制。
图16、非刚性“机轮”旋翼的倾斜盘#3,其具有两个间隔开的桨毂的桨叶的滑动纵向接合部:
a)一般透视图。b)初始位置-桨距等于零。
c)总距控制。d)周期变距控制。
“机轮”旋翼的应用
图17、具有“机轮”旋翼的高空风力发电机。
图18、系留高空陀螺仪稳定监控摄像机。
图19、具有软垂直着陆的旋翼系统-“四旋翼”。
图20、具有软垂直着陆的旋翼系统-“六旋翼”。
具有起升“机轮”旋翼的旋翼机(Gyrocraft)
图21、具有巡航推进式螺旋桨的遥控或无人旋翼机。
图22、具有倾斜巡航推进式螺旋桨的旋翼机。
a)水平飞行;b)直升机模式。
图23、具有两个起升风扇的横向旋翼的旋翼机。
图24、具有两个起升风扇的横向旋翼的旋翼机:
a)俯视图;b)陀螺桨距控制。
图25、具有两个“机轮”旋翼的重型旋翼机的串联旋翼配置。
具体实施方式
“机轮”旋翼
“机轮”旋翼(参见图1和图2)包括平面闭合翼1、桨叶2和桨毂3。“机轮”旋翼的实施例包括一个桨毂3(参见图1、图2和图3)。“机轮”旋翼的另一实施例包括两个桨毂3、4(参见图4)。通常,每个桨叶可以使用任何数量的桨毂:从一个桨毂到两个桨毂。“机轮”旋翼可配备有一个轴或两个共轴的轴。平面闭合翼1可具有多线段翼型轮廓或任何轴对称形状(参见图3)。平面环形翼1(参见图3)具有最小的翼型阻力。碟形翼1通常是平的或具有小的锥角。碟形翼1与旋翼的桨叶2的尖端连接,并用作:
1、为旋翼提供强度的结构元件;
2、在高速飞行期间产生主升力的机翼;
3、提供能量存储和输送的大容量飞轮;
4、提供飞机稳定性的陀螺仪。
“机轮”旋翼的平面翼在高速飞行期间产生主升力;因此,平面翼具有比飞机机翼更小的跨度。由于整体式机翼不具有翼梁或高升力装置,因此其由离心力加载张力,因此这种机翼明显比固定翼薄。“机轮”旋翼的机翼在高飞行速度下具有较低的翼型阻力和高升阻比。薄的旋转翼具有较高的刚度、动态气动弹性,且不会发生振动。“机轮”旋翼的机翼和桨叶可由各种材料制成,该材料包括重钢。机翼的锥角和复杂的轴对称形状根据来自离心载荷的变形而选择,以便减小桨叶接头载荷。
“机轮”旋翼的桨毂不具有垂直铰链和水平铰链,且桨毂可设计成具有较大直径以增加旋翼刚度。为此,“机轮”旋翼可包括两个间隔开的桨毂(参见图4a、4b、4c、4d和4e),桨叶2通过柄连接到不同的桨毂3、4,且这些桨叶尖端连接到与自行车车轮中的辐条相似的相同闭合翼1。所得到的机身轻且刚性。
为了降低声学噪声,上下桨毂的桨叶可移相,同时具有不同的扫掠和弯曲。在一个实施例中,桨叶具有支撑柱或具有Y形接头的柄部,桨叶弹性地紧固到不同的桨毂或通过顺桨铰链紧固到不同的桨毂。
具有刚性平面形状的“机轮”旋翼总是稳定的。与具有通过三个铰链紧固桨叶的完全铰接旋翼不同,旋转“机轮”旋翼不会产生有害的振动,并消除了地面共振的影响。消除了对桨叶的弯曲和扭转强度的严格要求,传动和控制元件上的载荷较低,并且操作时间和可靠性较高。“机轮”旋翼(参见图5)的薄柔性桨叶2用弹性连接6(未旋转)像辐条一样受拉力加载到机翼1。在桨距变化大的情况下,扭力杆、顺桨铰链或偏移铰链5可仅用于桨毂3与桨叶2之间的连接。具有可变桨距的桨叶是扭转且柔性的,具有可变扭曲(参见图6),并且可能具有可变翼型曲面。
通常,旋翼设计远不是完美的,而是一种寻求满足各种矛盾要求的折衷解决方案。直升机和旋翼机的旋翼是类似的;然而,它们本质上具有不同的流向,并因此具有不同的桨叶扭曲。因此,当直升机在飞行模式中表现出差的性能而旋翼机在起飞期间经历困难时,它们在高速飞行的情况下都具有低的升阻力比和稳定性问题。可以通过选择具有与该模式相对应的最大效率的桨距H(关于理想螺旋桨为0.7-0.8)来优化任何旋翼的刚性(因此厚的)桨叶。桨距H的最小增加或减少导致损失的增加(参见图7),并且还使低效率更加降低(参见图8)。
“机轮”旋翼的高效率可通过多种方法实现。
通过减小翼型(profile)厚度、通过使用非对称完美翼型、以及通过机翼和桨叶的高表面纯度来提供较低的翼型阻力值。
弹性桨叶2和外翼1之间的连接6(未旋转)允许扭转桨叶以可变扭转角Δφ(参见图5)扭转。桨叶的扭转刚度系数沿着与线性扭曲相对应的半径恒定。在桨距H的正和负值的非常宽的范围内,桨叶的接近理想的双曲线扭转对于所有模式是可能的。其通过桨叶扭转刚度沿桨叶变化而提供,当从桨叶柄部移动到尖端时其增加,并且在机翼-桨叶接合区域处减小(参见图6)。由于理想桨叶的形状不能与径向刚度分布翼型相匹配,因此桨叶可由柔性塑料材料制成,该柔性塑料材料具有内部承载翼梁—成形的扭杆或具有变化截面和刚度的组件(参见图5和图6)。
应当注意的是,“机轮”旋翼和普通旋翼之间的重要区别在于,桨叶桨距在负角度值至正角度值的宽范围中的可变性。外部闭合翼不仅提供以减小尖端损耗,而且形成对尖端的支撑,从而为接近理想的扭转桨叶提供扭转(参见图7),并因此提供沿桨叶长度的均匀载荷分布。对于所有操作模式(见图7、8),均可以在高速飞行的情况下用最小翼型阻力实现最大旋翼效率,该所有模式包括螺旋桨模式(Hmax)、自旋转模式(H=0)和风力涡轮机模式(H<0)。
在可用的大迎角下,直薄翼型不起作用。刚性固定前缘和可倾斜襟翼可容易地提供用于加载张力的桨叶。由柔性塑料材料制成的、具有几个弹性翼梁的薄桨叶可随着其翼型曲面的变化而弯曲(参见图7),该弹性翼梁具有设计的刚度。没有阻力铰链和襟翼铰链,提供了将桨叶附接到两个或多个不同可移动桨毂的更简单的方式。
在高速水平飞行的情况下,旋翼的升阻比也增大。薄的闭合翼产生了主升力,为薄桨叶提供以减小机翼阻力,减小了桨叶载荷,降低了旋翼旋转速度,并消除了对前进桨叶产生冲击波效应的情况和对处理桨叶的缝翼效应。桨叶到外翼的流线粘弹性紧固消除了尖端扭转振动、并消除了随声学噪声和尖端损耗水平降低的振动。
“机轮”旋翼的示例由起升罩式风扇表示(参见图2)。机翼截面接近均匀强度分布的盘的形状,并具有几乎三角形的轮廓:锋利或圆形的薄外边缘和较宽的内边缘。短桨叶可以是刚性的,具有可变或固定桨距。可具有多个桨叶到桨毂及桨叶到外部的机翼附接平面。具有可变桨距的刚性桨叶具有受控襟翼,或作为整体在连接桨毂与机翼的轴线(辐条—扭力杆)上延伸。具有刚性固定桨叶的旋翼的推力可通过受控导流叶片来控制。推力方向可通过机身襟翼来控制。
可使“机轮”旋翼适合燃料、蓄电池、发动机、推进喷嘴、太阳能电池板、传感器、天线、平衡器、指示灯、防冰系统以及其他设备和主体部件。
虽然“机轮”旋翼具有大的固定尺寸,但是可考虑拆卸和折叠改变(参见图9)。该问题通过使用可折叠在地面上的柔性平面“机轮”旋翼(参见图10a)来解决。旋翼在旋转时动态地获得所需的刚度。“机轮”旋翼刚度可通过将气体或液体注入到中空翼内部体积中而进一步增加(参见图10b)。在旋翼旋转期间,来自沿轴通道布置的箱的液体、或来自布置在桨毂处的容器的液体在高离心压力下通过阀14和通道供应到机翼1。阀14在飞行期间确保“机轮”旋翼在任何旋转速度下的高刚性。地面控制释放阀14用于使旋翼放气并恢复其柔性(参见图10c)。在具有两个桨毂的轮子的实施例中,刚度在桨毂间隔开时增加。
旋翼桨叶可具有新月形状(参见图3a)或具有偏移铰链轴线的顺桨铰链,该铰链轴线位于旋转平面中,该旋转平面与桨叶轴线形成一定角度,从而允许旋翼旋转平面位置相对于轴位置的自动稳定性。桨叶尖端下降导致迎角增加,而其升高导致迎角减小。因此,桨毂和旋翼轴的载荷较小。
倾斜盘
旋翼总距和周期变距由倾斜盘控制。不同的倾斜盘设计包括环形(盘形)、“十字叉”、曲柄类型等。几乎所有的现有倾斜盘类型可用于“机轮”旋翼。对于具有两个桨毂的“机轮”旋翼(参见图4),新的倾斜盘变型可与现有倾斜盘一起使用。新的变型旨在,不使用外杆,仅通过控制两个间隔开桨毂的位置(参见图11、15和16)来控制桨叶总距和周期迎角,例如:
倾斜盘#1的实施例。刚性“机轮”旋翼桨距的控制(参见图11)。
在具有两个桨毂的“机轮”旋翼中,每个桨叶2通过顺桨铰链或弹性连接(未示出)附接到桨毂,并具有杆7和杆8,杆7和杆8不附接到外部控制器而是附接到相邻的桨毂3或4。例如(参见图11b),如果铰接杆7将上桨毂桨叶的前部连接到下桨毂4,且杆8将下桨毂桨叶的后部连接到上桨毂3,则桨叶2的迎角以及因此的旋翼总距(参见图11c)和周期变距(参见图11d)由桨毂的位置控制。桨距角靠近桨叶平面。该实施例类似于尤里耶夫(Yuriyev)的传统的碟形倾斜盘并且以相同的方式操作。
可移动桨毂的相对角定向可用于控制总距,并可通过花键联接、中间接合或另外的连接来固定。为了在桨叶桨距控制系统弹簧中将桨毂间隔开,可采用液压或电驱动。
可以为弹性扭转桨叶或其部分提供桨距控制,该部分例如为,在桨叶前缘襟翼的固定位置处的柔性或接合襟翼。因此,执行薄柔性桨叶翼型曲面的控制。通过倾斜襟翼,可提供用于桨叶周期变距前馈控制的更大的偏移。
具有两个桨毂的“机轮”旋翼可以是非刚性的。
例如:
·桨叶柄紧固到桨毂,桨叶相对桨毂纵向轴向偏移(参见图12)。
·“机轮”旋翼,桨叶尖端滑动纵向紧固到外翼(参见图13)。
·“机轮”旋翼,桨叶尖端可移动地弹性紧固到外翼(参见图14)。该实施例具有由离心载荷引起的机翼变形的最小影响。
·伸缩式桨叶等。
可移动桨叶紧固降低了“机轮”旋翼的刚度,该“机轮”旋翼允许通过使轴倾斜垂直于机翼平面来执行桨叶周期变距前馈控制。
倾斜盘#2的实施例。用两个桨毂控制非刚性“机轮”旋翼的桨距(参见图15)。
该实施例类似于第一实施例,但是(参见图15)桨距杆9和10通常垂直于桨叶2的平面。杆9和10在与桨毂连接时可具有两个自由度,且与桨叶连接时仅具有一个自由度:沿桨叶自由倾斜、与桨叶在顺桨铰链中一起旋转。杆可以伸缩和倾斜。在与桨叶轴线相垂直的方向上偏移桨毂3、4导致迎角的变化。纵向偏移对于不同滑动紧固变型是典型的。通过设置桨毂相对于旋转轴线的相对角定向来控制总距(参见图15),并通过将桨毂轴线分开来设置桨毂的水平偏移(参见图15)从而控制周期变距。
倾斜盘#3的实施例。在通过桨距杆11直接紧固桨叶的情况下,对于具有两个间隔开桨毂3和4的两个桨叶2的滑动纵向接合部15的非刚性“机轮”旋翼(参见图16a),杆的数量可减少两倍(参见图16b、c、d)。
旋翼周期变距设置轴的倾斜和/或桨毂的相对水平偏移(参见图11d、15d、16d)。
通过设定桨毂的角定向来进行旋翼总距控制。上桨毂相对于下桨毂的相对自转位移和相位滞后增加了所有桨叶的迎角和旋翼桨距(参见图11c、15c、16c)。可替代地,上桨毂相对于下桨毂相位的相位超前降低了桨距。
即使在刚性轮的情况下,“机轮”旋翼的不同桨毂的角定向也被传递到非常有弹性的长柔性桨叶。可以采用补偿弹簧和柔性接头以允许桨毂倾斜。
通过桨毂经同轴的驱动器设定桨毂的角定向,可以容易地控制“机轮”旋翼类型的主起升旋翼和巡航旋翼的总距。在这种情况下,传递到下桨毂的大扭矩随着旋翼操作模式从自转模式到直升机模式的改变而增加了总距(图15d、16d)。可替代地,下桨毂减速或传递到上桨毂的大扭矩将旋翼操作模式改变为风力涡轮机模式。同时传递到两个桨毂的转矩提供了具有零桨距和最小阻力的“机轮”旋翼加速度。
倾斜盘#4的实施例。可以使用具有带偏移铰链轴线的顺桨铰链的桨叶提供旋翼周期变距和旋转平面的自动控制,而无需实施任何辅助元件。在具有两个桨毂的“机轮”旋翼的情况下,通过设置桨毂的轴的旋转位移,用于将桨叶附接到桨毂上的顺桨铰链提供桨叶迎角的控制,而无需使用任何特定桨距杆和杆,桨毂相对于旋转平面倾斜(参见图12,13,14)。在这种情况下,桨距角由相对于顺桨轴线偏移的外桨叶尖端来表示。
应用
所提供的具有大锥角闭合翼的“机轮”旋翼可广泛用作巡航螺旋桨(叶轮)或风力涡轮机的旋翼。在水中,这种轮子作为具有低噪声水平的船用螺旋桨或作为鲁棒水轮机旋翼操作。
例如:具有圆柱形翼和水平轴的“机轮”旋翼可用于风力发电机。在该实施例中,轮缘允许旋翼直径和比功率输出随着风力发电机的噪声、重量和成本的降低而增加。作为发电机的转子,闭合翼提供了变速箱的消除并允许发电机的重定子从塔移动到地面。受控桨叶提供了更简单的发动并保持稳定的旋转速率,而与载荷和风强度无关。
当所提供的具有小锥角闭合翼的“机轮”旋翼在自动运行模式下操作时,该旋翼是最有效的。
例如,“机轮”旋翼可用作拴系高空风力发电机的转子(参见图17)。“机轮”旋翼具有以下优点:
·增加旋翼直径和比功率输出的选择。
·更高的效率、飞行高度、性能、运行时间和可靠性。
·更宽的允许风力强度范围。
·全天候能力。
·较低的声学噪声水平。
·电流参数在疾风伤害下的高稳定性。
·飞轮平台稳定。
·可靠的垂直起飞和软垂直着陆。
·旋翼和风力发电机的较低控制。
·闭合翼可作为电动发电机的转子操作,从而消除机械变速箱和减轻系统重量。
具有狭窄封闭大展弦机翼的起升“机轮”旋翼的高升阻比允许创建无动力单元的航空器——旋翼滑翔机。旋翼滑翔机可以是束缚的或自由飞行的、微小的或超重的。
远程控制的旋翼滑翔机(参见图18)具有两个旋翼:起升旋翼和控制旋翼,这两个旋翼可靠地陀螺稳定在两个平面中。它通过地面发动装置发动,该地面发动装置被设计以利用外部电源系统或板载蓄电池进行初始旋翼加速。当处于飞行高度时,地面接收装置从自动旋转的“机轮”旋翼接收电力,并通过长光光纤光缆传输数据和接收控制信号。高速可靠的通信信道是完全安全的。介质光纤光缆不受大气干扰。适应各种天气能力、静声运行、远程控制的航空器是最简单和最可靠的;它不需要任何操作;并且其自动跟随移动用户、车辆或船只。其没有任何关于返回和着陆的问题。对于处于飞行高度的通信和/或监视,这种靶机的可用时间没有限制,该飞行高度没有延长的风平浪静。
使用“机轮”旋翼作为螺旋桨降落伞(“旋翼降落伞”)-无伞系统,用于使太空交通工具的舱体(参见图19和图20)和空投的货物着陆,比其他大气着陆系统具有显著的优势:
·机动且准确定点着陆的选择。
·适应各种天气能力和可靠的软着陆。通过下降工具的飞轮控制简化控制系统。
·高旋翼载荷下的最小重量和便携性。
“机轮”旋翼可广泛地用作垂直起飞和着陆(VTOL)陀螺稳定航空器类型的旋翼,该航空器在本文中称为旋翼机。
旋翼机
旋翼机是VTOL型航空器,一种旋翼航空器(“复合式直升机”)。在旋翼机中,联合起升和巡航系统(用于直升机)由以下两个系统代替:第一系统由仅用于提供升力的起升旋翼表示,第二系统是用于向前移动的巡航系统(参见图21-25)。在起飞、着陆和低速飞行时,升力由“机轮”旋翼的桨叶产生。在高速水平飞行的情况下,主升力由非直且非固定但旋转且闭合的机翼产生。
一般来说,旋翼机包括:
·一个或多个“机轮”旋翼,其作为起升旋翼或罩式风扇而运行。
·具有展开侧表面的流线型起升机身。
·动力单元,具有用于一个或多个巡航螺旋桨的固定驱动器、以及用于“机轮”旋翼的可连接驱动器。
·受控制的垂直和水平尾部。
·着陆装置:轮式起落架或着陆滑行、气球等。
“机轮”旋翼的旋转轴垂直布置并通过轴承连接到机身(框架)。通过巡航螺旋桨流中的方向舵(参见图22a)、倾斜巡航推进器(参见图22b)或一对间隔开的巡航螺旋桨(参见图21)来执行旋翼机的前进控制。通过在机身展开侧翼型处的空气动力学滑动而倾斜。
电机直接(或通过小减速箱)与巡航螺旋桨连接,且电机具有用于加速“机轮”旋翼的可连接驱动器(机械变速驱动器、液压驱动器、电驱动器、喷射驱动器)。旋翼机的动力单元通常包括:
·电驱动器—用于超轻电动旋翼机;
·往复式电机—用于轻质高效的旋翼机;
·燃气涡轮发动机—用于重型高速的VTOL型航空器;
·用于巡航和起升螺旋桨的、具有不同驱动器的混合驱动器。
对于电动旋翼机,蓄电池或燃料电池可以容易地容纳在“机轮”旋翼上。这减少了航空器的重量,增加了45kJ/kg的蓄电池具体容量,提供了充分的冷却,以及保护了起升旋翼免受结冰。
对于刚性“机轮”旋翼,可以使用用于大体积机翼的直接电驱动器,而不使用中间轴和变速箱。对于配置有两个旋翼的串联旋翼、小型超重的旋翼机,这种驱动器类型是最有效的。
可以使用具有高噪声水平的“机轮”旋翼喷射驱动器。将压缩空气从压缩机通过空心轴和桨叶供给到旋翼外侧的推进喷嘴或燃烧室。
该旋翼的闭合翼可用于存储燃料(液化石油气)。液体燃料在该闭合翼内部容积中的存储导致了与燃料补偿有关的问题。它适用于旋翼停止或将燃料电池置于相同位置的情况,或适用于带燃料以补充燃烧的喷射驱动的应用。
在低飞行速度下,通过螺旋桨更好地提供升力和可控性,而在高飞行速度下机翼是更有效的。根据相对翼宽,“机轮”旋翼更类似于旋翼(参见图1)或机翼(参见图2),因此,旋翼机更类似于旋翼航空器或飞机。可以使用空间系数作为“相似度指示器”,该空间系数定义为旋翼表面积与盘面积的比率、内径与外径的比率或闭合翼纵横比。让我们讨论一些极端变型。
薄的轮缘形成具有最大纵横比的机翼,适合轻质低容量的旋翼机。轮缘包围载荷,增加了起升旋翼的强度、安全性、可靠性和操作时间。增加了旋翼升阻比和最大设计速度。轻质机翼不影响机动能力;不使用倾斜盘,而通过设置旋翼旋转平面的倾斜提供控制。轻质机翼允许旋翼机执行跳跃起飞,而更大体积的机翼允许旋翼机执行完全垂直发动。起升高度与相对飞轮重量成比例。
通过将相对翼宽增加到最大值,“机轮”旋翼可以变换成平面盘形旋翼,该平面盘形旋翼具有用于高速垂直起飞和着陆飞机的最佳变型的内部风扇(参见图2)。可以以类似的方式提供具有罩式风扇(参见图24)的中翼飞机,该罩式风扇位于机身内部靠近质心。风扇叶片的线速度受声速限制,而盘外侧的线速度可以高于仅由材料强度限制的线速度的许多倍。在这种情况下,机翼由金属线、金属条或复合非金属纤维材料的绕组形成。使用凯芙拉(Kevlar)和石墨纤维允许获得等于或高于1000m/s的速度。在高速下,应考虑旋翼动力加热。
大量存储的能量和可用功率提供由小风扇执行的快速垂直起飞。旋转旋翼在起飞和着陆期间为航空器提供可靠的纵向和横向飞轮控制,而无需实施任何复杂的控制和稳定系统。通过风扇叶片桨距控制和/或通过可移动导流叶片进行推力控制。冷流不会造成场地或机舱的燃烧。起飞后,可以停止并固定旋翼,以便提高机动性。在着陆之前,旋翼经由迎面气流和发动机而再次被加速。在自转和使用喷射旋翼驱动器的情况下,不产生反扭矩,而在飞行期间的机械加速的情况下,通过稳定系统并经由巡航螺旋桨推力矢量控制来补偿。通过使用串联(参见图25)、横向(参见图24)或同轴的两个对转旋翼以提供反扭矩的完全抑制。
“机轮”旋翼是从无电机旋翼机到喷气超音速飞机的VTOL型航空器的通用元件,对于小型电动无人机和超重多旋翼运输旋翼机,该“机轮”旋翼可以缩放。
载重起升力上限约为35吨;对于MI-26型直升机,实际值等于25吨。因为长桨叶拖曳到地面和尾桁,所以第一个限制因素是该起升旋翼的直径。第二限制因素是联合动力单元中变速箱和发动机的有限功率。“机轮”旋翼没有这样的约束,因此,每单个旋翼可以提供超过100吨的载荷起升能力。两个旋翼旋翼可以串联、横向或同轴布置。对于具有多个间隔开旋翼的变型,“机轮”旋翼不需要高性能同步轴,所需的变速箱功率较低,并且分布式动力系统更简单(参见图25)。传统上航空器所利用的机械变速箱和变速器可以通过使用用于“机轮”旋翼翼的直接作用电磁驱动器来消除。
