CN106981650B - Preparation method of nanoscale elemental bismuth - Google Patents
Preparation method of nanoscale elemental bismuth Download PDFInfo
- Publication number
- CN106981650B CN106981650B CN201710074141.1A CN201710074141A CN106981650B CN 106981650 B CN106981650 B CN 106981650B CN 201710074141 A CN201710074141 A CN 201710074141A CN 106981650 B CN106981650 B CN 106981650B
- Authority
- CN
- China
- Prior art keywords
- bismuth
- concentration
- salt
- elemental bismuth
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 239000004744 fabric Substances 0.000 claims abstract description 15
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 150000001621 bismuth Chemical class 0.000 claims abstract description 6
- 238000004070 electrodeposition Methods 0.000 claims abstract description 6
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- -1 tetraacetic acid sodium salt Chemical class 0.000 claims abstract 3
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical group O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 claims description 3
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 3
- HLWRUJAIJJEZDL-UHFFFAOYSA-M sodium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [Na+].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC([O-])=O HLWRUJAIJJEZDL-UHFFFAOYSA-M 0.000 claims description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims 3
- 238000004146 energy storage Methods 0.000 abstract description 12
- 238000009713 electroplating Methods 0.000 abstract description 8
- 239000002086 nanomaterial Substances 0.000 abstract description 7
- 239000010405 anode material Substances 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 abstract 1
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000005486 organic electrolyte Substances 0.000 description 4
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- CCSCERKOOGJNEU-UHFFFAOYSA-N nitric acid;pentahydrate Chemical compound O.O.O.O.O.O[N+]([O-])=O CCSCERKOOGJNEU-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种纳米级单质铋的制备方法,通过电化学沉积法在导电碳布上生成纳米级单质铋;电解液为铋盐、十六烷基三甲基溴化铵和乙二胺四乙酸钠盐的混合水溶液,其中,铋盐浓度为(5~30)mmol/L;所述十六烷基三甲基溴化铵浓度为(30~80)mmol/L;所述乙二胺四乙酸钠盐浓度为(0.1~0.3)mol/L;所述电镀电压为‑1~0V;所述电镀时间为10~90min。本发明提供的制备方法能耗低,原料简便易取,操作简单,易于实现,制备得到的单质铋纳米材料,比表面积高,导电性能优异,具有很好的储能性能,为目前能源储存问题提供了很好的负极材料,具备极大的应用前景。
The invention provides a preparation method of nano-level elemental bismuth. Nano-level elemental bismuth is generated on conductive carbon cloth by an electrochemical deposition method; the electrolyte is bismuth salt, cetyltrimethylammonium bromide and ethylenediamine The mixed aqueous solution of tetraacetic acid sodium salt, wherein the concentration of bismuth salt is (5~30) mmol/L; the concentration of cetyltrimethylammonium bromide is (30~80) mmol/L; The concentration of amine tetraacetic acid sodium salt is (0.1~0.3) mol/L; the electroplating voltage is -1~0V; the electroplating time is 10~90min. The preparation method provided by the invention has low energy consumption, simple and easy to obtain raw materials, simple operation and easy realization, and the prepared elemental bismuth nanomaterial has high specific surface area, excellent electrical conductivity and good energy storage performance, which is the problem of current energy storage. It provides a good anode material and has great application prospects.
Description
技术领域technical field
本发明属于储能材料制备技术领域,更具体地,涉及一种纳米级单质铋的制备方法。The invention belongs to the technical field of energy storage material preparation, and more particularly relates to a preparation method of nano-scale elemental bismuth.
背景技术Background technique
随着人口的爆炸式增长和社会的快速发展,作为社会和紧急发展的基石之一,人类对能源的各种需求亦日益增长。而现有的以传统化石能源已不能长期满足未来社会对能源的各种需求,另外,伴随着化石能源的开发,温室效应日益严重,生态环境日益恶化,以及解决地区能源分布不均等问题,可再生的绿色能源已经成为人们关注的焦点。随着社会经济和科技的发展,各种的新型能源开发和利用要求研发不同种类的能量储存装置来实现新能源的高效转化及利用。实现新能源的深度开发和高效利用,新型高效、稳定的电能存储装置的研制是关键。With the explosive growth of population and the rapid development of society, as one of the cornerstones of social and urgent development, human beings have an increasing demand for energy. However, the existing traditional fossil energy can no longer meet the various energy needs of the future society for a long time. In addition, with the development of fossil energy, the greenhouse effect is becoming more and more serious, the ecological environment is deteriorating, and the problem of uneven distribution of regional energy can be solved. Renewable green energy has become the focus of attention. With the development of social economy and science and technology, the development and utilization of various new energy requires the development of different types of energy storage devices to achieve efficient conversion and utilization of new energy. To realize the in-depth development and efficient utilization of new energy, the development of new efficient and stable electrical energy storage devices is the key.
传统的有机电解液的离子电池具有宽电化学窗口,然而有机电解液易燃、有毒,如果使用不恰当,会带来严重的安全及环境问题。而水系电解质环境友好和安全,而且其离子电导率比有机电解质高两个数量级,有望实现电池的高功率,还避免有机电解质所需要的严格制造条件,大大降低了生产成本。因此水系离子电池在电网级别的大规模储能领域中具有重要应用前景,随着研究深入,研究者们已深刻认识到要提高水系电池的性能,关键在于寻找高性能的储能负极材料。Traditional ion batteries with organic electrolytes have wide electrochemical windows. However, organic electrolytes are flammable and toxic, and if used improperly, they will bring serious safety and environmental problems. The aqueous electrolyte is environmentally friendly and safe, and its ionic conductivity is two orders of magnitude higher than that of the organic electrolyte, which is expected to achieve high power of the battery, and avoid the strict manufacturing conditions required by the organic electrolyte, which greatly reduces the production cost. Therefore, water-based ion batteries have important application prospects in the field of large-scale energy storage at the grid level. With the deepening of research, researchers have deeply realized that to improve the performance of water-based batteries, the key is to find high-performance energy storage anode materials.
目前常见的电池负极材料有碳负材料,比如实际应用于锂离子电池的碳素材料,此类材料成本较低容易实现产业化,但是材料容量较低,合金材料和金属氧化物材料理论容量较高,但寿命差。而单质铋作为一种新兴的负极材料,具有高的负极工作电位窗口和合适的电位工作区间,理论比电容值较高,高达78.9mAh/g。然而单质铋循环寿命比较差,大规模制备方法不成熟、不完善,种种条件制约单质铋在电池负极材料中应用。At present, the common negative electrode materials for batteries include carbon negative materials, such as carbon materials that are actually used in lithium-ion batteries. Such materials have low cost and are easy to realize industrialization, but the material capacity is low, and the theoretical capacity of alloy materials and metal oxide materials is relatively high. high, but poor longevity. As an emerging anode material, elemental bismuth has a high anode working potential window and a suitable potential working range, and the theoretical specific capacitance value is high, up to 78.9mAh/g. However, the cycle life of elemental bismuth is relatively poor, and the large-scale preparation method is immature and imperfect. Various conditions restrict the application of elemental bismuth in battery anode materials.
目前所发现的单质铋材料,多被用于化工、催化剂、半导体、电子陶瓷等方面。与其他材料相比,单质铋不但资源丰富,价格低廉,环境友好,而且具有很好的导电性和合适的负电位工作区间,因而是一种极具发展潜力的高性能负极材料。但目前关于单质铋纳米材料的研究较少,特别是储能领域,且许多报道方法不适合大批量生产。因此,发展一种简便易行、高效的制备单质铋纳米材料的方法具有重要意义。The elemental bismuth materials found so far are mostly used in chemical industry, catalyst, semiconductor, electronic ceramics and so on. Compared with other materials, elemental bismuth is not only rich in resources, low in price, and environmentally friendly, but also has good electrical conductivity and suitable negative potential working range, so it is a high-performance negative electrode material with great development potential. However, there are few studies on elemental bismuth nanomaterials, especially in the field of energy storage, and many reported methods are not suitable for mass production. Therefore, it is of great significance to develop a facile and efficient method for preparing elemental bismuth nanomaterials.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有的等不足,提供一种纳米级单质铋的制备方法。The object of the present invention is to overcome the existing deficiencies such as providing a kind of preparation method of nano-level elemental bismuth.
本发明上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种纳米级单质铋的制备方法,通过电化学沉积法在导电碳布上生成纳米级单质铋;电解液为铋盐、十六烷基三甲基溴化铵和乙二胺四乙酸钠盐的混合水溶液,其中,铋盐浓度为(5~30)mmol/L;所述十六烷基三甲基溴化铵浓度为(30~80)mmol/L;所述乙二胺四乙酸钠盐浓度为(0.1~0.3)mol/L;所述电镀电压为-1~0V;所述电镀时间为10~90min。A preparation method of nano-scale elemental bismuth, wherein nano-scale elemental bismuth is generated on conductive carbon cloth by an electrochemical deposition method; the electrolyte is bismuth salt, cetyltrimethylammonium bromide and ethylenediaminetetraacetic acid sodium salt The mixed aqueous solution, wherein the concentration of bismuth salt is (5~30) mmol/L; the concentration of the cetyltrimethylammonium bromide is (30~80) mmol/L; the sodium EDTA is The salt concentration is (0.1~0.3) mol/L; the electroplating voltage is -1~0V; the electroplating time is 10~90min.
优选地,所述电解液中铋盐的浓度为20mmol/L,所述十六烷基三甲基溴化铵浓度为50mmol/L,所述乙二胺四乙酸钠盐浓度为0.1mol/L。Preferably, the concentration of the bismuth salt in the electrolyte is 20 mmol/L, the concentration of the cetyltrimethylammonium bromide is 50 mmol/L, and the concentration of the sodium EDTA is 0.1 mol/L .
优选地,所述电镀电压为-1V,所述电镀时间60min。Preferably, the electroplating voltage is -1V, and the electroplating time is 60min.
优选地,所述铋盐为五水合硝酸铋。Preferably, the bismuth salt is bismuth nitrate pentahydrate.
优选地,所述工作电极为导电碳布,所述对电极为石墨碳棒,所述参比电极为饱和甘汞电极。Preferably, the working electrode is a conductive carbon cloth, the counter electrode is a graphite carbon rod, and the reference electrode is a saturated calomel electrode.
与现有技术相比,本发明具有以下优点及有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
本发明提供的制备方法能耗低,原料简便易取,操作简单,易于实现,制备得到的单质铋纳米材料,比表面积高,导电性能优异,与成熟商业石墨等负极材料相比,储能性能大幅增加。此发明直接在柔性基底导电碳布合成出来高比表面积的单质铋材料,同时采用电化学沉积方法,可以广泛应用于工业生产,为目前能源储存问题提供了很好的负极材料,具备极大的应用前景。The preparation method provided by the invention has low energy consumption, simple and easy to obtain raw materials, simple operation and easy realization, and the prepared elemental bismuth nanomaterial has high specific surface area and excellent electrical conductivity, and compared with mature commercial graphite and other negative electrode materials, the energy storage performance is high. A substantial increase. This invention directly synthesizes elemental bismuth material with high specific surface area on the flexible substrate conductive carbon cloth, and at the same time adopts the electrochemical deposition method, which can be widely used in industrial production, provides a good negative electrode material for the current energy storage problem, and has great application prospect.
附图说明Description of drawings
图1中(a)为实施例1中单质铋的高倍率扫描电镜(SEM)图片,(b)为实施例1中单质铋低倍率扫描电镜(SEM)图片。In FIG. 1, (a) is a high-magnification scanning electron microscope (SEM) picture of elemental bismuth in Example 1, and (b) is a low-magnification scanning electron microscope (SEM) picture of elemental bismuth in Example 1.
图2为实施例1的单质铋在100 mV/s下的循环伏安曲线。FIG. 2 is the cyclic voltammetry curve of the elemental bismuth of Example 1 at 100 mV/s.
图3为实施例1的单质铋在不同电流密度下放电时间。FIG. 3 is the discharge time of elemental bismuth of Example 1 under different current densities.
图4为实施例1的单质铋的XRD。FIG. 4 is the XRD of elemental bismuth of Example 1. FIG.
具体实施方式Detailed ways
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The present invention will be further described below with reference to specific embodiments and accompanying drawings, but the embodiments do not limit the present invention in any form. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
单质铋在碳布上的合成是通过电沉积实现的。在电流加载前,碳布(1cm×3cm)依次在去离水、乙醇、丙酮、去离子水分别超声清洗10分钟,然后60℃烘干备用。将清洗干净的碳布浸入装有30ml硝酸铋(五水合硝酸铋)、十六烷基三甲基溴化铵和乙二胺四乙酸钠盐(二水合乙二胺四乙酸钠)混合起来的水溶液的三电极体系中,其中对应五水合硝酸300mg、对应十六烷基三甲基溴化铵550mg,对应乙二胺四乙酸钠盐1.12g。以碳布作为工作电极,以石墨碳电极为对电极,饱和甘汞为参比电极,对体系施加负1V的加载电压,并保持反应60min。反应结束后将碳布取出,所得样品用去离水反复清洗三遍,60℃烘干。The synthesis of elemental bismuth on carbon cloth was realized by electrodeposition. Before current loading, carbon cloth (1cm×3cm) was ultrasonically cleaned in deionized water, ethanol, acetone, and deionized water for 10 minutes in sequence, and then dried at 60°C for use. Dip the cleaned carbon cloth into a mixture of 30ml of bismuth nitrate (bismuth nitrate pentahydrate), cetyltrimethylammonium bromide and EDTA sodium salt (sodium EDTA dihydrate). In the three-electrode system of the aqueous solution, 300 mg of nitric acid pentahydrate, 550 mg of hexadecyltrimethylammonium bromide, and 1.12 g of ethylenediaminetetraacetic acid sodium salt. With carbon cloth as the working electrode, graphite carbon electrode as the counter electrode, saturated calomel as the reference electrode, a negative 1V loading voltage was applied to the system, and the reaction was maintained for 60 min. After the reaction, the carbon cloth was taken out, and the obtained sample was washed three times with deionized water and dried at 60°C.
实施例2~5
基于实施例1的方案,通过调控不同的反应条件,影响单质铋的生长,其关系如表1所示。Based on the scheme of Example 1, the growth of elemental bismuth is affected by regulating different reaction conditions, and the relationship is shown in Table 1.
表1Table 1
对比例1:其他条件同实施例1,不同的是电镀时间为120min,可以明显观察到单质铋形成粉末团聚,未在工作电极碳布上均匀生长。Comparative Example 1: Other conditions were the same as in Example 1, except that the electroplating time was 120 min, and it could be clearly observed that elemental bismuth formed powder agglomeration and did not grow uniformly on the working electrode carbon cloth.
对比例2:其他条件同实施例1,不同的是硝酸铋的量为800mg,可以明显观察到单质铋在工作电极碳布上形成团聚,不能较好的生长。Comparative Example 2: Other conditions were the same as those of Example 1, except that the amount of bismuth nitrate was 800 mg, and it could be clearly observed that elemental bismuth formed agglomeration on the carbon cloth of the working electrode, and could not grow well.
对比例3:其他条件同实施例1,不同的是电镀电压为2V,可以明显观察到该电压较高,得到大颗粒粉末,单质铋不能较好的进行沉积。Comparative Example 3: Other conditions were the same as in Example 1, except that the electroplating voltage was 2V. It was obvious that the voltage was relatively high, and large particle powder was obtained, and elemental bismuth could not be deposited well.
对比例4:其他条件同实施例1,不同的是十六烷基三甲基溴化铵的量为700mg,可以明显观察到单质铋不能较均匀的在碳布上进行沉积,影响其导电性能。Comparative Example 4: Other conditions are the same as in Example 1, except that the amount of cetyltrimethylammonium bromide is 700 mg. It can be clearly observed that elemental bismuth cannot be deposited on the carbon cloth more uniformly, which affects its electrical conductivity. .
从图1和图4中结果来看,单质铋纳米材料均匀生长在碳布基底,图3为实施例1的单质铋在不同电流密度下放电时间。图2中的循环伏安曲线表明这种单质铋纳米材料具有良好的可逆性和储能特性。通过计算这种单质铋纳米材料的面积比电容值为356.55mF/cm2,表明其很好的储能性能。From the results in Figures 1 and 4, the elemental bismuth nanomaterials are uniformly grown on the carbon cloth substrate, and Figure 3 shows the discharge time of the elemental bismuth of Example 1 at different current densities. The cyclic voltammetry curves in Figure 2 show that this elemental bismuth nanomaterial has good reversibility and energy storage properties. The area specific capacitance value of this elemental bismuth nanomaterial is calculated to be 356.55mF/cm 2 , which shows its good energy storage performance.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710074141.1A CN106981650B (en) | 2017-02-10 | 2017-02-10 | Preparation method of nanoscale elemental bismuth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710074141.1A CN106981650B (en) | 2017-02-10 | 2017-02-10 | Preparation method of nanoscale elemental bismuth |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106981650A CN106981650A (en) | 2017-07-25 |
CN106981650B true CN106981650B (en) | 2020-03-13 |
Family
ID=59338460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710074141.1A Active CN106981650B (en) | 2017-02-10 | 2017-02-10 | Preparation method of nanoscale elemental bismuth |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106981650B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111477864B (en) * | 2020-04-13 | 2022-02-22 | 山东鲁北国际新材料研究院有限公司 | Preparation method and application of superfine metal bismuth nano material |
CN113193206A (en) * | 2021-03-26 | 2021-07-30 | 南通大学 | Preparation method of anode catalyst of ethanol fuel cell |
CN113258025B (en) * | 2021-05-07 | 2023-02-28 | 西北工业大学 | Bismuth-based negative electrode for high-performance aqueous battery and preparation method thereof |
CN115632132B (en) * | 2022-10-25 | 2023-10-24 | 辽宁金谷炭材料股份有限公司 | A preparation method of composite electrode for iron-chromium flow battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3298537B2 (en) * | 1999-02-12 | 2002-07-02 | 株式会社村田製作所 | Sn-Bi alloy plating bath and plating method using the same |
CN1133757C (en) * | 2001-07-10 | 2004-01-07 | 中山大学 | Chemical bismuth plating process |
FR2885913B1 (en) * | 2005-05-18 | 2007-08-10 | Centre Nat Rech Scient | COMPOSITE ELEMENT COMPRISING A CONDUCTIVE SUBSTRATE AND A NANOSTRUCTURED METAL COATING. |
CN104518221B (en) * | 2013-09-29 | 2017-05-17 | 中国科学院大连化学物理研究所 | Double-function negative electrode and applications of double-function negative electrode as all-vanadium flow battery negative electrode |
CN105908214A (en) * | 2016-06-08 | 2016-08-31 | 天津理工大学 | Preparation method for pure metal bismuth nanoparticles |
-
2017
- 2017-02-10 CN CN201710074141.1A patent/CN106981650B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106981650A (en) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106207172B (en) | A kind of preparation method of cobalt sulfide/graphene nanocomposite material, negative electrode of lithium ion battery, lithium ion battery | |
CN102184781B (en) | Nano-nickel oxide/graphene composite material and preparation method thereof | |
CN104993125B (en) | A kind of lithium ion battery negative material Fe3O4The preparation method of/Ni/C | |
CN103227324B (en) | Preparation method of iron oxide cathode material for lithium ion battery | |
CN105552366B (en) | A kind of preparation method of lithium cell cathode material-N doping SnS/C composite nano materials | |
CN108682815A (en) | A kind of efficient hard carbon material and its preparation method and application | |
CN106981650B (en) | Preparation method of nanoscale elemental bismuth | |
CN103904293A (en) | Molybdenum trioxide in-situ cladding nitrogen-doped carbon nanotube composite electrode material as well as preparation method thereof and application | |
CN110371936A (en) | A kind of preparation method and applications of interlamellar spacing adjustable sodium-ion battery copper selenide nano-chip arrays | |
CN108987688B (en) | Carbon-based composite material, preparation method and sodium ion battery | |
CN103606683B (en) | Germanium nano material of a kind of Coiling-type and preparation method thereof | |
CN106129361B (en) | A kind of lithium ion battery anode active material and preparation method | |
CN113299928A (en) | Preparation method of high-performance flexible secondary zinc-silver-zinc-air hybrid battery positive electrode material | |
CN109904391A (en) | A kind of modification method of lithium negative electrode of lithium metal battery and lithium metal battery | |
CN104638257A (en) | Nano-scale manganous oxide-conductive carbon black composite material and synthetic method thereof | |
CN107045948A (en) | NaxMnO2Positive electrode, preparation method and applications | |
CN110760874B (en) | Method for preparing iron oxide photo-anode film by using waste lithium iron phosphate battery | |
CN104638228A (en) | Coaxial carbon-coated bunchy vanadium potassium phosphate nanowire, as well as preparation method and application of nanowire | |
CN110534347A (en) | A kind of MnO2/NiCo2O4Nanocomposite and its electrochemical deposition preparation | |
CN112331845B (en) | A kind of preparation method of cobalt tetroxide nanowire array negative electrode material | |
CN113644269A (en) | Preparation method, product and application of nitrogen-doped hard carbon material | |
CN106531966A (en) | Preparation method for nanometer Cu@CuO material and application of nanometer Cu@CuO material to lithium ion battery | |
CN106315553A (en) | Lithium-ion-battery cathode material and preparing method thereof | |
CN110143863A (en) | A kind of lithium-ion battery tubular manganese oxalate negative electrode material and preparation method thereof | |
CN107673371A (en) | Pyrophosphate aids in the preparation method of the Prussian blue similar thing of synthesized high-performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |