CN106991673A - 一种可解释性的宫颈细胞图像快速分级识别方法及系统 - Google Patents
一种可解释性的宫颈细胞图像快速分级识别方法及系统 Download PDFInfo
- Publication number
- CN106991673A CN106991673A CN201710350375.4A CN201710350375A CN106991673A CN 106991673 A CN106991673 A CN 106991673A CN 201710350375 A CN201710350375 A CN 201710350375A CN 106991673 A CN106991673 A CN 106991673A
- Authority
- CN
- China
- Prior art keywords
- cell
- image
- cervical
- interpretation
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/2163—Partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20152—Watershed segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20161—Level set
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710350375.4A CN106991673B (zh) | 2017-05-18 | 2017-05-18 | 一种可解释性的宫颈细胞图像快速分级识别方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710350375.4A CN106991673B (zh) | 2017-05-18 | 2017-05-18 | 一种可解释性的宫颈细胞图像快速分级识别方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106991673A true CN106991673A (zh) | 2017-07-28 |
CN106991673B CN106991673B (zh) | 2019-10-22 |
Family
ID=59419502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710350375.4A Active CN106991673B (zh) | 2017-05-18 | 2017-05-18 | 一种可解释性的宫颈细胞图像快速分级识别方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106991673B (zh) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108090906A (zh) * | 2018-01-30 | 2018-05-29 | 浙江大学 | 一种基于区域提名的宫颈图像处理方法及装置 |
CN108171255A (zh) * | 2017-11-22 | 2018-06-15 | 广东数相智能科技有限公司 | 基于图像识别的图片联想强度评分方法及装置 |
CN108389198A (zh) * | 2018-02-27 | 2018-08-10 | 深思考人工智能机器人科技(北京)有限公司 | 一种宫颈细胞涂片中非典型异常腺细胞的识别方法 |
CN108416379A (zh) * | 2018-03-01 | 2018-08-17 | 北京羽医甘蓝信息技术有限公司 | 用于处理宫颈细胞图像的方法和装置 |
CN109034208A (zh) * | 2018-07-03 | 2018-12-18 | 怀光智能科技(武汉)有限公司 | 一种高低分辨率组合的宫颈细胞病理切片分类方法 |
CN109087283A (zh) * | 2018-07-03 | 2018-12-25 | 怀光智能科技(武汉)有限公司 | 基于细胞团的宫颈细胞病理切片病变细胞识别方法及系统 |
CN109117703A (zh) * | 2018-06-13 | 2019-01-01 | 中山大学中山眼科中心 | 一种基于细粒度识别的混杂细胞种类鉴定方法 |
CN109145941A (zh) * | 2018-07-03 | 2019-01-04 | 怀光智能科技(武汉)有限公司 | 一种非规则宫颈细胞团图像分类方法及系统 |
US10354122B1 (en) | 2018-03-02 | 2019-07-16 | Hong Kong Applied Science and Technology Research Institute Company Limited | Using masks to improve classification performance of convolutional neural networks with applications to cancer-cell screening |
CN110021013A (zh) * | 2019-03-27 | 2019-07-16 | 广州金域医学检验中心有限公司 | 病理切片细胞的类型识别方法、装置和计算机设备 |
CN110647875A (zh) * | 2019-11-28 | 2020-01-03 | 北京小蝇科技有限责任公司 | 一种血细胞分割、识别模型构造的方法及血细胞识别方法 |
CN110956605A (zh) * | 2018-09-27 | 2020-04-03 | 艾托金生物医药(苏州)有限公司 | 基于蛋白抗体试剂的宫颈癌细胞学检测算法 |
CN111524132A (zh) * | 2020-05-09 | 2020-08-11 | 腾讯科技(深圳)有限公司 | 识别待检测样本中异常细胞的方法、装置和存储介质 |
CN112528852A (zh) * | 2020-12-10 | 2021-03-19 | 深思考人工智能机器人科技(北京)有限公司 | 一种腺细胞的识别方法及系统 |
WO2021110143A1 (zh) * | 2019-12-06 | 2021-06-10 | 珠海圣美生物诊断技术有限公司 | 细胞判读方法及系统 |
CN112951427A (zh) * | 2021-03-16 | 2021-06-11 | 黑龙江机智通智能科技有限公司 | 异常细胞的分级系统 |
CN113052806A (zh) * | 2021-03-15 | 2021-06-29 | 黑龙江机智通智能科技有限公司 | 一种癌变程度分级系统 |
CN113516156A (zh) * | 2021-04-13 | 2021-10-19 | 浙江工业大学 | 一种基于多源信息融合的细粒度图像分类方法 |
CN113516022A (zh) * | 2021-04-23 | 2021-10-19 | 黑龙江机智通智能科技有限公司 | 一种宫颈细胞的细粒度分类系统 |
CN113870040A (zh) * | 2021-09-07 | 2021-12-31 | 天津大学 | 融合不同传播模式的双流图卷积网络微博话题检测方法 |
CN117253228A (zh) * | 2023-11-14 | 2023-12-19 | 山东大学 | 一种基于核像距离内编码的细胞团簇空间约束方法及系统 |
US11995827B2 (en) | 2020-04-22 | 2024-05-28 | Tencent Technology (Shenzhen) Company Limited | Image display method and apparatus for detecting abnormal object based on artificial intelligence, device, and medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1746901A (zh) * | 2005-09-19 | 2006-03-15 | 南京大学 | 肺癌早期细胞涂片彩色图像信息的计算机智能化处理的方法及其处理设备 |
CN104850860A (zh) * | 2015-05-25 | 2015-08-19 | 广西师范大学 | 细胞图像识别方法及细胞图像识别装置 |
CN105447569A (zh) * | 2015-12-18 | 2016-03-30 | 北京柏惠维康科技有限公司 | 一种基于深度学习的乳腺癌细胞特征分析系统 |
CN105447872A (zh) * | 2015-12-03 | 2016-03-30 | 中山大学 | 一种在超声影像中自动识别肝脏肿瘤类型的方法 |
CN106096654A (zh) * | 2016-06-13 | 2016-11-09 | 南京信息工程大学 | 一种基于深度学习和结合策略的细胞异型性自动分级方法 |
-
2017
- 2017-05-18 CN CN201710350375.4A patent/CN106991673B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1746901A (zh) * | 2005-09-19 | 2006-03-15 | 南京大学 | 肺癌早期细胞涂片彩色图像信息的计算机智能化处理的方法及其处理设备 |
CN104850860A (zh) * | 2015-05-25 | 2015-08-19 | 广西师范大学 | 细胞图像识别方法及细胞图像识别装置 |
CN105447872A (zh) * | 2015-12-03 | 2016-03-30 | 中山大学 | 一种在超声影像中自动识别肝脏肿瘤类型的方法 |
CN105447569A (zh) * | 2015-12-18 | 2016-03-30 | 北京柏惠维康科技有限公司 | 一种基于深度学习的乳腺癌细胞特征分析系统 |
CN106096654A (zh) * | 2016-06-13 | 2016-11-09 | 南京信息工程大学 | 一种基于深度学习和结合策略的细胞异型性自动分级方法 |
Non-Patent Citations (1)
Title |
---|
吕绪洋: "宫颈细胞病理图像的分类识别方法研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108171255A (zh) * | 2017-11-22 | 2018-06-15 | 广东数相智能科技有限公司 | 基于图像识别的图片联想强度评分方法及装置 |
CN108090906B (zh) * | 2018-01-30 | 2021-04-20 | 浙江大学 | 一种基于区域提名的宫颈图像处理方法及装置 |
CN108090906A (zh) * | 2018-01-30 | 2018-05-29 | 浙江大学 | 一种基于区域提名的宫颈图像处理方法及装置 |
CN108389198A (zh) * | 2018-02-27 | 2018-08-10 | 深思考人工智能机器人科技(北京)有限公司 | 一种宫颈细胞涂片中非典型异常腺细胞的识别方法 |
CN108416379A (zh) * | 2018-03-01 | 2018-08-17 | 北京羽医甘蓝信息技术有限公司 | 用于处理宫颈细胞图像的方法和装置 |
US10354122B1 (en) | 2018-03-02 | 2019-07-16 | Hong Kong Applied Science and Technology Research Institute Company Limited | Using masks to improve classification performance of convolutional neural networks with applications to cancer-cell screening |
CN109117703B (zh) * | 2018-06-13 | 2022-03-22 | 中山大学中山眼科中心 | 一种基于细粒度识别的混杂细胞种类鉴定方法 |
CN109117703A (zh) * | 2018-06-13 | 2019-01-01 | 中山大学中山眼科中心 | 一种基于细粒度识别的混杂细胞种类鉴定方法 |
CN109087283B (zh) * | 2018-07-03 | 2021-03-09 | 怀光智能科技(武汉)有限公司 | 基于细胞团的宫颈细胞病理切片病变细胞识别方法及系统 |
CN109034208A (zh) * | 2018-07-03 | 2018-12-18 | 怀光智能科技(武汉)有限公司 | 一种高低分辨率组合的宫颈细胞病理切片分类方法 |
CN109087283A (zh) * | 2018-07-03 | 2018-12-25 | 怀光智能科技(武汉)有限公司 | 基于细胞团的宫颈细胞病理切片病变细胞识别方法及系统 |
CN109145941B (zh) * | 2018-07-03 | 2021-03-09 | 怀光智能科技(武汉)有限公司 | 一种非规则宫颈细胞团图像分类方法及系统 |
CN109145941A (zh) * | 2018-07-03 | 2019-01-04 | 怀光智能科技(武汉)有限公司 | 一种非规则宫颈细胞团图像分类方法及系统 |
CN109034208B (zh) * | 2018-07-03 | 2020-10-23 | 怀光智能科技(武汉)有限公司 | 一种高低分辨率组合的宫颈细胞切片图像分类系统 |
CN110956605A (zh) * | 2018-09-27 | 2020-04-03 | 艾托金生物医药(苏州)有限公司 | 基于蛋白抗体试剂的宫颈癌细胞学检测算法 |
CN110021013A (zh) * | 2019-03-27 | 2019-07-16 | 广州金域医学检验中心有限公司 | 病理切片细胞的类型识别方法、装置和计算机设备 |
CN110647875A (zh) * | 2019-11-28 | 2020-01-03 | 北京小蝇科技有限责任公司 | 一种血细胞分割、识别模型构造的方法及血细胞识别方法 |
WO2021110143A1 (zh) * | 2019-12-06 | 2021-06-10 | 珠海圣美生物诊断技术有限公司 | 细胞判读方法及系统 |
US11995827B2 (en) | 2020-04-22 | 2024-05-28 | Tencent Technology (Shenzhen) Company Limited | Image display method and apparatus for detecting abnormal object based on artificial intelligence, device, and medium |
CN111524132A (zh) * | 2020-05-09 | 2020-08-11 | 腾讯科技(深圳)有限公司 | 识别待检测样本中异常细胞的方法、装置和存储介质 |
CN112528852A (zh) * | 2020-12-10 | 2021-03-19 | 深思考人工智能机器人科技(北京)有限公司 | 一种腺细胞的识别方法及系统 |
CN113052806A (zh) * | 2021-03-15 | 2021-06-29 | 黑龙江机智通智能科技有限公司 | 一种癌变程度分级系统 |
CN112951427B (zh) * | 2021-03-16 | 2023-12-08 | 黑龙江机智通智能科技有限公司 | 异常细胞的分级系统 |
CN112951427A (zh) * | 2021-03-16 | 2021-06-11 | 黑龙江机智通智能科技有限公司 | 异常细胞的分级系统 |
CN113516156A (zh) * | 2021-04-13 | 2021-10-19 | 浙江工业大学 | 一种基于多源信息融合的细粒度图像分类方法 |
CN113516022A (zh) * | 2021-04-23 | 2021-10-19 | 黑龙江机智通智能科技有限公司 | 一种宫颈细胞的细粒度分类系统 |
CN113516022B (zh) * | 2021-04-23 | 2023-01-10 | 黑龙江机智通智能科技有限公司 | 一种宫颈细胞的细粒度分类系统 |
CN113870040A (zh) * | 2021-09-07 | 2021-12-31 | 天津大学 | 融合不同传播模式的双流图卷积网络微博话题检测方法 |
CN113870040B (zh) * | 2021-09-07 | 2024-05-21 | 天津大学 | 融合不同传播模式的双流图卷积网络微博话题检测方法 |
CN117253228A (zh) * | 2023-11-14 | 2023-12-19 | 山东大学 | 一种基于核像距离内编码的细胞团簇空间约束方法及系统 |
CN117253228B (zh) * | 2023-11-14 | 2024-02-09 | 山东大学 | 一种基于核像距离内编码的细胞团簇空间约束方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106991673B (zh) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106991673B (zh) | 一种可解释性的宫颈细胞图像快速分级识别方法及系统 | |
CN107274386A (zh) | 一种宫颈细胞液基涂片人工智能辅助阅片系统 | |
CN110111313A (zh) | 基于深度学习的医学图像检测方法及相关设备 | |
Li et al. | Classification of breast mass in two‐view mammograms via deep learning | |
CN109389129A (zh) | 一种图像处理方法、电子设备及存储介质 | |
Liu et al. | IOUC-3DSFCNN: Segmentation of brain tumors via IOU constraint 3D symmetric full convolution network with multimodal auto-context | |
Haq et al. | BTS-GAN: computer-aided segmentation system for breast tumor using MRI and conditional adversarial networks | |
Zhang et al. | Biomarker localization by combining CNN classifier and generative adversarial network | |
Huang et al. | Segmentation of cervical cell images based on generative adversarial networks | |
Zhang et al. | The whole slide breast histopathology image detection based on a fused model and heatmaps | |
Peng et al. | Cov-TransNet: Dual branch fusion network with transformer for COVID-19 infection segmentation | |
Wang et al. | Explainable multitask Shapley explanation networks for real-time polyp diagnosis in videos | |
Liu et al. | Feature pyramid U‐Net for retinal vessel segmentation | |
Mannanuddin et al. | Enhancing medical image analysis: A fusion of fully connected neural network classifier with CNN-VIT for improved retinal disease detection | |
Liu et al. | Human attention guided explainable artificial intelligence for computer vision models | |
Zhuang et al. | Class attention to regions of lesion for imbalanced medical image recognition | |
Sun et al. | ASU-Net: U-shape adaptive scale network for mass segmentation in mammograms | |
Islam et al. | Enhancing breast cancer segmentation and classification: An Ensemble Deep Convolutional Neural Network and U-net approach on ultrasound images | |
Wang et al. | Ovarian tumor texture classification based on sparse auto-encoder network combined with multi-feature fusion and random forest in ultrasound image | |
Amin et al. | An intelligent framework for automatic breast cancer classification using novel feature extraction and machine learning techniques | |
Zheng et al. | Image segmentation of intestinal polyps using attention mechanism based on convolutional neural network | |
Parraga et al. | A review of image-based deep learning algorithms for cervical cancer screening | |
Zhang et al. | A microcalcification cluster detection method based on deep learning and multi-scale feature fusion | |
Meng et al. | An adaptive multi-scale network with nonorthogonal multi-union input for reducing false positive of lymph nodes | |
Li et al. | FRBNet: Feedback refinement boundary network for semantic segmentation in breast ultrasound images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20170728 Assignee: Suzhou deep thinking Artificial Intelligence Technology Co.,Ltd. Assignor: IDEEPWISE ARTIFICIAL INTELLIGENCE ROBOT TECHNOLOGY (BEIJING) CO.,LTD. Contract record no.: X2022980003658 Denomination of invention: An interpretable method and system for rapid classification and recognition of cervical cell image Granted publication date: 20191022 License type: Common License Record date: 20220401 |
|
EE01 | Entry into force of recordation of patent licensing contract |