地面发动装置
起飞是每架航空器最耗能的飞行阶段。水平面起飞之前是通过沿长起飞场移动产生的起飞加速。垂直旋翼机起飞之前由该旋翼机的大体积旋翼加速。垂直旋翼机更简单、更安全,但也耗能。“机轮”旋翼在宽转速范围内存储有大量的能量。
飞轮加速到300m/s的速度每80kg的重量所需的最小能量为1kWh(3.6MJ)(不考虑损失)。这项工作可以由60kW的发动机在一分钟内完成;然而,较长的加速时间导致较高的空气动力损失。将该能量快速传递到“机轮”旋翼需要高性能的机械或液压变速驱动器、变速器或高性能电动机。
不仅加速起飞、节省燃料以及增加变速箱运行时间是必要的,而且降低起飞噪声水平也是重要的。地面,即固定的发动装置提供了大体积旋翼的快速且安静的加速。这种装置对于发动无动力的旋翼机是必需的。外部地面/机载发动装置用于能量存储、能量转换和将能量传输到“机轮”旋翼。
人口聚集和城镇中的专用场地通常提供有通用电源—电力线。能量存储系统用于使大的峰值载荷平滑。可以提供地面(机载)发动装置的任何改变。根据所选择的能量存储方法,地面发动装置可以是机械的、液压气动的、电气的等。例如:
·电动机—飞轮—变速驱动器—旋翼机;
·电动液压泵—液压气动存储单元—液压电机—旋翼机;
·充电系统—电容器—转换器—一个或多个高性能电动机—旋翼机。
可以在不使用轴和变速箱的情况下直接经由行进磁场来提供“机轮”旋翼加速,该行进磁场由线性电机产生。在这种情况下,闭合翼作为电动机的旋翼操作。
可以通过气动存储系统发动具有喷嘴旋翼驱动器的旋翼机。轻质旋翼机可手动发动。
地面/机载发动装置可以配备有控制系统以及充电和速度检测器。该装置适用于在地面上移动旋翼机、飞行前和飞行后维护、清洗、监测、平衡、防冰处理、旋翼加热等。
垂直起飞
标准的垂直起飞可以演变成高效的、全天候能力、可靠的、安全的、快速的和安静的垂直起飞。这是由“机轮”旋翼提供的最佳起飞。旋翼机起飞既不需要起飞场,也不需要高性能燃气涡轮发动机。惯性驱动不产生反转矩,因此不需要导致危险情况和高频振动的控制旋翼。该“机轮”旋翼是高性能的动能存储装置,其与旋翼相比不产生振动和噪声。在起飞之前的操作阶段,薄桨叶的桨距设置为零,其扭曲等于零,从而产生最小的能量损失和噪声水平。机翼防止桨叶在停放期间落在地面上,并防止桨叶尾部在旋转期间拍击。
“机轮”旋翼的预加速在地面上进行,且该预加速可以通过旋翼机动力单元或外部电源系统经由自由运行加速度来提供。最佳的是实现地面飞行(机载)发动装置。这样的发动方法是有效的和安静的,使得旋翼机能在城镇内使用。只有一些类型的航空气球可比旋翼机更安静地起飞。
在自由运行起飞的情况下,100kW的旋翼机动力单元发动机在不到一分钟内为100kg旋翼提供加速。起落架或滑行架采用反扭矩。可以执行初始加速,直到在光速u1=100m/s时实现高的线速度u0=300m/s。具有适当扭转角的薄桨叶具有均匀分布的载荷和最少0.75的高效率η。提供相对飞轮质量约为起飞重量M=1000kg的10%时,存储的能量的量足以快速垂直起飞到高海拔h,而无需实施发动机和变速器的:
h=η(u0 2–u1 2)m/2Mg=0.75(3002–1002)/200=300米。
非最佳起飞率导致周期和阻力损失的增加,且实际高度可以更低,但仍足以在城市地形中可靠的起飞。
旋翼机有一个更独特的特点。除了加速中心飞轮之外,还可以执行几吨的空气流的加速。空气立方体10m*10m*10m的质量大于吨(m=1249kg,t=15℃,h=0)。在发动之前,“机轮”旋翼可以产生在地面过热的强上升的空气,该空气的能量可以用于辅助起飞。增加了起升高度、爬升性能和垂直载荷因子。
在起飞阶段,“机轮”旋翼产生的功率不受发动机性能、且不受变速箱和传动可靠性的限制。在地面上起飞所需的总能量由旋翼存储。可用的起飞功率超过动力单元的功率数倍。这种独特的无发动机起飞的旋翼机功能选择,允许静音电源单元和高效燃料电池的广泛实施。
旋翼机是一种稳定的全天候航空器。全天候能力不只通过高可用功率和爬升性能提供。在动力旋翼机的情况下时,加速的“机轮”旋翼的初始旋转平面保持不受影响。它不会显著地受大气湍流和风暴的影响。飞机起飞在以下恶劣条件下没有问题:风暴和炎热的天气、高山和没有准备的尘土飞扬的地点。
没有复杂的起飞转换模式。当在地面上时,发动机被切换到巡航旋翼,其所有功率仅用于实现水平巡航速度。在从建筑物的屋顶低倾斜起飞的情况下,可以使用起升旋翼的额外量的能量。
因此,旋翼机可以在任何天气条件下执行快速、可靠和静音的高度增益和水平飞行速度。
稳定的水平飞行
旋翼机对所有飞行模式均展示出了独特稳定性。“机轮”旋翼旋转平面取向被保持,以便提供小的正迎角。在水平飞行期间,“机轮”旋翼作为平面翼操作,该平面翼的桨叶被取下,且该平面翼用作控制平面;总距接近零;并且通过周期变距和尾部提供最佳迎角值。可变周期变距在低飞行速度的情况下提供控制能力。通过方向舵并经由推力矢量控制来执行航向控制,该推力矢量控制在展开侧表面处用外部空气动力学滑动。
旋翼旋转提供了加载张力的翼型,从而为薄翼提供了足够的刚度和动态气动弹性。“机轮”旋翼的旋转部分地通过自转而维持,部分地由发动机维持;因此其设计接近于旋翼机(自动旋翼机)的设计、且接近于具有机翼和巡航旋翼的复合直升机的设计。惯性驱动和自转不产生反扭矩,因此不需要控制旋翼、长尾桁和复杂传动。通过方向舵、或通过推力矢量偏移、或通过间隔开的巡航旋翼上的推力分布,来补偿由发动机获得的扭转“机轮”旋翼的低恒定反扭矩。
燃气涡轮发动机的完全加速时间为8-15秒,由此限制了直升机的机动能力。旋翼机具有快速完全加速和高旋翼功率,该完全加速和高旋翼功率不受动力单元的性能影响。旋翼机具有最大速度范围,其飞行速度和效率接近于飞机的飞行速度和效率;旋翼机可以迅速地改变飞行高度、加速和减速。
与直升机相比,旋翼机具有较高的水平速度和瞬时垂直速度,其在水平方向上具有较低的机动能力。航向控制不是通过设置起升旋翼推力矢量的倾斜来进行的,而是通过在展开侧表面处用外部空气动力学滑动以控制巡航旋翼的推力矢量来执行。旋翼旋转限制了执行半滚倒转(split-S)和特技动作的能力,该特技动作包括翻筋斗、侧滚和倾斜过度。单旋翼旋翼机在六个自由度中只有三个自由度。这使得其操作更简单。
提供了航向、高度和飞行速度控制。简单方便的控制降低了对飞行员培训质量的要求。可以执行简单的自动化,这对于有人驾驶的航空器的安全性和无人机自由运行这两者至关重要。因此,旋翼旋转位置通过设置周期“机轮”旋翼桨距来自动维持,并且恒定飞行高度通过设置总距来保持。航向控制通过方向舵来提供。飞行速度取决于发动机功率和巡航旋翼桨距。通过巡航旋翼执行的主动减速和通过机身转弯执行的紧急减速是有效的。
对于所有的飞行模式,提供了旋翼机的纵向和横向飞轮控制,因此没有航空器起升比修正损失。航空器稳定性不受大气湍流影响。该旋翼机性能提供了卓越的便利性和全天候能力。稳定性是无人机的一个非常重要的性能,特别是对于在低雷诺数条件下工作的小型无人机。
如果着重于交通工具的可靠性和全天候能力、以及交通工具的安全性和乘客舒适性,而不是着重于执行半滚倒转和特技演习的能力,则旋翼机超越了竞争产品。飞行期间的高稳定性和稳固性消除了失控驾驶的可能性,这是有利于允许旋翼飞行在城镇上空飞行的重要论据。
飞行速度范围
与具有相同功率输出动力单元的其它航空器相比,旋翼机具有最大飞行速度范围。由于使用飞轮,旋翼机具有较高的爬升性能。对于所有飞行模式和速度提供了旋翼机的可控性和高稳定性。
通过与起升旋翼旋转方向相反地倾斜巡航旋翼的推力矢量,单旋翼旋翼机可以变换为传统的直升机(参见图22b)。因此,其可以通过倾斜盘悬停并控制纵向移位和横向移位,而不改变旋翼旋转平面位置。在没有正面风的情况下,旋翼机可使用来自动力单元的、比具有背风性的直升机所使用动力相比更少的动力而悬停在给定高度。巡航旋翼反向推力允许旋翼机执行向后飞行。
提供动力单元是足够的,旋翼航空器的最大水平速度受到三个因素的限制,这三个因素包括旋翼强度、旋翼航空器高速时的稳定性以及高旋翼空气动力阻力。“机轮”旋翼消除了这些飞行速度限制。外翼包围载荷,从而增加了旋翼强度。机翼产生主升力,通过将扭矩设置为零而减小桨叶载荷,从而消除了不平衡以及引起冲击波和拍击效应的情况。机翼挥动空气流,并且旋翼的桨叶位于在“减速”尾流区域中移动的空气阴影面积内。薄“机轮”旋翼具有低翼型阻力,其通过用作动力单元(参见图21-22)的往复式电机或电动机实现旋翼的高升阻比,从而实现高飞行速度。
使用燃气涡轮发动机使得能够以跨音速和超声速度飞行(参见图24)。例如,考虑设计陀螺稳定超音速VTOL型航空器具有两个横向布置的旋翼(参见图24.a)。通过使用小直径的风扇,在几乎所有的天气情况下,航空器均可以垂直起飞和着陆。
垂直着陆
垂直旋翼机着陆,设计的着陆方法是安全的、可靠的且静音的。安全着陆不需要电机。以自旋模式执行下降,并且以直升机模式执行着陆。可以提供没有跑道而是在与航空器、屋顶或船舶板相同尺寸的任何未经准备的场地上的着陆。电机在空转模式下运行或停止时,着陆噪声水平最小。在下降过程中,水平速度不增加;“机轮”旋翼飞轮有效地恢复了所有航空器势能。平面轮缘作为降落伞操作,抑制旋翼进动。薄桨叶的可变扭曲为自转模式提供了最大的“机轮”旋翼效率,消除了环形涡流情况。旋翼区域的较高载荷导致大气湍流的较低效应和在自转模式下较高的下降速率。旋翼存储的大量能量提供其补偿并在软着陆之前将模式改变为直升机模式。短过载消除了涡流环的形成。
在下降过程中,通过倾斜盘提供控制。通过设置周期变距而不明显改变旋翼旋转位置来执行纵向偏移和横向偏移的精确控制;通过设置总距来提供软着陆之前的下降率控制和旋翼推力(flare)。巡航旋翼反向推力用于抑制剩余水平速度。由飞轮存储的能量的量足以中断着陆、悬停并飞行到另一位置。着陆是安全可靠的,其噪声水平小于常规旋翼机的噪声水平。加速的“机轮”旋翼飞轮提供了倾斜和桨距的稳定性,从而在滑翔下降和着陆期间提供更简单的操作;可以提供全自动着陆。
在着陆后,旋翼机与直升机不同而在强风中保持稳定性,并且可以迫使自身下降到场地或旋转板。“机轮”旋翼不需要制动系统,其桨叶不会落到地面、打到人或切断尾桁。
飞行距离和效率
存在用于计算飞机、直升机以及任何比空气重的航空器的飞行距离的通用公式(1967年M.Mashinostr.杂志第1卷第27页中M.L.米尔(M.L.Mil)等人的直升机运算和设计):
其中:
Gt—燃料重量;
G—航空器重量(在飞行时间内的平均值);
Cl/Cd—升阻比或L/D比;
Ce—具体的发动机燃料消耗;
η—旋翼效率,
ξ—计算传输功率损耗的系数。
从以上公式可看出,较高的飞行距离由总航空器重量中较高的燃料重量分数、较高的升阻比、较高的发动机效率和电机效率、以及传输和辅助设备中较低的功率损耗提供。
直升机被优化用于在高处长期悬停,并且在这方面它比其他类型的比空气重的航空器更有效。在定义速度和飞行距离的所有参数中,旋翼机起飞、着陆和最重要的飞行比直升机更有效:
·旋翼机设计更简单,它具有更轻的重量、更高的重量品质因数、更高的有效载荷分数。
·即使提供较低功率的动力单元和较小直径的旋翼,它也因使用飞轮而具有较高的起飞重量。
·起升旋翼和整个装置的升阻比较高。在水平飞行期间,流线型旋翼机起升机身产生升力。直升机的主体、长尾桁和控制旋翼仅导致寄生阻力。
·“机轮”旋翼提供可变扭曲的桨叶,其效率高于具有固定扭曲的厚桨叶的起升旋翼的效率。
·用于巡航旋翼的直接驱动在变速箱和传动装置中提供动力传递而没有功率损失,没有抗扭矩,并且不使用控制旋翼。
·在巡航速度下,作为电机运行的巡航旋翼的最大效率高于以交叉流模式运行的大型起升旋翼的最大效率。
·比燃气涡轮发动机更高效的电机可用作旋翼机的动力单元。
·旋翼机对于起飞和着陆飞行阶段具有最少的燃料消耗,而直升机和其他航空器对于这些飞行阶段的燃料消耗是最多的。
旋翼机的飞行距离显著高于直升机和其他垂直起飞航空器的飞行距离,并且接近飞机的飞行距离。对于远距离的平流层飞行,飞机具有最高的燃料效率。对于短距离和平均距离的对流层飞行,旋翼机是最高效的。
对于海上飞行以及对于飞机尝试在着陆条件有限制性要求的陆上飞行,飞行距离是关键因素。在全天候垂直起飞着陆、航空器使用来自成熟加油站链的燃料的情况下,长飞行距离仅仅是高效率的因素,并因此是高生态性能的因素。
高燃料效率为有人驾驶的旋翼机提供了较低的每飞行小时的成本,以及较大的飞行距离和较长的无人机可用时间。
可靠性和安全性
由于当前的飞机缺乏可靠、安全且简单的操作,因此只有专业人士和一些极限运动爱好者参与航空。
旋翼机的设计在概念上是安全可靠的。单片“机轮”旋翼比普及的双桨叶旋翼更安全,且比通过接头进行桨叶紧固的复杂多桨叶旋翼更可靠。“机轮”旋翼没有任何飞行速度限制。单片起升旋翼的强度和运行时间最高。通过轮缘保护桨叶免受钢索、细枝和其它外部障碍物的影响。在电机、变速箱和其他系统故障时,“机轮”旋翼飞轮确保了安全。旋翼机的鲁棒性消除了对动力单元备份和系统冗余的需求,从而减轻了飞机重量并提高了效率。通过使用可用材料及简单可维护的设计,提供了低生产成本。降低了对动力单元性能的要求,无需增加起飞模式和紧急操作模式。发动机在正常最有效模式下始终以最大运行时间运行。对于对流层飞行,旋翼机是最有效的,而不需要舱室密封和复杂的氧气供应设备。降低了航空器建造成本、维护成本和每飞行小时的成本。
与航空器及其它类型的运输系统相比,旋翼机的安全性是最高之一。旋翼机有机会成为可靠且安全的个人交通工具。旋翼机操作被最大程度地简化,从而不需要高度熟练的舵手;舵手的错误不会致命。旋翼机没有任何危险模式;可以没有旋转、毁灭性的跳动、或翻转。即使突然降低旋翼转速也不会导致桨叶折叠;具有“机轮”旋翼的旋翼机部署其降落伞并执行着陆。
该可用功率高于动力单元的可用功率许多倍,且在低能见度情况下,高爬升性能允许装置在最低允许高度飞行时避免碰撞障碍物。
旋翼机可以具有最宽范围的安全飞行速度;与所有其它航空器相比,旋翼机最不易受大气湍流影响。旋转飞轮的稳定性提供了全天候的能力和舒适的操作。
旋翼机可以结合不同航空器的优点:
·直升机典型的垂直起飞和着陆,
·飞行速度、飞行距离和飞机效率,
·用于旋翼机的简单操作和设计标准,
·用于无机动起飞的低噪音水平,该无机动起飞通常用于气球,
结合全天候的性能、安全性和可靠性。
这些功能允许创建具有广泛应用的、高效的自动化个人且多座位航空器。
人为错误是影响交通工具安全的主要因素。考虑到当前可使用准确的导航指引,可以创造可靠的且全自动的航空器。这比安全自动汽车的创造更简单、更便宜且更可行。可以提供用于控制密集空中交通的简单分散式安全控制系统。
旋翼机代表了一个环保的解决方案,用于在遥远的开放空间和拥挤的城市中移动。空间运输能力及其通行能力在以下方面高出道路系统上述能力许多倍:疏远土地的费用、建造和维修道路、桥梁、隧道、地下通道的费用和停车布置的费用。大城市道路系统扩展资源枯竭,导致道路系统发展的崩溃及严重的生态和宏观经济影响。
旋翼机减少了地面交通,减少了由于交通堵塞造成的时间损失,减少了由于运输事故造成的人口损失,改善了大城市生态,以及提供了自由移动、快速和安全的自动交通工具。

Claims (15)

1.一种可变桨距旋翼,其包括两个或更多个同轴桨毂(3,4)、和单个闭合翼(1),所述两个或更多个同轴桨毂(3,4)与所述单个闭合翼(1)通过可变扭曲的多个扭转弹性桨叶(2)连接,其中,所述扭转弹性桨叶(2)具有在所述闭合翼(1)上的刚性、弹性、或粘弹性支撑。
2.根据权利要求1所述的旋翼,其中,所述旋翼包括用于控制所述桨叶的桨距的装置。
3.根据权利要求1所述的旋翼,其中,所述旋翼包括两个桨毂,并且其中通过设定所述两个桨毂(3,4)的相对位置,来部分地或全部地控制所述桨叶的桨距。
4.根据权利要求1所述的旋翼,其中,所述扭转弹性桨叶(2)具有可变翼型弧度。
5.根据权利要求1所述的旋翼,其中,所述桨叶(2)的扭转刚度和弯曲刚度沿所述桨叶(2)变化。
6.根据权利要求1所述的旋翼,其中,所述桨叶(2)具有复杂的三维形状,包括弯曲、张开、Y形接头、锥形、接合、支撑柱、以及可倾斜缝翼和襟翼中的至少一个。
7.根据权利要求1所述的旋翼,其中,所述桨叶(2)通过扭杆、顺桨铰链和偏置铰链(5)中的一个可移动地耦合到所述桨毂(3,4)。
8.根据权利要求1所述的旋翼,其中,所述桨叶(2)刚性地耦合到所述桨毂(3,4),所述桨叶(2)配备有可倾斜的襟翼。
9.根据权利要求8所述的旋翼,其中,所述可倾斜的襟翼以粘弹性方式可移动地耦合至所述桨叶(2)。
10.根据权利要求1所述的旋翼,其中,所述桨叶(2)和所述闭合翼(1)是弹性的,且所述桨叶和所述闭合翼具有内部体积,所述内部体积能够在正压力下填充气体或液体。
11.根据权利要求1所述的旋翼,其中,所述旋翼是可拆卸或可折叠的,并且所述旋翼还包括多个可拆卸元件、或通过可枢转接头彼此连接的多个元件。
12.根据权利要求1所述的旋翼,其中,所述闭合翼(1)能够用作电机的转子。
13.一种陀螺稳定航空器,其中,所述陀螺稳定航空器包括一个或多个根据权利要求1-12中任一项所述的旋翼。
14.一种风力发电机,其中,所述发电机包括一个或多个根据权利要求1-12中任一项所述的旋翼。
15.一种固定发动装置,所述固定发动装置用于根据权利要求1-12中任一项所述的旋翼的初始加速。
CN201480081576.3A 2014-08-26 2014-08-26 “机轮”旋翼 Active CN107000835B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000636 WO2016032356A1 (ru) 2014-08-26 2014-08-26 Ротор "воздушное колесо". гиростабилизированный летательный аппарат и ветроэнергетическая установка, использующие ротор "воздушное колесо", наземное/палубное устройство их запуска

Publications (2)

Publication Number Publication Date
CN107000835A CN107000835A (zh) 2017-08-01
CN107000835B true CN107000835B (zh) 2023-07-21

Family

ID=55400119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480081576.3A Active CN107000835B (zh) 2014-08-26 2014-08-26 “机轮”旋翼

Country Status (5)

Country Link
US (1) US10967964B2 (zh)
EP (1) EP3192738A4 (zh)
CN (1) CN107000835B (zh)
CA (1) CA2996633C (zh)
WO (1) WO2016032356A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021243B1 (en) * 2009-07-02 2021-06-01 Alfred Finnell Tension airfoil assembly and implementation for power generation and aviation
US10766627B2 (en) * 2015-05-29 2020-09-08 Verity Studios Ag Aerial vehicle
US10768639B1 (en) 2016-06-30 2020-09-08 Snap Inc. Motion and image-based control system
US10994829B2 (en) * 2017-09-22 2021-05-04 The Boeing Company Foldable rotor assembly for fixed-wing VTOL aircraft
US11753142B1 (en) 2017-09-29 2023-09-12 Snap Inc. Noise modulation for unmanned aerial vehicles
US10864987B2 (en) * 2017-10-04 2020-12-15 The Aerospace Corporation Counter rotating torque drive for rotary wing vehicle propulsion
US11531357B1 (en) 2017-10-05 2022-12-20 Snap Inc. Spatial vector-based drone control
US11822346B1 (en) 2018-03-06 2023-11-21 Snap Inc. Systems and methods for estimating user intent to launch autonomous aerial vehicle
CN109292062B (zh) * 2018-11-14 2023-05-09 南京航空航天大学 一种压电驱动的浮游式水下机器人及其工作方法
CN109552620A (zh) * 2018-12-01 2019-04-02 江苏鸿鹄无人机应用科技有限公司 一种十字型无人机用螺旋桨叶
CN111483594A (zh) * 2019-02-03 2020-08-04 罗琮贵 低能耗高速飞行方法及其翼环机
CN110588974B (zh) * 2019-09-30 2021-04-27 中国科学院力学研究所 一种基于地面旋转储能的高效推进装置
KR102282416B1 (ko) * 2019-11-26 2021-07-27 선문대학교 산학협력단 리액션 휠을 구비한 농업용 드론
CN112031994B (zh) * 2020-09-30 2021-07-06 重庆科凯前卫风电设备有限责任公司 一种变桨位置控制三阶运动规划方法及规划装置
US20230140370A1 (en) * 2021-11-01 2023-05-04 Xi Wang Vtol rotorcraft with annular contra-rotating rotary wings and auxiliary propulsor
CN114426098A (zh) * 2022-02-28 2022-05-03 上海埃依斯航天科技有限公司 一种新型盘翼
US11972521B2 (en) 2022-08-31 2024-04-30 Snap Inc. Multisensorial presentation of volumetric content
EP4316978A1 (en) * 2023-04-17 2024-02-07 Alpraaz AB Variable toroidal propeller

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606209A (en) * 1970-01-26 1971-09-20 Vlm Corp The Turbine drive for rotary wing aircraft
US4560358A (en) 1984-05-10 1985-12-24 Adler Alan John Gliding ring
US5868351A (en) * 1996-05-23 1999-02-09 Bell Helicopter Textron Inc. Rotor blade stowing system
RU2145293C1 (ru) * 1996-09-11 2000-02-10 Центральный аэрогидродинамический институт им.проф.Н.Е.Жуковского Лопасть винта и аэродинамический профиль лопасти (варианты)
CA2195581A1 (en) * 1997-01-21 1998-07-21 Stanley Ronald Meek Gyro stabilized triple mode aircraft
AUPR871201A0 (en) 2001-11-07 2001-11-29 Roberts, Bryan William Windmill kite
US6845941B2 (en) * 2002-06-04 2005-01-25 Bret D. Pica Rotary/fixed wing aircraft
NO20032282A (no) * 2003-05-20 2004-11-22 Proxflyer As Rotor som genererer løft og bruk av rotor
US6945747B1 (en) * 2004-03-26 2005-09-20 Miller Willis F Dual rotor wind turbine
FR2890937B1 (fr) * 2005-09-21 2009-04-24 Eurocopter France Rotor de giravion a pales articulees en battement et en trainee
CN101652563B (zh) * 2006-12-20 2012-02-08 维斯塔斯风力系统有限公司 扭转阻尼装置的使用以及包括扭转阻尼装置的风轮机
WO2009129309A2 (en) * 2008-04-15 2009-10-22 Sonic Blue Aerospace, Inc. Superconducting turbine wind ring generator
US7938623B2 (en) * 2009-03-26 2011-05-10 General Electric Company Inflatable wind turbine blade and method for forming said rotor blade
US8109727B2 (en) * 2009-04-20 2012-02-07 Barber Gerald L Wind turbine
US20110309625A1 (en) * 2010-06-22 2011-12-22 Ecomerit Technologies LLC Direct drive distributed generator integrated with stayed rotor
US20130121832A1 (en) * 2011-11-11 2013-05-16 Gerald L. Barber Wind Turbine with Cable Supported Perimeter Airfoil
RU134150U1 (ru) * 2013-04-01 2013-11-10 Общество с ограниченной ответственностью "Несущие системы" Беспилотный авиационный комплекс безаэродромного базирования

Also Published As

Publication number Publication date
US10967964B2 (en) 2021-04-06
CA2996633C (en) 2022-08-30
US20170320564A1 (en) 2017-11-09
CN107000835A (zh) 2017-08-01
WO2016032356A1 (ru) 2016-03-03
EP3192738A1 (en) 2017-07-19
EP3192738A4 (en) 2018-03-28
CA2996633A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
CN107000835B (zh) “机轮”旋翼
US9688398B2 (en) Long endurance vertical takeoff and landing aircraft
US11912404B2 (en) Vertical takeoff and landing aircraft
RU2538737C9 (ru) Ротор &#34;воздушное колесо&#34;. гиростабилизированный летательный аппарат и ветроэнергетическая установка, использующие ротор &#34;воздушное колесо&#34;, наземное/палубное устройство их запуска
US6086016A (en) Gyro stabilized triple mode aircraft
US4601444A (en) Aerial load-lifting system
US4695012A (en) Aerial load-lifting system
JP5421503B2 (ja) 自家用航空機
EP2928772B1 (en) Vertical takeoff and landing aircraft
US6974105B2 (en) High performance VTOL convertiplanes
US11001374B2 (en) System and method for vertical take-off in an autogyro
US20180273168A1 (en) Vertical takeoff and landing aircraft
EP0847362A1 (en) Gyroplane
RU2548304C1 (ru) Многовинтовой преобразуемый скоростной вертолет
CN102417034A (zh) 横列式刚性旋翼桨叶直升机
CN206141828U (zh) 无人自转旋翼直升飞机
RU2609856C1 (ru) Скоростной преобразуемый винтокрыл
RU2653953C1 (ru) Беспилотный высокоскоростной вертолет-самолет
RU2529568C1 (ru) Криогенный электрический вертолет-самолет
RU2667433C2 (ru) Беспилотный тяжелый вертолет-самолет
RU2521121C1 (ru) Многовинтовой тяжелый конвертовинтокрыл
RU2652861C1 (ru) Многоцелевой палубный вертолет-самолет
RU2568517C1 (ru) Многовинтовой конвертируемый скоростной вертолет
Cao et al. Recent development of rotorcraft configuration
CN114684360A (zh) 一种串列式双涵道推进无人飞行器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant