CN106998141A - 无需均压控制的dc-dc自耦变换器 - Google Patents
无需均压控制的dc-dc自耦变换器 Download PDFInfo
- Publication number
- CN106998141A CN106998141A CN201610047401.1A CN201610047401A CN106998141A CN 106998141 A CN106998141 A CN 106998141A CN 201610047401 A CN201610047401 A CN 201610047401A CN 106998141 A CN106998141 A CN 106998141A
- Authority
- CN
- China
- Prior art keywords
- port
- submodule
- module
- connexon
- autoconverters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
- H02M3/33553—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供无需均压控制的DC-DC自耦变换器。该DC-DC自耦变换器,由多个基于模块化多电平换流器(MMC)的DC-AC变换器和交流变压器联合构建。模块化多电平换流器间首尾连接,能方便地利用模块化的特性实现该DC-DC自耦变换器在高压大功率场合的应用;交流变压器用以连接不同DC-AC变换器的交流侧输出。无需均压控制的DC-DC自耦变换器依靠内部配置的辅助电容、辅助IGBT模块、钳位二极管能够在DC-DC自耦变换器实现直流电压转换的基础上,自发地均衡DC-AC变换器中子模块的电容电压,而无需专门的均压控制。
Description
技术领域
本发明涉及输配电技术领域,具体涉及一种无需均压控制的DC-DC自耦变换器。
技术背景
DC-DC 变换器是直流电网的重要组成部分,基于模块化多电平换流器MMC的DC-DC 变换器,由于MMC采用子模块级联的方式构造DC-AC变换器,适用于高压大功率场合,具有很高的应用前景。
MMC的直流侧电压并非由一个大电容支撑,而是由一系列相互独立的悬浮子模块电容串联支撑。也为了提高DC-DC 变换器的转换效率,必须保证子模块电容电压在桥臂功率的周期性流动中处于动态稳定的状态。
基于电容电压排序的排序均压算法是目前解决MMC中子模块电容电压均衡问题的主流思路。首先,排序功能的实现必须依赖电容电压的毫秒级采样,需要大量的传感器以及光纤通道加以配合;其次,当子模块数目增加时,电容电压排序的运算量迅速增大,为控制器的硬件设计带来巨大挑战;此外,排序均压算法的实现对子模块的开断频率有很高的要求,开断频率与均压效果紧密相关,在实践过程中,可能因为均压效果的限制,不得不提高子模块的触发频率,进而带来换流器损耗的增加。
发明内容
针对上述问题,本发明的目的在于提出一种不依赖均压算法的DC-DC自耦变换器。
本发明具体的构成方式如下。
无需均压控制的DC-DC自耦变换器,由模块化多电平换流器构成的DC-AC变换器首尾相连,同时通过交流变压器连接其交流侧输出。
上述无需均压控制的DC-DC自耦变换器,DC-AC变换器中,第一个辅助电容正极连接辅助IGBT模块,负极连接箝位二极管并入直流母线正极;第二个辅助电容负极连接辅助IGBT模块,正极连接钳位二极管并入直流母线负极。除此之外DC-AC变换器中A相、B相由改进后的半桥子模块、单箝位子模块、全桥子模块与钳位二极管组合而成。
附图说明
下面结合附图对本发明进一步说明。
图1是A相中改进后的子模块结构示意图;
图2是B相中改进后的子模块结构示意图;
图3是无需均压控制的DC-DC自耦变换器。
具体实施方式
为进一步阐述本发明的性能与工作原理,一下结合附图对本发明的构成方式与工作原理进行具体说明。但基于该原理的DC-DC自耦变换器不限于图3。
参考图3,无需均压控制的DC-DC自耦变换器,由模块化多电平换流器构成的DC-AC变换器首尾相连,同时通过交流变压器连接其交流侧输出。
DC-AC变换器中,辅助电容C 1正极经节点N a_03连接辅助IGBT模块T 1,负极经节点N b_03连接箝位二极管并入直流母线正极;辅助电容C 2负极经节点N b_ ( 2n+1 ) 3连接辅助IGBT模块T 2,正极经节点N a_ ( 2n+1 ) 3连接钳位二极管并入直流母线负极,其中n为自然数。DC-AC变换器中A相、B相由改进后的半桥子模块、单箝位子模块、全桥子模块与钳位二极管组合而成,其中改进后的子模块均有三个端口。对于A相中第i个子模块SMi ,其中i的取值为1~2n,该子模块是半桥子模块时,端口N a_i1连接子模块IGBT模块中点,端口N a_i2连接子模块电容C a_i 负极,端口N a_i3经机械开关连接子模块电容C a_i 正极;该子模块是单箝位子模块时,二极管连接子模块电容C a_i 正极,IGBT模块连接子模块电容C a_i 负极,同时端口N a_i1连接子模块IGBT模块中点,端口N a_i2连接二极管与IGBT模块联结点,端口N a_i3经附加IGBT模块连接子模块电容C a_i 正极;该子模块是全桥子模块时,端口N a_i1连接一个子模块IGBT模块中点,端口N a_i2连接另一个IGBT模块中点,端口N a_i3经附加IGBT模块连接子模块电容C a_i 正极。端口N a_i1、N a_i2经导线或桥臂电抗器连接到端口N a_ ( i -1 ) 2、N a_ ( i+ 1 ) 1,端口N a_i3经钳位二极管连接到端口N a_ ( i- 1 ) 3、N a_ ( i+ 1 ) 3。对于B相中第i个子模块SMi ,其中i的取值为1~2n,该子模块是半桥子模块时,端口N b_i1连接子模块电容C b_i 正极,端口N b_i2连接子模块IGBT模块中点,端口N b_i3经机械开关连接子模块电容C b_i 负极;该子模块是单箝位子模块时, IGBT模块连接子模块电容C b_i 正极,二极管连接子模块电容C b_i 负极,同时端口N b_i1连接IGBT模块与二极管联结点,端口N b_i2连接子模块IGBT模块中点,端口N b_i3经附加IGBT模块连接子模块电容C b_i 负极;该子模块是全桥子模块时,端口N b_i1连接一个子模块IGBT模块中点,端口N b_i2连接另一个IGBT模块中点,端口N b_i3经附加IGBT模块连接子模块电容C b_i 负极。端口N b_i1、N b_i2经导线或桥臂电抗器连接到端口N b_ ( i -1 ) 2、N b_ ( i+ 1 ) 1,端口N b_i3经钳位二极管连接到端口N b_ ( i- 1 ) 3、N b_ ( i+ 1 ) 3。
正常情况下,改进后的子模块中机械开关与附加IGBT模块常闭,A相第一个子模块电容Ca_1旁路时,此时辅助IGBT模块T 1断开,子模块电容C a_1与辅助电容C 1通过钳位二极管并联;A相第i个子模块电容Cau_i 旁路时,其中i的取值为2~2n,子模块电容Ca_i 与子模块电容Ca_i-1通过钳位二极管并联;辅助IGBT模块T 2闭合时,辅助电容C 2通过钳位二极管与子模块电容Ca_2n 并联。
正常情况下,改进后的子模块中机械开关与附加IGBT模块常闭,辅助IGBT模块T 1闭合时,辅助电容C 1与B相第一个子模块子模块电容Cb_1通过箝位二极管并联;B相第i个子模块电容C b_i 旁路时,其中i的取值为1~2n -1,子模块电容Cb_i 与子模块电容C b_i+1通过钳位二极管并联;B相第2n个子模块电容Cb_2n 旁路时,子模块电容Cb_2n 与辅助电容C2通过钳位二极管并联。其中辅助IGBT模块T 1的触发信号与A相第一个子模块的触发信号一致;辅助IGBT模块T 2的触发信号与B相第N个子模块的触发信号一致。
在直流电压转换的过程中,各个子模块交替投入、旁路,辅助IGBT模块T 1、T 2交替开关,A、B相子模块电容电压在箝位二极管的作用下,满足下列约束:
由此可知,该DC-DC自耦变换器实现直流电压转换的过程中,DC-AC变换器中改进后的子模块电容电压满足下面的约束条件:
由上述具体说明可知,该DC-DC自耦变换器在实现直流电压转换的过程中,DC-AC变换器无需均压控制。
最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
Claims (4)
1.无需均压控制的DC-DC自耦变换器,其特征在于:由模块化多电平换流器构成的DC-AC变换器首尾相连;由模块化多电平换流器构成的DC-AC变换器交流侧输出通过交流变压器连接。
2.根据权利1所述的无需均压控制的DC-DC自耦变换器,其特征在于:DC-AC变换器中,辅助电容C 1正极经节点N a_03连接辅助IGBT模块T 1,负极经节点N b_03连接箝位二极管并入直流母线正极;辅助电容C 2负极经节点N b_ (2n+1 )3连接辅助IGBT模块T 2,正极经节点N a_ (2n+1 )3连接钳位二极管并入直流母线负极,其中n为自然数;DC-AC变换器中A相、B相由改进后的半桥子模块、单箝位子模块、全桥子模块与钳位二极管组合而成,其中改进后的子模块均有三个端口;对于A相中第i个子模块SMi ,其中i的取值为1~2n,该子模块是半桥子模块时,端口N a_i1连接子模块IGBT模块中点,端口N a_i2连接子模块电容C a_i 负极,端口N a_i3经机械开关连接子模块电容C a_i 正极;该子模块是单箝位子模块时,二极管连接子模块电容C a_i 正极,IGBT模块连接子模块电容C a_i 负极,同时端口N a_i1连接子模块IGBT模块中点,端口N a_i2连接二极管与IGBT模块联结点,端口N a_i3经附加IGBT模块连接子模块电容C a_i 正极;该子模块是全桥子模块时,端口N a_i1连接一个子模块IGBT模块中点,端口N a_i2连接另一个IGBT模块中点,端口N a_i3经附加IGBT模块连接子模块电容C a_i 正极;端口N a_i1、N a_i2经导线或桥臂电抗器连接到端口N a_ (i-1 )2、N a_ (i+1 )1,端口N a_i3经钳位二极管连接到端口N a_ (i-1 )3、N a_ (i+1 )3;对于B相中第i个子模块SMi ,其中i的取值为1~2n,该子模块是半桥子模块时,端口N b_i1连接子模块电容C b_i 正极,端口N b_i2连接子模块IGBT模块中点,端口N b_i3经机械开关连接子模块电容C b_i 负极;该子模块是单箝位子模块时, IGBT模块连接子模块电容C b_i 正极,二极管连接子模块电容C b_i 负极,同时端口N b_i1连接IGBT模块与二极管联结点,端口N b_i2连接子模块IGBT模块中点,端口N b_i3经附加IGBT模块连接子模块电容C b_i 负极;该子模块是全桥子模块时,端口N b_i1连接一个子模块IGBT模块中点,端口N b_i2连接另一个IGBT模块中点,端口N b_i3经附加IGBT模块连接子模块电容C b_i 负极;端口N b_i1、N b_i2经导线或桥臂电抗器连接到端口N b_ (i-1 )2、N b_ (i+1 )1,端口N b_i3经钳位二极管连接到端口N b_ (i-1 )3、N b_ (i+1 )3;上述连接关系构成的A、B相地位一致,两相轮换对称之后的拓扑图在权利范围内。
3.根据权利1所述的无需均压控制的DC-DC自耦变换器,其特征在于:交流变压器连接不同DC-AC变换器中点处的交流输出,其中交流变压器可以是多绕组变压器,连接多个DC-AC变换器。
4.根据权利1所述的无需均压控制的DC-DC自耦变换器,其特征在于:该DC-DC自耦变换器中的DC-AC变换器可以在纵向和横向进行充分的拓展。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610047401.1A CN106998141B (zh) | 2016-01-25 | 2016-01-25 | 无需均压控制的dc-dc自耦变换器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610047401.1A CN106998141B (zh) | 2016-01-25 | 2016-01-25 | 无需均压控制的dc-dc自耦变换器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106998141A true CN106998141A (zh) | 2017-08-01 |
CN106998141B CN106998141B (zh) | 2019-10-18 |
Family
ID=59428155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610047401.1A Active CN106998141B (zh) | 2016-01-25 | 2016-01-25 | 无需均压控制的dc-dc自耦变换器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106998141B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635683A (zh) * | 2019-09-06 | 2019-12-31 | 上海交通大学 | 二端口子模块、自耦式直流变压器及其调制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007148745A1 (ja) * | 2006-06-22 | 2007-12-27 | Fdk Corporation | 多直列蓄電セル、直列蓄電セル装置、直列セルの電圧バランス補正回路 |
CN102377324A (zh) * | 2011-10-18 | 2012-03-14 | 吕遥 | 适合于高压应用的变流桥臂及其应用系统 |
CN102832841A (zh) * | 2012-08-27 | 2012-12-19 | 清华大学 | 一种带辅助二极管模块化多电平变换器 |
CN104578869A (zh) * | 2014-12-23 | 2015-04-29 | 北京理工大学 | 一种有直流母线的电容自均压三相多电平变换器电路 |
CN104685775A (zh) * | 2012-10-11 | 2015-06-03 | 西门子公司 | 用于hvdc应用的模块化多电平dc/dc转换器 |
-
2016
- 2016-01-25 CN CN201610047401.1A patent/CN106998141B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007148745A1 (ja) * | 2006-06-22 | 2007-12-27 | Fdk Corporation | 多直列蓄電セル、直列蓄電セル装置、直列セルの電圧バランス補正回路 |
CN102377324A (zh) * | 2011-10-18 | 2012-03-14 | 吕遥 | 适合于高压应用的变流桥臂及其应用系统 |
CN102832841A (zh) * | 2012-08-27 | 2012-12-19 | 清华大学 | 一种带辅助二极管模块化多电平变换器 |
CN104685775A (zh) * | 2012-10-11 | 2015-06-03 | 西门子公司 | 用于hvdc应用的模块化多电平dc/dc转换器 |
CN104578869A (zh) * | 2014-12-23 | 2015-04-29 | 北京理工大学 | 一种有直流母线的电容自均压三相多电平变换器电路 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635683A (zh) * | 2019-09-06 | 2019-12-31 | 上海交通大学 | 二端口子模块、自耦式直流变压器及其调制方法 |
CN110635683B (zh) * | 2019-09-06 | 2021-05-11 | 上海交通大学 | 二端口子模块、自耦式直流变压器及其调制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106998141B (zh) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203608108U (zh) | 模块化多电平变换器电容电压自平衡电路 | |
CN102624267B (zh) | 逆变器及其在三相系统中的应用电路 | |
CN102223099B (zh) | 自适应三相平衡控制的级联型三相桥式变换器 | |
CN103490656B (zh) | 基于h桥的四电平逆变器拓扑结构的载波调制方法 | |
CN107342698B (zh) | 一种带平衡桥臂的三相四线零电压开关整流器电路及其调制方法 | |
CN103427657A (zh) | 一种高压直流-直流变换设备 | |
CN106301042A (zh) | 一种七电平逆变器 | |
CN106998152A (zh) | 无需均压控制的电气隔离单向dc-dc变换器 | |
CN103457468A (zh) | 一种高压直流-直流变压器 | |
CN103427652A (zh) | 一种高压大功率直流-直流变换装置 | |
CN105099230B (zh) | 谐振变换器和其同步整流变换电路 | |
CN106998140A (zh) | 无需均压控制的单向dc-dc变换器 | |
CN104467501B (zh) | 防直通中点箝位型单相非隔离光伏逆变器拓扑 | |
CN103178720A (zh) | 一种高压矩阵变换器 | |
CN106998138A (zh) | 无需均压控制的双向dc-dc变换器 | |
CN205754047U (zh) | 基于不等式约束的无辅助电容式半桥mmc自均压拓扑 | |
CN206023611U (zh) | 高频隔离式五电平逆变器 | |
CN106998141A (zh) | 无需均压控制的dc-dc自耦变换器 | |
CN103259436A (zh) | 混合箝位型五电平变流器及其控制方法 | |
CN205657607U (zh) | 基于不等式约束的辅助电容分布式半桥/单箝位混联mmc自均压拓扑 | |
CN205754041U (zh) | 基于等式约束的辅助电容集中式单箝位mmc自均压拓扑 | |
CN105450070A (zh) | 基于不等式约束的无辅助电容式半桥/全桥混联mmc自均压拓扑 | |
CN106998139A (zh) | 无需均压控制的电气隔离双向dc-dc变换器 | |
CN105515428A (zh) | 基于不等式约束的无辅助电容式半桥mmc自均压拓扑 | |
CN105515427A (zh) | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |