CN106990375B - 用于指纹重构的无字典mr参数推测 - Google Patents

用于指纹重构的无字典mr参数推测 Download PDF

Info

Publication number
CN106990375B
CN106990375B CN201611128369.6A CN201611128369A CN106990375B CN 106990375 B CN106990375 B CN 106990375B CN 201611128369 A CN201611128369 A CN 201611128369A CN 106990375 B CN106990375 B CN 106990375B
Authority
CN
China
Prior art keywords
parameter
parameters
pulse train
mapping
data sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611128369.6A
Other languages
English (en)
Other versions
CN106990375A (zh
Inventor
陈潇
B.马耶
M.纳达尔
王求
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN106990375A publication Critical patent/CN106990375A/zh
Application granted granted Critical
Publication of CN106990375B publication Critical patent/CN106990375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5602Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by filtering or weighting based on different relaxation times within the sample, e.g. T1 weighting using an inversion pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/4824MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供了用于指纹重构的无字典MR参数推测。一种生成磁共振(MR)参数映射的方法包括:创建一个或多个参数映射,每个相应参数映射包括与多个MR参数之一相关联的初始参数值。在多个时间点上执行动态更新过程。在每个相应时间点处执行的动态更新过程包括:使用MR扫描仪向受试者应用随机化脉冲序列以获取k‑空间数据集。该随机化脉冲序列配置为激发与所述多个MR参数相关联的不同值范围。所述动态更新过程还包括对所述k‑空间数据集应用重构过程以生成图像;以及使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。

Description

用于指纹重构的无字典MR参数推测
技术领域
本发明大体上涉及用于使用磁共振指纹重构技术来执行磁共振成像(MRI)参数推测的方法、系统和装置。所公开的技术可以应用于减少各种MRI应用中的扫描时间和重构时间。
背景技术
在磁共振成像(MRI)中,对象受到高强度恒定环境场的影响,并且RF脉冲序列被应用。扫描仪测量横向平面中所得到的磁化。瞬态轨迹除了其他以外还依赖于与对象相关联的组织参数(例如,纵向弛豫时间、横向弛豫时间和质子密度)。传统上,脉冲序列被设计为通过突出单个参数来生成对比。因此,为了获得对象的针对所有参数的定性分析,必须存在多次连续采集。脉冲序列必须被仔细设计并且采集被分开以确保连续测量的独立性。结果,必须大量地增加总的扫描时间以确保获取足够的测量结果。
磁共振指纹(MRF)是通过以下来解决这些问题的技术:利用以不同参数突出来持续生成对比以使得可以获取所有定量参数的设计替代序列设计。在MRF中,状态基于不同激发(翻转角度、重复时间)而改变,而不是激发系统以使得其总是处于相同状态。依赖于特定采集中所涉及的全部参数,磁化轨迹的改变将不同。跟随所有的采集,各种磁化轨迹可以被匹配以恢复原始参数。
一种常规的MRF技术称为直接MRF。该技术使用螺旋读出采集并且每次读出重构一个图像。采集是高度欠采样的并且导致图像中严重的欠采样伪影。简言之,对所获取的数据应用傅立叶变换以产生图像集。对于图像中的每个体素,该技术确定随时间过去而拟合磁化的静态参数集。通过将时间曲线与仿真字典进行比较来执行拟合。该技术本身是计算性密集和时间密集的,因为如果脉冲序列变化,则必须重新计算字典。而且,该技术是非迭代的并且所得到的参数映射可能仍然示出欠采样伪影。
另一常规MRF技术是迭代MRF。对于给定序列,所有可能参数通过仿真函数的映射是低维流形。为了重构图像,确定流形中的磁化映射,所述磁化映射与测量结果以及生成其的参数兼容。应用投影梯度下降算法,其中梯度步距降低误差形式测量结果,并且投影步距将磁化投影回到流形上。该技术相比于上述直接MRF重构技术而言减少了欠采样伪影。然而,投影仍然通过与从依赖序列的仿真生成的字典进行匹配来执行。
除了以上阐明的缺陷以外,依赖于字典的MRF技术还具有它们跨真实世界场景的适用性受到限制的缺点。例如,在字典被构造时,存在基础参数贯穿采集保持恒定或基本上相似的假设,从而忽视了可能发生在感兴趣区域中的任何运动。结果,基于字典的MRF系统不能应对其中受试者在成像期间移动的情形。类似地,基于字典的MRF系统不适于临床应用,诸如其中运动是固有的并且必须被计及以便提供精确结果的心脏成像。因此,期望提供用于获取MR参数映射的技术,所述技术提供MRF的益处而没有与基于字典的实施方式相关联的问题。
发明内容
通过提供与用于MRF重构的无字典磁共振(MR)参数推测有关的方法、系统和装置,从而导致与常规MRF技术相比优越的扫描速度,本发明的实施例解决并且克服了以上不足和缺陷中的一个或多个。与常规系统相对的,在此描述的技术利用概率论跟踪算法以估计随时间过去的参数变化。
根据一些实施例,一种生成磁共振(MR)参数映射的方法包括:创建一个或多个参数映射,每个相应参数映射包括与多个MR参数之一相关联的初始参数值。在多个时间点上执行动态更新过程。在每个相应时间点处执行的动态更新过程包括:使用MR扫描仪向受试者应用随机化脉冲序列以获取k-空间数据集。该随机化脉冲序列配置为激发与所述多个MR参数相关联的不同值范围。所述动态更新过程还包括对所述k-空间数据集应用重构过程以生成图像;以及使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。该方法的一些实施例还包括基于所述一个或多个参数映射来更新所述重构过程。所述重构过程然后可以对所述k-空间数据集应用优化过程,并且所述一个或多个参数映射用于更新由所述优化过程使用的基准真实(ground truth)信息。
前述方法中使用的跟踪过程可以使用滤波以确定用于包括在所述图像中的每个体素的一维时间系列。该滤波可以是例如扩展卡尔曼滤波、无迹卡尔曼滤波或粒子滤波。在一些实施例中,在所述动态更新过程的每个相应时间点期间,所述跟踪过程使用并行计算系统以并行地确定用于多个体素的一维时间系列。可以例如使用螺旋轨迹或可变螺旋轨迹来获取所述k-空间数据。
根据其他实施例,一种用于生成MR参数映射的制品包括非暂时性的有形计算机可读介质,所述非暂时性的有形计算机可读介质保持用于执行前述方法的计算机可执行指令,具有或没有上面讨论的附加特征。
根据本发明的其他实施例,一种用于生成MR参数映射的系统包括:MR扫描仪和中央计算机。所述MR扫描仪包括配置为获取表示受试者的组织属性的多个k-空间数据集的多个线圈。所述中央计算机配置为创建一个或多个参数映射,其中每个相应参数映射包括与多个MR参数之一相关联的初始参数值,所述多个MR参数与所述受试者的组织属性相关联。所述中央计算机还配置为在多个时间点上执行动态更新过程。在每个相应时间点处执行的动态更新过程包括:使用MR扫描仪向受试者应用随机化脉冲序列以获取相应k-空间数据集;对所述相应k-空间数据集应用重构过程以生成图像;以及使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。
根据以下参照附图进行的说明性实施例的具体实施方式,本发明的附加特征和优点将变得清楚。
附图说明
在结合附图阅读时,根据以下具体实施方式,本发明的前述和其他方面被最好地理解。出于说明本发明的目的,在绘图中示出有目前优选的实施例,然而应理解,本发明不限于所公开的具体手段。在绘图中包括的是以下各图:
图1示出如由本发明的一些实施例使用的,用于对表示供存储在k-空间存储阵列中的磁共振图像数据的频域分量的采集进行排序的系统;
图2图示根据一些实施例的,用于用无字典MR参数推测进行MRF重构的框架,所述框架可以与图1中呈现的系统一起被利用;以及
图3图示本发明的实施例可以在其中实施的示例性计算环境。
具体实施方式
以下公开描述了根据若干实施例的本发明,这些实施例涉及与用于MRF重构的无字典磁共振(MR)参数推测有关的方法、系统和装置。简言之,采用MRF框架,所述MRF框架使用跟踪算法以估计参数和磁化。所公开的技术以更低的存储器要求提供更快的拟合,并且使迭代重构在临床环境中可行。框架是序列独立的,意味着不存在要重新训练的模型。附加地,所述框架可以扩展以合并用于运动、对比注入等的动态参数模型。
图1示出如由本发明的一些实施例使用的,用于对表示供存储在k-空间存储阵列中的MRI数据的频域分量的采集进行排序的系统100。在系统100中,磁线圈12在将要成像并且定位在桌上的患者11的身体中创建静态基磁场。在磁系统内的是梯度线圈14,用于产生叠加在静态磁场上的依赖位置的磁场梯度。响应于由梯度和匀场线圈控制模块16向其供应的梯度信号,梯度线圈14产生在三个正交方向上的依赖位置以及经调整的磁场梯度,并且生成磁场脉冲序列。经调整的梯度分量补偿由患者解剖改变和其他来源导致的MRI设备磁场中的不均匀性和可变性。磁场梯度包括应用于患者11的切片选择梯度磁场、相位编码梯度磁场以及读出梯度磁场。
进一步地,射频(RF)模块20将RF脉冲信号提供给RF线圈18,作为响应,RF线圈18产生磁场脉冲,该磁场脉冲将患者11的成像身体中的质子的自旋旋转90度或180度,用于所谓的“自旋回声”成像,或者旋转小于或等于90度,用于所谓的“梯度回声”成像。梯度和匀场线圈控制模块16结合RF模块20,按照由中央控制单元26引导的,控制切片选择、相位编码、读出梯度磁场、射频传输和磁共振信号检测,以获取表示患者11的平面切片的磁共振信号。
响应于所应用的RF脉冲信号,RF线圈18接收磁共振信号,即来自身体内的所激发质子的信号。磁共振信号由RF模块20内的检测器和k-空间分量处理器单元34检测和处理,以向图像数据处理器提供磁共振数据集,以供处理成图像。在一些实施例中,图像数据处理器位于中央控制单元26中。然而,在诸如图1中描绘的实施例的其他实施例中,图像数据处理器位于单独单元27中。ECG同步信号发生器30提供用于脉冲序列和成像同步的ECG信号。在k-空间分量处理器单元34中的个体数据元素的二维或三维k-空间存储阵列存储对应的个体频率分量,包括磁共振数据集。个体数据元素的k-空间阵列具有指明中心,并且个体数据元素个体地具有到指明中心的半径。
磁场发生器(包括线圈12、14和18)生成磁场,以供在获取与存储阵列中的个体数据元素相对应的多个个体频率分量中使用。以这样的顺序连续地获取个体频率分量:按照所述顺序,各个对应个体数据元素的半径随着多个个体频率分量在表示磁共振图像的磁共振数据集的采集期间被依次获取而沿着轨迹路径(例如,螺旋路径)增加和降低。K-空间分量处理器单元34中的存储处理器存储个体频率分量,所述个体频率分量使用阵列中对应的个体数据元素中的磁场来获取。各个对应的个体数据元素的半径随着多个顺序的个体频率分量被获取而交替地增加和减少。磁场按照与阵列中的基本上相邻的个体数据元素的序列相对应的顺序来获取个体频率分量,并且连续获取的频率分量之间的磁场梯度变化基本上被最小化。
中央控制单元26使用存储在内部数据库中的信息,以协作方式处理检测到的磁共振信号,来生成身体的(多个)所选切片的高质量图像(例如,使用图像数据处理器),并且调整系统100的其他参数。所存储的信息包括预定脉冲序列和磁场梯度与强度数据以及指示要应用于成像中的定时、梯度磁场的取向和空间体积的数据。所生成的图像呈现在操作者接口的显示器40上。操作者接口的计算机28包括图形用户接口(GUI)并且使能对磁共振成像信号基本上实时的用户修改,图形用户接口(GUI)使能与中央控制单元26的用户交互。继续参照图1,例如,显示器处理器37处理磁共振信号以重构用于呈现在显示器40上的一个或多个图像。各种技术可以用于重构。例如,如以下更详细描述的,优化算法被应用以迭代地求解导致重构图像的代价函数。
使用在此描述的技术,图1中示出的系统100可以被修改以使用MRF技术来执行基于跟踪的参数估计。其中在整个时间演进内执行马尔可夫推测一次的常规基于字典的系统是无效率的。例如,使用语音识别作为类比,一个人不会通过将所有可能的句子写入巨大的数据库来构建语音识别系统。对于MR系统,存在已知的确定性状态演进模型(例如,布洛赫等式)以及已知的观测模型(例如,具有一些噪声和欠采样伪影的横向磁化模型)。因此,如以下参照图2讨论的,跟踪算法可以用于估计参数和磁化。这相对于常规MRF技术提供了许多益处。例如,使用具有跟踪算法的框架,存在较低的总体存储器要求,这是因为不需要磁场字典。此外,基于字典的系统具有固有的处理器密集的搜索和重新训练步骤。使用在此描述的技术,消除了这样的步骤,因此提供了用于参数映射生成过程的快速运行时间。附加地,基于跟踪的系统更直观地拟合迭代重构模型;因此允许所公开的技术与传统系统容易整合。
图2图示根据一些实施例的,用于用无字典MR参数推测进行MRF重构的框架200,所述框架200可以与图1中呈现的系统100一起被利用。该框架200利用呈现在所获取的数据中的模式来自差分系统的事实。与常规MRF技术相对的,跟踪算法可以用于实现匹配并且逐步地改善匹配。这样的算法使用概率分布将有关系统的现存知识与新数据组合,以便产生比原始知识更精确的系统的更新估计。例如,对于目前的情况,一个人初始非常不了解参数。结果,可以使用具有非常大方差的高斯分布,对参数建模。在接收到测量结果之后,高斯可能被改善得略窄。随后,一旦在该时间步骤内获取测量结果,其可以用于预测性地确定误差。因此,在每一步骤处,可以确定参数的当前估计的均值和方差。随着步骤进行,方差减小,直到出现参数的精确描述。
使用MRI系统(例如图1中的系统100),使用采样轨迹205和指纹脉冲序列220来扫描受试者210,以产生k-空间数据集215。采样轨迹205通过使用梯度实现的k-空间来限定采样路径,所述梯度以协作方式沿着两个平面内方向振荡。在本领域通常已知的各种轨迹可以用作采样轨迹205,包括笛卡尔和非笛卡尔轨迹(例如,螺旋和可变螺旋轨迹)。
指纹脉冲序列220是适用于MRF重构应用的常规脉冲序列。在脉冲序列中存在一定级别的随机化,以确保其激发各种对比。因此,不会随时间过去重现相同的对比。在传统MR脉冲序列中,所有事物被设计为随时间过去是一致的,以允许数据被组合到可以用于重构图像的一致k-空间数据集中。相反地,指纹脉冲序列220被设计为随时间过去而改变,以使不同物理参数的效果脱离关联。在一些实施例中,指纹脉冲序列220的一个参数随时间过去而改变,而在其他实施例中,多个参数随时间过去而改变。例如,两个重要参数是翻转角度(即,感兴趣区域中的激发将有多强烈)以及重复时间(即,激发之间的时段有多长)。重复时间可以在指纹脉冲序列220中随时间过去而在值范围内被随机化。与重复时间的变化同时或作为其替代,翻转角度可以例如在0度和90度的值之间变化。
在受试者210的扫描之后,对k-空间数据集215执行重构225以产生图像230。重构225可以例如实施为使用以下最小化等式的梯度步骤的迭代:
其中,A表示傅立叶变换,采样轨迹205和/或线圈敏感度映射,y是k-空间数据集215,以及x表示图像230。该等式可以由本领域通常已知的各种优化技术来求解,包括例如交替方向乘子方法(ADMM)。
重构225之后,跟踪算法235用于在每个体素基础上估计参数和磁化。每个体素被视为一维时间系列。跟踪算法235利用指纹脉冲序列220和图像230以产生参数映射240。每一种跟踪算法235将参数数据的分布建模为高斯数据,并且原理上,框架200可以使用各种常规跟踪算法。然而,由于磁化和参数的非线性联合演进,在不对框架200作出进一步调整的情况下,诸如卡尔曼滤波的算法在一些实施例中可能不合适。然而,跟踪算法的非线性版本(例如,扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等)可以独立或组合用作跟踪算法235,以提供参数数据的估计。每种跟踪算法235的处理可以同样使用本领域已知的任意技术来执行。例如,在一些实施例中,个体体素的独立性被利用来并行地处理体素(例如,使用图形处理单元集群)。
由跟踪算法235产生的每一个参数映射240是定量映射,其以体素方面的方式呈现特定磁参数。可以使用框架生成的特定参数映射的示例包括T1弛豫、T2弛豫和偏共振频率映射。然而,应注意,原理上,框架200可以被利用来映射与受试者210相关联的并且使用MR系统可测量的任意参数。附加地,与常规系统相对的,参数映射240可以用于提供时间解析的成像数据。例如,对于心脏应用,可以发展时间解析的参数映射,使得它们说明在心搏周期内的变化。一旦被生成,则参数映射240可以被利用来同步二维图像数据,所述二维图像数据继而用作对于重构225的反馈。
图2中呈现的框架200可以在具有各种附加特征的不同实施例中被增强。例如,跟踪算法235可以实施空间正规化以处罚邻居参数之间的差异。跟踪算法235还可以例如通过将组织特定模型与有关可能参数的在先信息合并,而针对特定应用被定制。
图3图示本发明的实施例可以在其中实施的示例性计算环境300。例如,该计算环境300可以用于实施图2中描述的框架200和/或图1的系统100中图示的组件中的一个或多个。计算环境300可以包括计算机系统310,其是本发明的实施例可以在其上实施的计算系统的一个示例。计算机和计算环境(诸如计算机系统310和计算环境300)是本领域技术人员已知的并且因此在此简要描述。
如图3所示,计算机系统310可以包括通信机构,诸如总线321或用于在计算机系统310内传送信息的其他通信机构。计算机系统310还包括与总线321耦合的一个或多个处理器320,用于处理信息。处理器320可以包括一个或多个中央处理单元(CPU)、图形处理单元(GPU)或本领域已知的任意其他处理器。
计算机系统310还包括耦合于总线321的系统存储器330,用于存储要由处理器320执行的信息和指令。系统存储器330可以包括易失性和/或非易失性存储器形式的计算机可读存储介质,诸如只读存储器(ROM)331和/或随机存取存储器(RAM)332。系统存储器RAM332可以包括(多个)其他动态存储设备(例如,动态RAM、静态RAM和同步DRAM)。系统存储器ROM 331可以包括(多个)其他静态存储设备(例如,可编程ROM、可擦除PROM和电可擦除PROM)。另外,系统存储器330可以用于存储在由处理器320执行指令期间的临时变量或其他中间信息。基本输入/输出系统(BIOS)333可以存储在ROM 331中,基本输入/输出系统(BIOS)333包含有助于诸如启动期间在计算机系统310内的元件之间传输信息的基本例程。RAM 332可以包含由处理器320可立即访问和/或目前正在处理器320上操作的数据和/或程序模块。系统存储器330可以附加地包括例如操作系统334、应用程序335、其他程序模块336和程序数据337。
计算机系统310还包括耦合于总线321的盘控制器340,用于控制用于存储信息和指令的一个或多个存储设备,诸如硬盘341和可移除介质驱动342(例如,软盘驱动、致密盘驱动、磁带驱动和/或固态驱动)。存储设备可以使用合适的设备接口(例如,小型计算机系统接口(SCSI)、集成电路设备(IDE)、通用串行总线(USB)或火线)被添加到计算机系统310。
计算机系统310还可以包括耦合于总线321的显示器控制器365,用于控制向计算机用户显示信息的显示器366,诸如阴极射线管(CRT)或液晶显示器(LCD)。计算机系统包括输入接口360和一个或多个输入设备,诸如键盘362和定点设备361,用于与计算机用户交互和向处理器320提供信息。定点设备361例如可以是用于将方向信息和命令选择传送至处理器320并且用于控制显示器366上的光标移动的鼠标、轨迹球或定点杆。显示器366可以提供触摸屏接口,其允许输入来补充或替代由定点设备361对方向信息和命令选择的传送。
响应于处理器320执行包含在诸如系统存储器330的存储器中的一个或多个指令的一个或多个序列,计算机系统310可以执行本发明的实施例的处理步骤中的一部分或全部。这样的指令可以从另一计算机可读介质(诸如硬盘341或可移除介质驱动342)读入系统存储器330中。硬盘341可以包含由本发明的实施例使用的一个或多个数据存储部和数据文件。数据存储内容和数据文件可以被加密以改进安全性。处理器320也可以在多处理布置中被采用,以执行包含在系统存储器330中的指令的一个或多个序列。在替代实施例中,硬接线电路可以用于代替软件指令或者与软件指令组合。因此,实施例不限于硬件电路和软件的任何特定组合。
如上所述,计算机系统310可以包括至少一个计算机可读介质或存储器,用于保持根据本发明的实施例编程的指令并且用于包含在此描述的数据结构、表格、记录或其他数据。如在此使用的术语“计算机可读介质”指的是参与向处理器320提供指令以供执行的任意介质。计算机可读介质可以采取许多形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质的非限制性示例包括光学盘、固态驱动、磁盘和磁光盘,诸如硬盘341或可移除介质驱动342。易失性介质的非限制性示例包括动态存储器,诸如系统存储器330。传输介质的非限制性示例包括同轴电缆、铜接线和光纤,包括制成总线321的接线。传输介质也可以采取声波或光波形式,诸如在无线电波和红外数据通信期间生成的那些。
计算环境300还可以包括在联网环境中操作的计算机系统310,所述联网环境使用至诸如远程计算机380的一个或多个远程计算机的逻辑连接。远程计算机380可以是个人计算机(膝上型或台式)、移动设备、服务器、路由器、网络PC、对等设备或其他公共网络节点,并且典型地包括以上关于计算机系统310描述的元件中的许多或全部。在联网环境中使用时,计算机系统310可以包括调制解调器372,用于在诸如因特网的网络371上建立通信。调制解调器372可以经由用户网络接口370或经由另一合适机构连接至总线321。
网络371可以是本领域通常已知的任意网络或系统,包括因特网、内部网、局域网(LAN)、广域网(WAN)、城域网(MAN)、直接连接或连接系列、蜂窝电话网络、或能够促进计算机系统310与其他计算机(例如远程计算机380)之间的通信的任意其他网络或介质。网络371可以是有线的、无线的或其组合。有线连接可以使用以太网、通用串行总线(USB)、RJ-11或本领域通常已知的任意其他有线连接来实施。无线连接可以使用Wi-Fi、WiMAX和蓝牙、红外、蜂窝网络、卫星或本领域通常已知的任意其他无线连接方法来实施。附加地,若干网络可以独立工作或者彼此组合地工作以促进网络371中的通信。
本公开的实施例可以利用硬件和软件的任意组合来实施。另外,本公开的实施例可以包括在具有例如计算机可读的非暂时性介质的制品(例如,一个或多个计算机程序产品)中。介质具有体现在其中的例如计算机可读程序代码,用于提供和促进本公开的实施例的机制。制品可以包括作为计算机系统的部分或者单独销售。
虽然在此已经公开各种方面和实施例,但其他方面和实施例对于本领域技术人员来说将是清楚的。在此公开的各种方面和实施例出于说明目的并且并不旨在是限制性的,其中真正的范围和精神由所附权利要求指示。
如在此使用的,可执行应用包括代码或机器可读指令,用于例如响应于用户命令或输入而调节处理器来实施预定的功能,诸如操作系统、上下文数据采集系统或其他信息处理系统的那些。可执行过程是用于执行一个或多个特定处理的代码段或机器可读指令段、子例程或其他不同代码区段或可执行应用的部分。这些处理可以包括接收输入数据和/或参数、对接收到的输入数据执行操作和/或响应于接收到的输入参数而执行功能,以及提供得到的输出数据和/或参数。
如在此使用的,图形用户接口(GUI)包括一个或多个显示图像,所述一个或多个显示图像由显示器处理器生成并且使能与处理器或其他设备的用户交互以及相关联的数据采集和处理功能。GUI还包括可执行过程或可执行应用。可执行过程或可执行应用调节显示器处理器,以生成表示GUI显示图像的信号。这些信号供应至显示设备,所述显示设备显示供用户观看的图像。在可执行过程或可执行应用的控制下,处理器响应于从输入设备接收到的信号而操纵GUI显示图像。按照该方式,用户可以使用输入设备与显示图像交互,从而使能与处理器或其他设备的用户交互。
在此的功能和处理步骤可以自动执行,或者全部地或部分地响应于用户命令而执行。自动执行的活动(包括步骤)响应于一个或多个可执行指令或设备操作而执行,无需用户直接启动该活动。
各图的系统和过程不是排他性的。根据本发明的原理可以得出其他系统、过程和菜单以实现相同目的。虽然已经参照具体实施例描述了本发明,但应理解,在此示出和描述的实施例和变型仅出于说明目的。在不偏离本发明范围的情况下,本领域技术人员可以实施对当前设计的修改。如在此描述的,各种系统、子系统、代理、管理器和过程可以使用硬件组件、软件组件和/或其组合来实施。在此没有权利要求要素要在35 U.S.C 112、第六段的规定下进行解释,除非使用短语“用于……的装置”明确记载该要素。

Claims (20)

1.一种生成磁共振(MR)参数映射的方法,所述方法包括:
创建一个或多个参数映射,每个相应参数映射包括与多个MR参数之一相关联的初始参数值;
在多个时间点上执行动态更新过程,其中在每个相应时间点处执行的动态更新过程包括:
使用MR扫描仪向受试者应用随机化脉冲序列以获取k-空间数据集,其中所述随机化脉冲序列配置为激发与所述多个MR参数相关联的不同值范围;
对所述k-空间数据集应用重构过程以生成图像;以及
使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。
2.根据权利要求1所述的方法,还包括:
基于所述一个或多个参数映射来更新所述重构过程。
3.根据权利要求2所述的方法,其中,所述重构过程对所述k-空间数据集应用优化过程,并且所述一个或多个参数映射用于更新由所述优化过程使用的基准真实信息。
4.根据权利要求1所述的方法,其中,所述跟踪过程使用滤波,以确定用于包括在所述图像中的每个体素的一维时间系列。
5.根据权利要求4所述的方法,其中,所述滤波是扩展卡尔曼滤波。
6.根据权利要求4所述的方法,其中,所述滤波是无迹卡尔曼滤波。
7.根据权利要求4所述的方法,其中,所述滤波是粒子滤波。
8.根据权利要求4所述的方法,其中,在所述动态更新过程的每个相应时间点期间,所述跟踪过程使用并行计算系统以并行地确定用于多个体素的一维时间系列。
9.根据权利要求1所述的方法,其中,使用螺旋轨迹来获取每个k-空间数据。
10.根据权利要求1所述的方法,其中,使用可变螺旋轨迹来获取每个k-空间数据。
11.一种用于生成磁共振(MR)参数映射的制品,所述制品包括非暂时性的有形计算机可读介质,所述非暂时性的有形计算机可读介质保持用于执行包括以下的方法的计算机可执行指令:
创建一个或多个参数映射,每个相应参数映射包括与多个MR参数之一相关联的初始参数值;
在多个时间点上执行动态更新过程,其中在每个相应时间点处执行的动态更新过程包括:
使用MR扫描仪向受试者应用随机化脉冲序列以获取k-空间数据集,其中所述随机化脉冲序列配置为激发与所述多个MR参数相关联的不同值范围;
对所述k-空间数据集应用重构过程以生成图像;以及
使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。
12.根据权利要求11所述的制品,其中,所述方法还包括:
基于所述一个或多个参数映射来更新所述重构过程。
13.根据权利要求12所述的制品,其中,所述重构过程对所述k-空间数据集应用优化过程,并且所述一个或多个参数映射用于更新由所述优化过程使用的基准真实信息。
14.根据权利要求11所述的制品,其中,所述跟踪过程使用滤波,以确定用于包括在所述图像中的每个体素的一维时间系列。
15.根据权利要求14所述的制品,其中,所述滤波是扩展卡尔曼滤波。
16.根据权利要求14所述的制品,其中,所述滤波是无迹卡尔曼滤波。
17.根据权利要求14所述的制品,其中,所述滤波是粒子滤波。
18.根据权利要求14所述的制品,其中,在所述动态更新过程的每个相应时间点期间,所述跟踪过程使用并行计算系统以并行地确定用于多个体素的一维时间系列。
19.根据权利要求11所述的制品,其中,使用螺旋轨迹来获取每个k-空间数据。
20.一种用于生成磁共振(MR)参数映射的系统,所述系统包括:
MR扫描仪,包括配置为获取表示受试者的组织属性的多个k-空间数据集的多个线圈;以及
中央计算机,配置为:
创建一个或多个参数映射,每个相应参数映射包括与多个MR参数之一相关联的初始参数值,所述多个MR参数与所述受试者的组织属性相关联;
在多个时间点上执行动态更新过程,其中在每个相应时间点处执行的动态更新过程包括:
使用MR扫描仪向受试者应用随机化脉冲序列以获取相应k-空间数据集,其中所述随机化脉冲序列配置为激发与所述多个MR参数相关联的不同值范围;
对所述相应k-空间数据集应用重构过程以生成图像;以及
使用跟踪过程基于所述随机化脉冲序列和所述图像,来更新所述一个或多个参数映射。
CN201611128369.6A 2015-12-10 2016-12-09 用于指纹重构的无字典mr参数推测 Active CN106990375B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/965765 2015-12-10
US14/965,765 US9633455B1 (en) 2015-12-10 2015-12-10 Dictionary-free MR parameter inference for fingerprinting reconstruction

Publications (2)

Publication Number Publication Date
CN106990375A CN106990375A (zh) 2017-07-28
CN106990375B true CN106990375B (zh) 2019-05-03

Family

ID=57542798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611128369.6A Active CN106990375B (zh) 2015-12-10 2016-12-09 用于指纹重构的无字典mr参数推测

Country Status (3)

Country Link
US (1) US9633455B1 (zh)
EP (1) EP3179263B1 (zh)
CN (1) CN106990375B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014221054A1 (de) * 2014-10-16 2016-04-21 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines anzuzeigenden Bilddatensatzes aus Magnetresonanzdaten, Recheneinrichtung und Computerprogramm
US10241176B2 (en) * 2016-01-20 2019-03-26 The General Hospital Corporation Systems and methods for statistical reconstruction of magnetic resonance fingerprinting data
US10634748B2 (en) * 2016-06-22 2020-04-28 Comsats Institute Of Information Technology Graphical processing unit (GPU) implementation of magnetic resonance fingerprinting (MRF)
US10705168B2 (en) * 2017-01-17 2020-07-07 Case Western Reserve University System and method for low rank approximation of high resolution MRF through dictionary fitting
CN107194354B (zh) * 2017-05-23 2019-09-03 杭州师范大学 一种用于磁共振指纹成像的快速字典搜索方法
EP3425416A1 (en) * 2017-07-04 2019-01-09 Koninklijke Philips N.V. Magnetic resonance fingerprinting in fourier space
EP3543911A1 (en) 2018-03-22 2019-09-25 Koninklijke Philips N.V. Anomaly detection using magnetic resonance fingerprinting
EP3581953A1 (en) * 2018-06-11 2019-12-18 Koninklijke Philips N.V. A method for configuring a rf transmit assembly
DE102018209584A1 (de) * 2018-06-14 2019-12-19 Siemens Healthcare Gmbh Magnetresonanz-Fingerprinting-Verfahren
EP3629048A1 (de) 2018-09-27 2020-04-01 Siemens Healthcare GmbH Niederfeld-magnetresonanz-fingerprinting
CN113050009B (zh) * 2019-12-27 2022-12-13 深圳先进技术研究院 三维磁共振快速参数成像方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996261B2 (en) * 2001-01-30 2006-02-07 Decharms R Christopher Methods for physiological monitoring, training, exercise and regulation
CN101190128A (zh) * 2006-11-30 2008-06-04 Ge医疗系统环球技术有限公司 采集磁共振成像数据的方法和设备
CN101512555A (zh) * 2006-09-11 2009-08-19 卡斯西部储备大学 迭代图像重构
CN103876739A (zh) * 2012-11-09 2014-06-25 西门子公司 用于并行成像应用的多阶段磁共振重建
CN104360295A (zh) * 2014-11-04 2015-02-18 中国科学院深圳先进技术研究院 基于字典学习的磁共振并行成像方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556695B1 (en) * 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
US6275038B1 (en) * 1999-03-10 2001-08-14 Paul R. Harvey Real time magnetic field mapping using MRI
EP1877813B1 (en) * 2005-04-26 2013-06-19 Koninklijke Philips Electronics N.V. Mri involving contrast agent with time modulated contrast enhancement
JP5637775B2 (ja) * 2009-08-19 2014-12-10 株式会社東芝 医用装置
US9360544B2 (en) * 2011-03-01 2016-06-07 Koninklijke Philips N.V. Accelerated MR thermometry mapping involving an image ratio constrained reconstruction
US9568579B2 (en) * 2012-12-19 2017-02-14 Case Western Reserve University Magnetic resonance fingerprinting (MRF) with echo splitting
US9536423B2 (en) * 2013-03-31 2017-01-03 Case Western Reserve University Fiber optic telemetry for switched-mode current-source amplifier in magnetic resonance imaging (MRI)
WO2015175028A1 (en) * 2014-02-11 2015-11-19 The General Hospital Corporation Systems and methods for acceleration magnetic resonance fingerprinting
US20150287222A1 (en) * 2014-04-02 2015-10-08 University Of Virginia Patent Foundation Systems and methods for accelerated parameter mapping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996261B2 (en) * 2001-01-30 2006-02-07 Decharms R Christopher Methods for physiological monitoring, training, exercise and regulation
CN101512555A (zh) * 2006-09-11 2009-08-19 卡斯西部储备大学 迭代图像重构
CN101190128A (zh) * 2006-11-30 2008-06-04 Ge医疗系统环球技术有限公司 采集磁共振成像数据的方法和设备
CN103876739A (zh) * 2012-11-09 2014-06-25 西门子公司 用于并行成像应用的多阶段磁共振重建
CN104360295A (zh) * 2014-11-04 2015-02-18 中国科学院深圳先进技术研究院 基于字典学习的磁共振并行成像方法和装置

Also Published As

Publication number Publication date
EP3179263B1 (en) 2023-11-01
CN106990375A (zh) 2017-07-28
EP3179263A1 (en) 2017-06-14
US9633455B1 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
CN106990375B (zh) 用于指纹重构的无字典mr参数推测
US9928596B2 (en) Motion corrected imaging system
US10068328B2 (en) Sparse iterative phase correction for MR partial fourier reconstruction
US9157975B2 (en) Concurrent fat and iron estimation in magnetic resonance signal data
US9940713B1 (en) MR-based navigators for inter-scan and intra-scan motion correction
US9945919B2 (en) Systems and methods for real time gradient timing modification
US10241176B2 (en) Systems and methods for statistical reconstruction of magnetic resonance fingerprinting data
WO2015140277A1 (en) Control of magnetic resonance imaging acquisition using modeling
EP3607338B1 (en) Methods for iterative reconstruction of medical images using primal-dual optimization with stochastic dual variable updating
US10588523B2 (en) 4D flow measurements of the hepatic vasculatures with two-dimensional excitation
CN103876739A (zh) 用于并行成像应用的多阶段磁共振重建
EP3026452B1 (en) Compressed sensing reconstruction for mri multi-slab acquisitions
Polzehl et al. Magnetic resonance brain imaging
US9689947B2 (en) Sampling strategies for sparse magnetic resonance image reconstruction
US9588209B2 (en) Method of multislice MR elastography with multiband acquisition
US9618593B2 (en) Phase enhanced UTE with improved fat suppression
US20230410315A1 (en) Deep magnetic resonance fingerprinting auto-segmentation
US20230186532A1 (en) Correction of magnetic resonance images using multiple magnetic resonance imaging system configurations
US9568573B2 (en) Methods and systems for automated magnetic field shimming
US20170330353A1 (en) Non-Contrast MR Angiography with Variable Slice Resolution 3D Time-of-Flight
US20230253095A1 (en) Artifical intelligence for end-to-end analytics in magnetic resonance scanning
US11782114B1 (en) Reducing artifact generation echo in stimulated-echo-based strain imaging
US10324155B2 (en) Sparse recovery of fiber orientations using multidimensional Prony method
US10241171B2 (en) Fat suppression by combining fat saturation with fat inversion
CN113661404A (zh) 使用模拟磁共振图像对磁共振图像的校正

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant